Research review paper

Recent advances in synthesis and surface modification of lanthanide-doped upconversion nanoparticles for biomedical applications

Min Lin a,b, Ying Zhao b, ShuQi Wang c, Ming Liu d, ZhenFeng Duan e, YongMei Chen b,f, Fei Li b,f, Feng Xu a,b,⁎, TianJian Lu b,⁎⁎

⁎ Corresponding author at: The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
⁎⁎ Corresponding author.
E-mail addresses: fengxu@mail.xjtu.edu.cn (F. Xu), tjlu@xjtu.edu.cn (T. Lu).

Available online 27 April 2012

Keywords:
Lanthanide-doped upconversion nanoparticles
Synthesis
Surface modification
Biomedical applications

Abstract

Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) with appropriate surface modification can be used for a wide range of biomedical applications such as bio-detection, cancer therapy, bio-labeling, fluorescence imaging, magnetic resonance imaging and drug delivery. The upconversion phenomenon exhibited by Ln-doped UCNPs renders them tremendous advantages in biological applications over other types of fluorescent materials (e.g., organic dyes, fluorescent proteins, gold nanoparticles, quantum dots, and luminescent transition metal complexes) for: (i) enhanced tissue penetration depths achieved by near-infrared (NIR) excitation; (ii) improved stability against photobleaching, photoblinking and photochemical degradation; (iii) non-photodamaging to DNA/RNA due to lower excitation light energy; (iv) lower cytotoxicity; and (v) higher detection sensitivity. Ln-doped UCNPs are therefore attracting increasing attentions in recent years. In this review, we present recent advances in the synthesis of Ln-doped UCNPs and their surface modification, as well as their emerging applications in biomedicine. The future prospects of Ln-doped UCNPs for biomedical applications are also discussed.

© 2012 Elsevier Inc. All rights reserved.

Contents

1. Introduction .. 1552
2. Upconversion mechanism and construction of UCNPs... 1552
 2.1. Mechanism of upconversion ... 1552
 2.2. Ln-doped UCNPs .. 1552
3. Synthesis of Ln-doped UCNPs .. 1553
 3.1. Co-precipitation method ... 1553
 3.2. Thermal decomposition ... 1553
 3.3. Sol–gel process ... 1553
 3.4. Hydro(solvo)thermal method .. 1554
4. Surface modification of Ln-doped UCNPs. ... 1554
 4.1. Surface coating for enhanced upconversion efficiency 1554
 4.2. Surface functionalization for biomedical applications 1555
5. Advantages of Ln-doped UCNPs in biomedical applications .. 1555
 5.1. Biological imaging .. 1555
 5.2. Biological sensing/detection ... 1556
 5.3. Development of point-of-care devices. ... 1557

⁎⁎ Corresponding author. E-mail addresses: fengxu@mail.xjtu.edu.cn (F. Xu), tjlu@xjtu.edu.cn (T. Lu).
1. Introduction

Due to high temporal and spatial resolutions, fluorescence imaging is an important and challenging technique for in vitro and in vivo biological studies and clinical applications (Berezin and Achilefu, 2010; Kobayashi et al., 2010; Louie, 2010). Conventional fluorophores (e.g., organic fluorophores, quantum dots, fluorescent proteins and luminescent transition metal complexes) have been widely used as luminescent reporters for biological applications (Lau et al., 2009; Malkani and Schmid, 2011; Medintz et al., 2005; Wang et al., 2009a; Yu et al., 2008; Zhao et al., 2010). Nevertheless, conventional fluorophores are associated with several limitations, such as low photo-stability, auto-fluorescence, cytotoxicity and limited detection sensitivity (Hilderbrand et al., 2009; Larson et al., 2003; van de Rijke et al., 2001; Wang and Liu, 2008). Lanthanide (Ln)-doped upconversion nanoparticles (UCNPs) exhibit unique fluorescent property known as photon upconversion, providing tremendous advantages over conventional fluorophores for biomedical applications. These advantages include (i) enhanced penetration depth into tissues upon NIR excitation (Chatterjee et al., 2008); (ii) significantly decreased auto-fluorescence from surrounding tissues (Idris et al., 2009; Johnson et al., 2010; Wu et al., 2011); (iii) non-photobleaching, non-photo blinking and high spatial resolution during bioimaging (Idris et al., 2009; Park et al., 2009; Sudhagar et al., 2011); (iv) decreased photo-damage to biological specimens (e.g., RNA, DNA) due to lower energy NIR excitation (Jiang and Zhang, 2010); (v) low cytotoxicity to a broad range of cell lines (Chatterjee et al., 2008; Jalil and Zhang, 2008; Park et al., 2009; Tsien, 1998; Wang et al., 2006; Xiong et al., 2009, 2010). Hence, Ln-doped UCNPs hold great potential as novel fluorophores for biological applications.

This review aims to present the state-of-the-art in the synthesis and surface modification of Ln-doped UCNPs and their emerging biological applications. In Section 2, we describe basic principle underlying the phenomenon of upconversion and the corresponding crystalline structure of Ln-doped UCNPs. Section 3 presents popular chemical approaches for the synthesis of Ln-doped UCNPs with well controlled size distribution, morphologies, and luminescent properties. Advantages and disadvantages associated with each synthetic method are discussed. Section 4 focuses on the general surface modification strategies of Ln-doped UCNPs for enhanced luminescence and improved solubility in solvent facilitating further biological applications. The applications of Ln-doped UCNPs for in vitro and in vivo imaging, biological sensing, detection, development of point-of-care devices and drug delivery are discussed in Section 5. Section 6 highlights future research topics associated with Ln-doped UCNPs.

2. Upconversion mechanism and construction of UCNPs

2.1. Mechanism of upconversion

Conventional fluorophores exhibit the phenomenon of downconversion, i.e., higher energy photons are absorbed while lower energy ones are emitted due to internal energy loss (IEL) (Lakowicz, 2006) (Fig. 1a). Compared with downconversion, upconversion is a process that causes the emission of higher energy photons through sequential absorption of lower energy photons (Auzel, 2004). The mechanism underlying upconversion process has been extensively explored and is generally divided into three classes (Wang and Liu, 2009; Wang et al., 2011b), i.e., excited state absorption (ESA), energy transfer upconversion (ETU), and photon avalanche (PA). In comparison with the other two processes, ETU has been widely employed to obtain high upconversion efficiency (emission density versus NIR excitation power), involving the absorption of a pump phonon of the same energy by each of the two neighboring ions (Fig. 1b). A subsequent non-radiative energy transfer promotes one of the ions to an upper energy level (EL2) while the other ion relaxes back to the ground state (GS). The relaxation from EL2 results in the emission of higher energy photons.

2.2. Ln-doped UCNPs

Ln-doped UCNPs are typically composed of an inorganic host lattice and trivalent lanthanide dopant ions embedded in the host lattice. Host lattice is a transparent crystalline that accommodates the dopants. Several criteria need to be fulfilled for choosing the host lattice as reviewed by Wang and Liu (2009) and by Ong et al. (2010): (i) close lattice matches to dopant ions; (ii) low phonon vibration energies; (iii) good chemical stability. Based on these criteria, the most commonly used host lattice for the synthesis of Ln-doped UCNPs are fluorides (Liang et al., 2011; Sudheendra et al., 2011; Yu et al., 2010) and oxides (Kamimura et al., 2008; Singh et al., 2010; Yang et al., 2009). So far, fluoride-based (i.e., NaYF4) UCNPs have been identified as one of the most efficient upconversion fluorescent nanoparticles due to their low phonon vibration energy (Boyer et al., 2007; Heer et al., 2004; Yi and Chow, 2007).

To enhance the luminescence efficiency of Ln-doped UCNPs, two types of dopant ions are needed. One that emits visible light is called an activator, while the other acting as the donor of energy is the sensitizer. To minimize cross-relaxation energy loss, the concentration of the sensitizer is relatively high (~20 mol%), while for the activator, the concentration is below 2 mol% (Wang and Liu, 2009). The dopant selection criterion is based on characteristic spaced energy levels that render photon absorption by sensitizer and subsequent energy transfer between the sensitizer and activator in the upconversion process. With high absorption coefficient and upconversion efficiency, Yb3+ is usually selected as the sensitizer (Soukka et al., 2008), Er3+, Tm3+, and Ho3+ are good candidates as activators, which possess ladder-like energy levels and are well resonant with non-

Fig. 1. Illustration of (a) downconversion and (b) energy transfer upconversion mechanism. IEL: internal energy loss; GS: ground state; EL: energy level; NRET: non-radiative energy transfer; hν1: incident light; hν2: emission light.
radiative multiphonon relaxation from Yb\(^{3+}\), enabling efficient energy transfer from Yb\(^{3+}\) to these ions (Wang and Liu, 2009). Other lanthanide ions, such as Tb\(^{3+}\) (Liang et al., 2009), Pr\(^{3+}\) and Dy\(^{3+}\) (Lakshminarayana et al., 2008) have also been used as activators. Typical lanthanide host-dopant systems and major emissions are listed in Table 1.

3. Synthesis of Ln-doped UCNPs

Ln-doped UCNPs size, crystalline phase purity, morphology and monodispersity are critical parameters that directly influence the upconversion fluorescence properties (e.g., upconversion efficiency, emitting light wavelength) (Shan and Ju, 2009; Wang et al., 2010b; Zhang et al., 2009a). Great efforts have been dedicated to developing a variety of chemical approaches for synthesis of Ln-doped UCNPs (Wang and Liu, 2009; Wang et al., 2011b; Zhang et al., 2010a). Representative Ln-doped UCNPs synthetic methods such as co-precipitation, thermal decomposition, sol–gel processing and hydro(solvo)thermal method are discussed below.

3.1. Co-precipitation method

The co-precipitation synthetic method is simple in the sense that it is not time consuming and does not require costly setup, complex procedures, or severe reaction conditions (Du et al., 2011). Nanoparticle growth can be controlled and stabilized by adding capping ligands such as polyvinylpyrrolidone (PVP), polyethyleneimine (PEI) (Wang et al., 2006; Wu et al., 2002) and ethylenediaminetetraacetic acid (EDTA) (Yi et al., 2004) into the solvent. However, in rare cases, crystalline nanoparticles formed directly from co-precipitation (Du et al., 2011), requiring post heat treatment (Su et al., 2009; Xu et al., 2010). It has been reported that hexagonal-phase NaYF\(_4\):Yb,Er nanocrystals exhibit an upconversion efficiency higher than cubic-phase NaYF\(_4\):Yb,Er (Wang et al., 2010b). Co-precipitation generally yields cubic-phase NaYF\(_4\):Yb,Er which is not an efficient upconverter. Subsequent calcination at high temperatures results in sharpened crystal structure or partial phase transfer to hexagonal-phase NaYF\(_4\):Yb,Er that has a higher upconversion efficiency (Yi et al., 2004). In addition to NaYF\(_4\):Yb,Er nanocrystals, LuPO\(_4\):Yb,Tm and YbPO\(_4\):Er,Tm nanocrystals have also been synthesized via co-precipitation and subsequently heat treatment for improved upconversion emission (Xu et al., 2009).

3.2. Thermal decomposition

Thermal decomposition is another widely used technique, which involves dissolving organic precursors in high-boiling-point solvents (e.g., oleic acid (OA), oleylamine (OM), octadecene (ODE)) for the synthesis of highly monodispersed UCNPs (Boyer et al., 2006, 2007; Liu et al., 2009b; Mahalingam et al., 2009). In this method, rare earth trifluoroacetates are thermolyzed in the presence of high-boiling-point solvents at a temperature usually exceeding 300 °C. Using this method, Yan’s group has done a pioneer work on the synthesis of Ln-doped UCNPs (Du et al., 2009; Mai et al., 2006, 2007; Yin et al., 2010; Zhang et al., 2010a). For example, Er\(^{3+}\), Yb\(^{3+}\) and Tm\(^{3+}\), Yb\(^{3+}\) doped monodispersed cubic-phase and hexagonal-phase NaYF\(_4\) nanocrystals have been synthesized by thermal decomposition of trifluoroacetate precursors in OA/OM/ODE solvents and OA/ODE solvents, respectively (Mai et al., 2006). NaYF\(_4\)-based UCNPs with different luminous properties have also been obtained with similar synthetic methods (Mai et al., 2007; Yin et al., 2010). They have also extended the synthetic route for synthesis of LiYF\(_4\) and KGdF\(_4\) UCNPs with Li(CF\(_3\)COO) and K(CF\(_3\)COO) used instead as one of the precursors (Du et al., 2009). Alternatively, by decomposing the precursors of Na(CF\(_3\)COO), Y(CF\(_3\)COO)\(_3\), Yb(CF\(_3\)COO)\(_3\), and Er(CF\(_3\)COO)\(_3\)/Tm(CF\(_3\)COO)\(_3\) in OM solvent under 330 °C, hexagonal-phase NaYF\(_4\):Yb,Er and NaYF\(_4\):Yb,Tm nanoparticles with an average particle size of 10.5 nm and much higher upconversion fluorescence intensity than that of cubic-phase NaYF\(_4\):Yb,Er nanocrystals were obtained (Yi and Chow, 2006). However, the disadvantages associated with this method are the use of expensive and air-sensitive metal precursors (Mader et al., 2010; Wang et al., 2010b, 2011d), and the generation of toxic by-products (Mahalingam et al., 2009; Yi and Chow, 2006).

3.3. Sol–gel process

The sol–gel process features the hydrolysis and polycondensation of metal acetate or metal alkoxide based precursors (Liu et al., 2009b; Patra et al., 2002). Various metal oxide based Ln-doped UCNPs such as YVO\(_4\):Yb,Er, Lu\(_2\)Ga\(_5\)O\(_{12}\)-Er, BaTiO\(_3\)-Er, TiO\(_2\)-Er and ZrO\(_2\)-Er, have been prepared using the sol–gel method (Li et al., 2008a; Liu et al., 2009b; Patra et al., 2002, 2003; Quan et al., 2009). Despite its success in the synthesis of various Ln-doped UCNPs, the sol–gel method has limited control over synthesized particle size, and particle aggregation may occur when dispersed in aqueous solutions during biological

Table 1

Representative UCNPs with different host-dopant systems, excitation wavelengths and emission peaks.

<table>
<thead>
<tr>
<th>Host lattice</th>
<th>Sensitizer</th>
<th>Activator</th>
<th>Blue</th>
<th>Green</th>
<th>Red</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaYF(_4)</td>
<td>Yb</td>
<td>Er</td>
<td>518, 537</td>
<td>652</td>
<td></td>
<td>Wang et al. (2005) and Yi et al. (2004)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er</td>
<td></td>
<td>540</td>
<td>660</td>
<td></td>
<td>Heer et al. (2004)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er</td>
<td></td>
<td>510–530</td>
<td>635–675</td>
<td></td>
<td>Liu et al. (2009a)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er</td>
<td></td>
<td>521,539</td>
<td>651</td>
<td></td>
<td>Li and Zhang (2008)</td>
</tr>
<tr>
<td>Yb</td>
<td>Tm</td>
<td></td>
<td>450, 475</td>
<td>647</td>
<td></td>
<td>Heer et al. (2004)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er, Tm</td>
<td></td>
<td>499, 474</td>
<td>644, 693</td>
<td></td>
<td>Wang and Liu (2008)</td>
</tr>
<tr>
<td>Yb</td>
<td>Ho</td>
<td></td>
<td>540</td>
<td>651</td>
<td></td>
<td>Ehert et al. (2008)</td>
</tr>
<tr>
<td>Yb</td>
<td>Ho</td>
<td></td>
<td>542</td>
<td>645, 658</td>
<td></td>
<td>Shan et al. (2007)</td>
</tr>
<tr>
<td>LaF(_3)</td>
<td>Yb</td>
<td>Tm</td>
<td>475</td>
<td></td>
<td></td>
<td>Liu and Chen (2007)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er</td>
<td></td>
<td>530, 545</td>
<td>659</td>
<td></td>
<td>Liu and Chen (2007)</td>
</tr>
<tr>
<td>Yb</td>
<td>Ho</td>
<td></td>
<td>542</td>
<td>645, 658</td>
<td></td>
<td>Liu and Chen (2007)</td>
</tr>
<tr>
<td>CaF(_2)</td>
<td>Yb</td>
<td>Er</td>
<td>524</td>
<td>654</td>
<td></td>
<td>Wang et al. (2009b)</td>
</tr>
<tr>
<td>Yb</td>
<td>Er</td>
<td></td>
<td>550</td>
<td>660</td>
<td></td>
<td>Kanimura et al. (2008)</td>
</tr>
<tr>
<td>Yb</td>
<td>Ho</td>
<td></td>
<td>543</td>
<td>665</td>
<td></td>
<td>Qin et al. (2007)</td>
</tr>
<tr>
<td>Lu(_2)O(_3)</td>
<td>Yb</td>
<td>Er, Tm</td>
<td>490</td>
<td>662</td>
<td>649</td>
<td>Yang et al. (2009)</td>
</tr>
<tr>
<td>LuPO(_4)</td>
<td>Yb</td>
<td>Tm</td>
<td>475</td>
<td></td>
<td></td>
<td>Heer et al. (2003)</td>
</tr>
</tbody>
</table>

All are under NIR (980 nm) excitation.
applications. Furthermore, post heat treatment is often needed to improve crystalline phase purity for enhanced luminescence efficiency. However, the extra heat treatment may induce unwanted particle aggregation.

3.4. Hydro(solvo)thermal method

The solubility of solids is greatly improved under hydro(solvo)thermal conditions (e.g., reaction temperature rises above a critical point, pressurized solvent), which accelerates reactions between solids (Chuai et al., 2011; Du et al., 2011; Feng and Xu, 2001; Huang et al., 2010). This approach allows for the synthesis of highly crystalline nanocarcs with tunable size, morphology, optical and magnetic properties via controlled reaction temperature/time, concentration, pH value, precursors etc. (Guo et al., 2010; Niu et al., 2011; Yan and Yan, 2008; Zhang et al., 2009a). In addition to convenient size and morphology control, the superiority of this method over other synthetic methods lies in the “one-pot process”: with heat-resistant polymer (e.g., PEl, PVP) added into the solvent (Liu et al., 2009b; Wang et al., 2006), uniform-sized nanoparticles with appropriate surface modification could be obtained through a single reaction process (Wang et al., 2010c). Nevertheless, the main challenge of the hydro(solvo)thermal method is the impossibility of observing the nanocrystals growth processes.

In addition to the methods described above, other procedures such as microwave-assisted synthesis (Patra et al., 2005; Vadivel Murugan et al., 2006), combustion synthesis (Gallini et al., 2005; Shan and Ju, 2009; Vu et al., 2007) and hydrothermal in situ conversion route (Heer et al., 2003; Yi and Chow, 2005) have also been employed for fabricating Ln-doped UCNPs. The advantages and disadvantages of various synthetic routes are summarized in Table 2. Among them, the hydro(solvo)thermal reaction method is the most widely used due to easy and precise control of the shape and size of Ln-doped UCNPs (Yan and Yan, 2008). The reaction conditions, such as reaction time, concentration, temperature, pH value, and surfactant involved in hydro(solvo)thermal procedures can be fine-tuned to tailor the optical and magnetic properties for specific biomedical applications.

4. Surface modification of Ln-doped UCNPs

For many biomaterials, surface functionalization is critical for fulfilling their biological functions (Williams, 2011). Surface modification of Ln-doped UCNPs is required in biosciences, such as immunoassay (Niedbala et al., 2001), targeted imaging (Hu et al., 2009; Xiong et al., 2010). This approach allows for the synthesis of highly crystalline solids (Chuai et al., 2011; Du et al., 2011; Feng and Xu, 2001; Huang et al., 2010). This approach allows for the synthesis of highly crystalline nanocrystals with tunable size, morphology, optical and magnetic properties via controlled reaction temperature/time, concentration, pH value, precursors etc. (Guo et al., 2010; Niu et al., 2011; Yan and Yan, 2008; Zhang et al., 2009a). In addition to convenient size and morphology control, the superiority of this method over other synthetic methods lies in the “one-pot process”: with heat-resistant polymer (e.g., PEl, PVP) added into the solvent (Liu et al., 2009b; Wang et al., 2006), uniform-sized nanoparticles with appropriate surface modification could be obtained through a single reaction process (Wang et al., 2010c). Nevertheless, the main challenge of the hydro(solvo)thermal method is the impossibility of observing the nanocrystals growth processes.

Table 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Examples (hosts)</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-precipitation</td>
<td>Yb2O3, NaYF4</td>
<td>Fast synthesis, low cost and</td>
<td>Lack of particle size control,</td>
<td>Du et al. (2011), Su et al. (2009) and Xu et al. (2009)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>simple procedures</td>
<td>considerable aggregation, high</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>temperature calcination typically</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>LiYF4, NaYF4</td>
<td>High quality, monodispersed</td>
<td>Expensive, air-sensitive metal</td>
<td>Lim (2009), Mahalingam et al. (2009), Wang et al.(2006) and Yi and Chow (2006)</td>
</tr>
<tr>
<td>decomposition</td>
<td>VYbO4, Li3GaO12,</td>
<td>nanocrystals</td>
<td>precursors, toxic by-products</td>
<td>Li et al. (2008a), Liu et al. (2009b), Patra et al. (2002, 2003) and Quan et al. (2009)</td>
</tr>
<tr>
<td>Sol-gel processing</td>
<td>Bi2O3, TiO2, ZrO2</td>
<td>Cheap precursors</td>
<td>High temperature calcination</td>
<td>Gallini et al. (2005), Shan and Ju (2009) and Vu et al. (2007)</td>
</tr>
<tr>
<td>Combustion</td>
<td>Y2O3, LaPO4, La2O5</td>
<td>Fast synthesis, energy saving</td>
<td>Considerable aggregation, lack of</td>
<td>Hilderbrand et al. (2009) and Wang and Liu (2008)</td>
</tr>
<tr>
<td>synthesis</td>
<td></td>
<td></td>
<td>particle size control, low purity</td>
<td></td>
</tr>
<tr>
<td>Flame synthesis</td>
<td>Y2O3, LaO3, CdO2</td>
<td>Fast synthesis, large scale</td>
<td>Considerable aggregation, lack of</td>
<td></td>
</tr>
<tr>
<td>Hydro(solvo)</td>
<td>LuF3, NaYF4, Ba2YF7, ZnGa2O4, VYbO4</td>
<td>High quality crystals with</td>
<td>Impossibility of observing the</td>
<td>Chuai et al. (2011), Huang et al. (2010), J alil and Zhang (2008), Su Kim et al. (2007) and Venkatramu et al. (2008)</td>
</tr>
<tr>
<td>thermal synthesis</td>
<td></td>
<td>controllable particle size,</td>
<td>nanocrystal growth processes</td>
<td></td>
</tr>
</tbody>
</table>

4.1. Surface coating for enhanced upconversion efficiency

A large proportion of surface dopant ions exists in nano-sized Ln-doped UCNPs (Fig. 2a). Non-radiative energy loss occurs due to lack of protection by the host lattice, resulting in low efficiency of upconversion luminescence as compared with bulk materials (Yi et al., 2004). Such limitation could be avoided through coating an inert crystalline shell onto the surface of doped nanocrystals. In such core/shell structures, the dopant ions are confined in the interior core of the nanocrystals (Fig. 2b). The shell could effectively suppress energy loss on the crystal surface, leading to enhanced luminescence efficiency. For instance, significant upconversion luminescence enhancements of ~7 times for NaYF4:Yb,Er and ~29 times for NaYF4:Yb,Tm have been achieved by decorating with ~2 nm thick undoped NaYF4 shell (Yi and Chow, 2007). Whereas, Mai et al. (2007) found only 1/2–1 folds luminescent increase for NaYF4 coated NaYF4:Yb,Er UCNPs. Increases of over 20 folds in upconversion efficiency have been observed by coating undoped KYF4 on the surface of KYF4:Yb,Er nanocrystals (Schafer et al., 2008). NaGdF4:Er,Yb nanoparticles coated with a shell of NaGdF4 have also been found to exhibit greatly improved luminescence intensity as compared with uncoated ones (Vetrone et al., 2009). In addition to coating with materials that have the same composition with the host lattice, amorphous shells or carbonized glucose shells have been found to be useful for improving the luminescence efficiency of Ln-doped UCNPs (Li and Zhang, 2006; Li et al., 2010).
However, while the luminescence intensities can be tuned by varying the thickness of amorphous shells, the increase in luminescence is limited due to high-energy oscillations from the amorphous shells.

4.2. Surface functionalization for biomedical applications

In addition to high upconversion luminescence efficiency, the preparation of water soluble Ln-doped UCNPs is crucial for biological applications. Most Ln-doped UCNPs synthesized from high-temperature approaches discussed in Section 2 have limitations on both aqueous solubility and biological functions. Surface functionalization with hydrophilic ligands is required prior to exploring various bioanalytical potentials. Five major strategies have been proposed to enable the water solubility and biofunctionality of Ln-doped UCNPs (Wang and Liu, 2009): (1) surface silanization; (2) ligand exchange; (3) ligand oxidation; (4) ligand attraction; (5) electrostatic layer by layer assembly.

Among various surface functionalization methods, surface silanization is the most commonly applied for two reasons: (i) well-established chemical approaches of silica coating; and (ii) silica coating is readily applicable to both hydrophilic and hydrophobic nanoparticles (Liu and Han, 2010; Piao et al., 2008). For instance, Johnson et al. (2010) reported silica coating on PV stabilized NaYF4:Yb,Er nanocrystals in ethanol. With PV stabilized NaYF4:Yb,Er nanocrystals dispersed in ethanol, PV on the surface of the nanocrystals facilitates both stability in ethanol and affinity with silica allowing uniform growing of silica shell with thickness of ~9 nm. Using a similar method, Li and Zhang (2006) prepared water soluble silica coated PV stabilized NaYF4:Yb,Er nanocrystals: the thickness of silica shells could be varied from 10 nm to 1 nm by adjusting the concentration of precursor for silica formation, i.e., tetraethoxysilane (TEOS).

Apart from surface silanization, alternative ways for surface functionalization of Ln-doped UCNPs have been developed by surface modification with non-silane reagents. For example, Chatterjee et al. (2008) directly coated Ln-doped UCNPs with a layer of PEI via a modified hydrothermal synthesis. Layer-by-layer (LBL) assembly strategy has also been employed for functionalization of Ln-doped UCNPs. Via electrostatic attraction, Hilderbrand et al. (2009) coated the nanoparticles with a layer of polyacrylic acid (PAA): carboxyl groups of the PAA was covalently linked with amino-modified polyethylene glycol (PEG), resulting in hydrophilic and functional Ln-doped UCNPs. In addition to LBL assembly strategy, ligand-exchange method has been demonstrated as a facile approach for surface functionalization of Ln-doped UCNPs (Qiu et al., 2011; Zhou et al., 2011). For example, Yi and Chow (2006) prepared water soluble NaYF4:Yb,Er nanoparticles using a ligand exchange method. In their study, Ln-doped UCNPs were firstly stabilized with oleylamine ligands; the amine ligand was subsequently replaced by bifunctional organic molecules, providing water soluble surface. To fine-tune the surface properties of Ln-doped UCNPs for a controlled cell–nanoparticle interaction, Jin et al. (2011) prepared PEI and PAA coated Ln-doped UCNPs by ligand exchange of PVP with PEI or PAA due to their higher binding affinity toward lanthanide ions than PVP.

5. Advantages of Ln-doped UCNPs in biomedical applications

With unique upconversion mechanism, Ln-doped UCNPs offer high sensitivity and high signal-to-noise ratio for bioimaging and bio-detection. Furthermore, emission in the NIR region with NIR excitation enables deep tissue reaching while avoiding photodamaging to biological specimens. Such unique properties provide Ln-doped UCNPs with great potential for a wide range of biological applications, such as biological imaging, biological sensing/detection, development of point-of-care devices and drug delivery. A brief overview of the advantages associated with Ln-doped UCNPs in biological applications is presented below.

5.1. Biological imaging

Gold nanorods and quantum dots have been widely used for bioimaging (Huang et al., 2009; Medintz et al., 2005; Wang et al., 2010d, 2012). However, gold nanorods are incapable of deep tissue imaging due to signal attenuation, along with low contrast and auto-fluorescence (Qian et al., 2010a). Although quantum dots exhibit negligible photobleaching, greater brightness, and narrow mission bands (Xing and Rao, 2008), there are concerns about their cytotoxicity (Chatterjee et al., 2008). Ln-doped UCNPs are photostable against photobleaching and blinking (Park et al., 2009; Yu et al., 2009). Moreover, absence of auto-fluorescence (Idris et al., 2009) and deep tissue reaching resulting from luminescence after NIR excitation (Chatterjee et al., 2008) enable them as promising probes for in vitro and in vivo imaging as have been reviewed (Chatterjee et al., 2010; Mader et al., 2010). For comparison, the advantages and disadvantages of those materials and other materials used for bioimaging are listed in Table 3.

A number of studies have reported the application of Ln-doped UCNPs in in vitro cellular and tissue imaging. In vitro cellular imaging involves targeting of Ln-doped UCNPs to some subcellular components (e.g., membrane proteins). In vitro imaging with spatial and temporal distributions of colon cancer cells (Chatterjee et al., 2008), ovarian cancer cells (Boyer et al., 2010), HeLa cells (Cheng et al., 2011; Dong et al., 2011; Jin et al., 2011; Wang et al., 2009d), myoblasts (Jali and Zhang, 2008), glioblastoma and breast carcinoma cells (Jin et al., 2011; Xing et al., 2012; Yang et al., 2012) have been demonstrated. In a recent report by Jin et al. (2011), the brighter in vitro cellular imaging can be achieved by positively charged UCNPs due to their enhanced cellular uptake efficiency. Tissue imaging was firstly demonstrated by Zijlmans et al. (1999) who used Y2O2S:Yb,Tm nanoparticles to study the spatial distribution of prostate-specific antigen (PSA) in human prostate tissue. The

Table 3

Comparison of representative probes for bioimaging.

<table>
<thead>
<tr>
<th>Probe materials</th>
<th>Types</th>
<th>Advantages</th>
<th>Disadvantages</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum dots</td>
<td>Colloidal II–VI semiconductor nanocrystals</td>
<td>High fluorescence brightness, narrow and tunable emission</td>
<td>Toxic, signal attenuation in deep tissue imaging</td>
<td>Chatterjee et al. (2008) and Jali and Zhang (2008)</td>
</tr>
<tr>
<td>Luminescent transition metal complexes</td>
<td>Iridium (III) based metalorganic materials</td>
<td>Good water solubility, lack of dye–dye interactions, and large Stokes' shifts</td>
<td>Toxic, auto-fluorescence, signal attenuation in deep tissue imaging</td>
<td>Lau et al. (2009), Park et al. (2009), Yu et al. (2008) and Zhao et al. (2010)</td>
</tr>
<tr>
<td>Lanthanide-doped UCNPs</td>
<td>Lanthanide-doped fluorides and oxides</td>
<td>Large anti-Stokes' shifts, non-blinking, non-bleaching, non-auto-fluorescence, deep tissue reaching, good biocompatibility</td>
<td>Low upconversion efficiency</td>
<td>Chatterjee et al. (2008), Idris et al. (2009), Jali and Zhang (2008), Park et al. (2009) and Yu et al. (2009)</td>
</tr>
</tbody>
</table>
absence of auto-fluorescence from tissue itself under NIR excitation enables high-resolution imaging.

More importantly, in vivo organism and animal imaging has been achieved with Ln-doped UCNPs. Lim et al. (2006) carried out pioneering work on live organism imaging by inoculating Y2O3:Yb,Er nanoparticles into live nematode Caenorhabditis elegans worms. The digestive system of the worm was subsequently imaged under NIR excitation, showing clearly distribution of nanoparticles in intestines. Besides organism imaging, in vivo animal imaging has also been demonstrated (Chatterjee et al., 2008), where NaYF4:Yb,Er nanoparticles were injected underneath abdominal and back skin of anesthetized rats. Upon NIR excitation, the luminescence from Ln-doped UCNPs can be clearly observed even when the nanoparticles are located ~10 mm beneath the skin, which is far deeper than that by quantum dots as imaging probes (Fig. 3).

5.2. Biological sensing/detection

The capabilities of Ln-doped UCNPs in various biological sensing/detection are realized based mainly on two mechanisms: fluorescence resonance energy transfer (FRET) and non-FRET (Soukka et al., 2008; Zhang et al., 2011). The FRET process is realized when energy is transferred between the donor and the acceptor through Coulombic interactions. FRET-based detection is only possible when the distance between the donor and the acceptor is typically small (<10 nm). Based on such phenomenon, several research groups reported the applications of lanthanide-doped UCNPs in FRET-based highly sensitive detection (Rantanen et al., 2008; Wang et al., 2009c; Zhang et al., 2006, 2011).

Based on the FRET process between rabbit anti-goat immunoglobulin G (IgG) functionalized NaYF4:Yb,Er nanoparticles and human IgG functionalized gold nanoparticles, Wang et al. (2009c) demonstrated the detection of goat anti-human IgG with a limit of 0.88 μg/ml. In their study, rabbit anti-goat IgG functionalized UCNPs suspension was added into different amounts of goat anti-human IgG solutions. After incubating for 30 min, human IgG functionalized gold suspension was added subsequently into the solution mixtures. As goat anti-human IgG is able to act like a bridge to couple the two particles close enough to generate FRET under excitation (Fig. 4a). The FRET between the two particles quenches the upconversion luminescence of NaYF4:Yb,Er nanoparticles. The quenching efficiency was found to be linearly correlated with the concentration of the goat anti-human IgG. Using human biotin functionalized NaYF4:Yb,Er nanoparticles and gold nanoparticles to form the donor–acceptor system, Wang et al. (2005) reported the detection of avidin with a limit of 0.5 nM. Also with functionalized NaYF4:Yb,Er nanoparticles and gold nanoparticles, Zhang et al. (2009b) found another application as a reversible luminescence switch to solutions having different pH values.

For non-FRET-based bio-detection, Ln-doped UCNPs were used as a luminescent reporter and the luminescence from Ln-doped UCNPs was observed directly. The non-auto-fluorescence feature of Ln-doped UCNPs offers improved detection limits as compared with conventional reporters. For example, Hampl et al. (2001) demonstrated the application of Y2O2S:Yb,Er nanoparticles in the detection of 10 pg human chorionic gonadotropin from a 100 μl sample. A comparison with conventional labels such as colloidal gold or colored latex beads showed a 10-fold improvement in sensitivity when using Y2O2S:Yb,Er nanoparticles. van de Rijke et al. (2001) also explored the usage of Y2O2S:Yb,Er nanoparticles in the detection of oligonucleotides, achieving a detection limit of 1 ng/μl which is four-fold increase in sensitivity relative to that achieved with cyanine 5 labels (Fig. 4b).
5.3. Development of point-of-care devices

Point-of-care devices have been developed to achieve rapid detection of infectious agents, cancer biomarkers and chemical analytes (Gurkan et al., 2011; Wang et al., 2010e, 2011e). These devices are cost-effective and user-friendly, which eliminates the need for bulky instruments and skilled operators (Wang et al., 2011c). Lateral flow (LF) strip is one of the most commonly used point-of-care devices relying on the use of gold nanoparticles or latex beads. Although the results can be detected with naked eyes, LF strips have limited use due to the lack of sensitivity, especially at the early stage of infectious diseases where the analyte concentration is relatively low. Thus, further improvement needs to be made in LF assays to increase the sensitivity for early detection of biological biomarkers.

With fast testing speed (<10 min) (Niedbala et al., 2001) and extraordinarily high sensitivity (Wang and Li, 2006; Zuiderwijk et al., 2003), Ln-doped UCNPs are attractive for the development of point-of-care devices. A typical example was shown by Niedbala et al. (2001) who designed LF assay strips for drug abuse testing (Fig. 5). In this assay, functionalized Ln-doped UCNPs were used to replace colloidal gold or latex particles. Because of the capacity to emit multiple colors, Ln-doped UCNPs were used for simultaneous detection of amphetamine, phencyclidine and methamphetamine in saliva. Based on phosphor color and position in LF assays strips, drug molecules could be successfully identified; the whole test process requires a minimum of 10 min. Another example is the use of Ln-doped UCNPs in LF assays for detection of human chorionic gonadotropin (hCG) (Hampl et al., 2001). It was demonstrated that the detection limit was 10–100 pg/ml, which is at least 2 to 3 orders of magnitude higher than conventional colored latex beads or colloidal gold based LF assay. It is known that the reliability of schistosoma infections detection with enzyme-linked immunosorbent assay (ELISA) is limited due to its lack in sensitivity and robustness. Corstjens et al. (2008) recently demonstrated Ln-doped UCNPs based LF assay for schistosoma infections detection with a higher sensitivity than that associated with the standard ELISA method: the former identified 36 positive samples, compared to 15 detected by the later. More applications of Ln-doped UCNPs in the development of LF assay strips and their biomedical applications could be found in other related studies (Corstjens et al., 2001, 2003).

The successful application of Ln-doped UCNPs in the development of LF assay strips for immunoassays implies that point-of-care detection of diseases and environmental monitoring is achievable. The techniques built upon Ln-doped UCNPs have several advantages over traditional amplification based techniques that require PCR or signal-amplification methods, in terms of cost, simplicity, portability and time saving.

5.4. Drug delivery

Despite superiority in bioimaging and bio-detection, Ln-doped UCNPs have been recently developed as drug carriers for cancer therapies (Qian et al., 2010b; Wang et al., 2011a; Xu et al., 2011a,b). Gai et al. (2010) demonstrated the usage of 5-NaYF4:Yb,Er nanoparticles in a drug delivery system. In their study, a multifunctional material Fe3+-NaYF4:Yb,Er nanoparticles were synthesized using a two-step sol–gel process. Drug release tests revealed that the upconversion luminescent intensity of the composite carrier increases with the released amount of drug due to decreasing quenching effect by the organic group from the drug. These results indicate that, by relating to the change in luminescence intensity, it is possible to quantitative-ly monitor the drug release process in vivo.

Since NIR light beam has good tissue penetration depth, photodynamic therapies (PDT) are emerging as effective treatment for cancers: upon NIR excitation, Ln-doped UCNPs emit visible light to further excite the photosensitizing drugs (Qian et al., 2009; Zhang et al., 2007) as schematically shown in Fig. 6. Excellent reviews on...
applications of Ln-doped UCNPs in PDT have been given by Ang et al. (2011) and Wang et al. (2010a). In a typical application of UCNPs in PDT therapy, Chatterjee and Zhang (2008) attached zinc phthalocyanine (ZnPc) to polyethyleneimine modified NaYF4:Yb,Er nanoparticles. Since ZnPc has high absorbance of the emission from NaYF4:Yb, Er nanoparticles, upon NIR irradiation, NaYF4:Yb,Er nanoparticles emit visible light to photosensitize ZnPc, producing reactive oxygen species that can cause oxidative damage of cancer cells.

6. Concluding remarks and future directions

This article presents a state-of-the-art review on recent advances in Ln-doped UCNPs including synthetic approaches, surface modification, and biomedical applications. The relative studies continue to be a prospective and growing interdisciplinary research field that couples chemistry, materials science and engineering, biomedical science and engineering.

Though numerous achievements have been made, there still exist challenges, which hinder potential developments of practical clinical applications and point-of-care devices based on the unique optical and magnetic (or multimodal) properties of Ln-doped UCNPs. Three major topics for further studies are therefore identified as follows.

Firstly, with respect to synthetic procedures, the preparation of sub 10 nm particles is highly demanded for intracellular applications. The main problem associated with the synthesis of small size Ln-doped NCNPs is the significant reduction in luminescence efficiency. To prepare small size Ln-doped UCNPs while maintaining their luminescent intensity, advanced synthetic procedures are to be developed through adjusting reaction parameters (e.g., time, temperature, concentration, pH value), selection of host matrix and dopant ions, appropriate surface coating and phase control, and so on (Qian et al., 2010b; Wang et al., 2010b; Zhang et al., 2010b).

Secondly, even though Ln-doped UCNPs possess unique properties, they could not be effectively used in many biosciences due to their dissolubility in aqueous solutions, lack of target biorecognition and bioanalytical functions. Numerous methods have been established for surface functionalization of Ln-doped UCNPs with polyacrylic acid coating, silica coating and attachment of various biomolecules such as DNA, antibody and peptides (Jiang et al., 2009; Li and Zhang, 2008; Nagarajan et al., 2010). Nevertheless, a few issues are yet addressed. For example, quantitatively controlling the amount of ligands attached on the surface and subsequently confirming the presence of biomolecules turned out to be difficult. Besides, realization of multiple functionalities via multiple decorating of ligands on the surface of Ln-doped UCNPs is challenging.

Thirdly, while the use of NIR for excitation of Ln-doped UCNs provides good tissue penetration depths for in vivo in-depth tissue imaging (Chatterjee and Zhang, 2008; Wang et al., 2011a), limitations still exist when performing in vivo imaging in larger animals or humans in a clinical setting. Although NIR has relatively better tissue penetration depth than UV and visible light, it is far from sufficient for whole body imaging in deep human body tissue. An alternative way to access deep tissue imaging is magnetic resonance imaging (MRI). Synthesis of nanoparticles as multimodal imaging (magnetic–fluorescent) probes has attracted attention in recent years because of their emerging potential as candidates for both optical imaging and MRI imaging at either tissue or cellular level (Carlos et al., 2011; Jańczewski et al., 2011; Li et al., 2008b; Li et al., 2009; Yallapu et al., 2011). This is a fast growing area demanding new developments in the near future, requiring more efforts devoted to the synthesis of bimodal Ln-doped UCNPs for bifunctional probes in fluorescence microscopy and MRI imaging.

Acknowledgments

This work was supported by the Major International (Regional) Joint Research Program of China (1112010102), the National Natural Science Foundation of China (10825210); and the National 111 Project of China (B06024).

References

