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1 INTRODUCTION

1 Numbers in square brackets relate to the references at the end of the chapter which are organized in
two parts: general references (“G” numbers) and specialized references collected by chapter.

X-rays were discovered in 1895 by the German physicist Röntgen [1]1 and were so
named because their nature was unknown at the time. Unlike ordinary light, these
rays were invisible, but they traveled in straight lines and affected photographic
film in the same way as light. On the other hand, they were much more penetrating
than light and could easily pass through the human body, wood, quite thick pieces
of metal, and other “opaque” objects.

It is not always necessary to understand a thing in order to use it, and x-rays were
almost immediately put to use by physicians and, somewhat later, by engineers, who
wished to study the internal structure of opaque objects. By placing a source of x-
rays on one side of the object and photographic film on the other, a shadow picture,
or radiograph, could be made, the less dense portions of the object allowing a
greater proportion of the x-radiation to pass through than the more dense. In this
way the point of fracture in a broken bone or the position of a crack in a metal cast-
ing could be located.

Radiography was thus initiated without any precise understanding of the radia-
tion used, because it was not until 1912 that the exact nature of x-rays was estab-
lished. In that year the phenomenon of x-ray diffraction by crystals was discovered,
and this discovery simultaneously proved the wave nature of x-rays and provided a
new method for investigating the fine structure of matter. Although radiography is
a very important tool in itself and has a wide field of applicability, it is ordinarily
limited in the internal detail it can resolve, or disclose, to sizes of the order of
10-3 mm. Diffraction, on the other hand, can indirectly reveal details of internal
structure of the order of 10-7 mm in size, and it is with this phenomenon, and its
applications to materials problems, that this book is concerned.

Properties of X-Rays

From Chapter 1 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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2 ELECTROMAGNETIC RADIATION

Today it is clear that x-rays are electromagnetic radiation of exactly the same
nature as light but of very much shorter wavelength. The unit of measurement in
the x-ray region is the angstrom (Å), equal to 10-10 m, and x-rays used in diffraction
have wavelengths lying approximately in the range 0.5-2.5 Å, whereas the wave-
length of visible light is of the order of 6000 Å. X-rays therefore occupy the region
between gamma and ultraviolet rays in the complete electromagnetic spectrum
(Fig. 1). Other units sometimes used to measure x-ray wavelength are the X unit
(XU) and the kilo X unit (kX = 1000 XU). The kX unit, whose origin will be
described in Sec. 3-7, is only slightly larger than the angstrom. The approved SI unit
for wavelengths in the x-ray region is the nanometer:

1 nanometer = 10-9 m = 10 Å.

This unit has not become popular in x-ray diffraction.
It is worthwhile to review briefly some properties of electromagnetic waves.

Suppose a monochromatic beam of x-rays, i.e., x-rays of a single wavelength, is trav-
eling in the x direction (Fig. 2). Then it has associated with it an electric field E in,
say, the y direction and, at right angles to this, a magnetic field H in the z direction.
If the electric field is confined to the xy-plane as the wave travels along, the wave
is said to be plane-polarized. (In a completely unpolarized wave, the electric field
vector E and hence the magnetic field vector H can assume all directions in the yz-
plane.)

In the plane-polarized wave considered, E is not constant with time but varies
from a maximum in the +y direction through zero to a maximum in the -y direction
and back again, at any particular point in space, say x = 0.At any instant of time, say
t = 0, E varies in the same fashion with distance along the x-axis. If both variations
are assumed to be sinusoidal, they may be expressed in the one equation

(1)

where A = amplitude of the wave, = wavelength, and = frequency. The varia-
tion of E is not necessarily sinusoidal, but the exact form of the wave matters little;
the important feature is its periodicity. Figure 3 shows the variation of E graphical-
ly. The wavelength and frequency are connected by the relation

(2)

where c = velocity of light = 3.00 � 108 m/sec.

i �
c
v

,

nl

E � A sin 2ra
x

 l 
� ntb,
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Figure 1 The electromagnetic spectrum. The boundaries between regions are arbitrary, since no sharp
upper or lower limits can be assigned. (H. A. Enge, M. R. Wehr, J. A. Richards, Introduction to Atomic
Physics, Addison-Wesley Publishing Company, Reading, MA, 1972.)
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Figure 2 Electric and magnetic fields associated with a wave
moving in the x-direction.
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Figure 3 The variation of E, (a) with t at a fixed value of x and (b) with x at a fixed value of t.

Electromagnetic radiation, such as a beam of x-rays, carries energy, and the rate
of flow of this energy through unit area perpendicular to the direction of motion of
the wave is called the intensity I. The average value of the intensity is proportional
to the square of the amplitude of the wave, i.e., proportional to A2. In absolute units,
intensity is measured in joules/m2/sec, but this measurement is a difficult one and is
seldom carried out; most x-ray intensity measurements are made by counting the
number of photons incident on a detector or by measuring the degree of blacken-
ing of photographic film exposed to the x-ray beam.

An accelerated electric charge radiates energy. The acceleration may, of course,
be either positive or negative, and thus a charge continuously oscillating about
some mean position acts as an excellent source of electromagnetic radiation. Radio
waves, for example, are produced by the oscillation of charge back and forth in the
broadcasting antenna, and visible light by oscillating electrons in the atoms of the
substance emitting the light. In each case, the frequency of the radiation is the same
as the frequency of the oscillator which produces it.

Thus far electromagnetic radiation has been considered as wave motion in accor-
dance with classical theory. According to quantum theory, however, electromagnet-
ic radiation can also be considered as a stream of particles called quanta or photons.
Each photon has associated with it an amount of energy hv, where h is Planck’s con-
stant (6.63 � 10-34 joule · sec). A link is thus provided between the two viewpoints,
because the frequency of the wave motion can be calculated from the energy of the
photon and vice versa. Radiation thus has a dual wave-particle character, and some-
times one concept, sometimes the other will be used to explain various phenome-
na, giving preference in general to the classical wave theory whenever it is 
applicable.

3 THE CONTINUOUS SPECTRUM

X-rays are produced when any electrically charged particle of sufficient kinetic
energy rapidly decelerates. Electrons are usually used for this purpose, the radia-
tion being produced in an x-ray tube which contains a source of electrons and two
metal electrodes. The high voltage maintained across these electrodes, some tens of

Properties of X-Rays
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thousands of volts, rapidly draws the electrons to the anode, or target, which they
strike with very high velocity. X-rays are produced at the point of impact and radi-
ate in all directions. If e is the charge on the electron (1.60 � 10-19 coulomb) and V
the voltage across the electrodes, then the kinetic energy (in joules) of the electrons
on impact is given by the equation

(3)

where m is the mass of the electron (9.11 � 10-31 kg) and v its velocity in m/sec just
before impact. At a tube voltage of 30,000 volts, this velocity is about one-third that
of light. Most of the kinetic energy of the electrons striking the target is converted
into heat, less than 1 percent being transformed into x-rays.

When the rays coming from the target are analyzed, they are found to consist of
a mixture of different wavelengths, and the variation of intensity with wavelength
is found to depend on the tube voltage. Figure 4 shows the kind of curves obtained.
The intensity is zero up to a certain wavelength, called the short-wavelength limit
(�SWL), increases rapidly to a maximum and then decreases, with no sharp limit on
the long wavelength side. When the tube voltage is raised, the intensity of all wave-
lengths increases, and both the short-wavelength limit and the position of the max-
imum shift to shorter wavelengths. Consider the smooth curves in Fig. 4, which cor-
respond to applied voltages of 20 kV or less in the case of a molybdenum target.
The radiation represented by such curves is called polychromatic, continuous, or

KE � eV �
1
2
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Figure  4 X-ray spectrum
of molybdenum as a func-
tion of applied voltage
(schematic). Line widths
not to scale.
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white radiation, since it is made up, like white light, of rays of many wavelengths.
White radiation is also called Bremsstrahlung, German for “braking radiation,”
because it is caused by electron deceleration.

The continuous spectrum results from the rapid deceleration of the electrons hit-
ting the target since, as mentioned above, any decelerated charge emits energy. Not
every electron decelerates in the same way, however; some stop in one impact and
release all their energy at once, while others a deflect this way and that by the atoms
of the target, successively losing fractions of their total kinetic energy until it is all
spent. Those electrons which are stopped in one impact produce photons of maxi-
mum energy, i.e., x-rays of minimum wavelength. Such electrons transfer all their
energy eV into photon energy so that

(4)

This equation gives the short-wavelength limit (in angstroms) as a function of the
applied voltage V. If an electron is not completely stopped in one encounter but
undergoes a glancing impact which only partially decreases its velocity, then only a
fraction of its energy eV is emitted as radiation and the photon produced has ener-
gy less than hvmax. In terms of wave motion, the corresponding x-ray has a frequen-
cy lower than vmax and a wavelength longer than �SWL. The totality of these wave-
lengths, ranging upward from �SWL, constitutes the continuous spectrum.The curves
of Fig. 4 become higher and shift to the left as the applied voltage is increased,
therefore, because the number of photons produced per second and the average
energy per photon are both increasing. The total x-ray energy emitted per second,
which is proportional to the area under one of the curves of Fig. 4, also depends on
the atomic number Z of the target and on the tube current i, the latter being a meas-
ure of the number of electrons per second striking the target. This total x-ray inten-
sity is given by

(5)

where A is a proportionality constant and m is a constant with a value of about 2
(see [2] for a discussion of this equation; note that a somewhat different form is
quoted elsewhere e.g. [G.1]). Where large amounts of white radiation are desired, it
is therefore necessary to use a heavy metal like tungsten (Z = 74) as a target and as

Icont. spectrum � AiZVm,

lSWL �
12.40 � 103

V
.

lSWL �
16.626 � 10�34 2 12.998 � 103 2

11.602 � 10�19 2  V
  meter,

lSWL � lmin �
c
nmax

�
hc

eV

eV � hvmax
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high a voltage as possible. Note that the material of the target affects the intensity
but not the wavelength distribution of the continuous spectrum.

4 THE CHARACTERISTIC SPECTRUM

2 The wavelength of an unresolved Kα doublet is usually taken as the weighted average of the wave-
lengths of its components, Kα1 being given twice the weight of Kα2, since it is twice as strong. Thus the
wavelength of the unresolved Mo Kα line is

(2 0.709 + 0.714) = 0.711Å�1
2

When the voltage on an x-ray tube is raised above a certain critical value, charac-
teristic of the target metal, sharp intensity maxima appear at certain wavelengths,
superimposed on the continuous spectrum. Since they are so narrow and since their
wavelengths are characteristic of the target metal used, they are called characteris-
tic lines. These lines fall into several sets, referred to as K, L, M, etc., in the order of
increasing wavelength, all the lines together forming the characteristic spectrum of
the metal used as the target. For a molybdenum target the K lines have wavelengths
of about 0.7 Å, the L lines about 5 Å, and the M lines still longer wavelengths.
Ordinarily only the K lines are useful in x-ray diffraction, the longer-wavelength
lines being too easily absorbed. There are several lines in the K set, but only the
three strongest are observed in normal diffraction work. These are the Kα1, Kα2,
and Kβ2, and for molybdenum their wavelengths are approximately:

The α1 and α2 components have wavelengths so close together that they are not
always resolved as separate lines; if resolved, they are called the Kα doublet and, if
not resolved, simply the Kα line.2 Similarly, Kβ1 is usually referred to as the Kβ line,
with the subscript dropped. Kα1 is always about twice as strong as Kα2, while the
intensity ratio of Kα1 to Kβ1 depends on atomic number but averages about 5/1.

These characteristic lines may be seen in the uppermost curve of Fig. 4. Since the
critical K excitation voltage, i.e., the voltage necessary to excite K characteristic
radiation, is 20.01 kV for molybdenum, the K lines do not appear in the lower
curves of Fig. 4.An increase in voltage above the critical voltage increases the inten-
sities of the characteristic lines relative to the continuous spectrum but does not
change their wavelengths. Figure 5 shows the spectrum of molybdenum at 35 kV on
a compressed vertical scale relative to that of Fig. 4; the increased voltage has shift-
ed the continuous spectrum to still shorter wavelengths and increased the intensi-
ties of the K lines relative to the continuous spectrum but has not changed their
wavelengths.

The intensity of any characteristic line, measured above the continuous spec-
trum, depends both on the tube current i and the amount by which the applied volt-

Ka1: 0.709 
Ka2: 0.71      
Kb2: 0.632    
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Figure 5 Spectrum of Mo at 35 kV (schematic). Line widths not to scale. Resolved Kα doublet is shown
on an expanded wavelength scale at right.

age V exceeds the critical excitation voltage for that line. For a K line, the intensity
is given approximately by

(6)

where B is a proportionality constant, VK the K excitation voltage, and n a constant
with a value of about 1.5. (Actually, n is not a true constant but depends on V and
varies from 1 to 2 and averages about 1.6 for common tube materials [3].) The
intensity of a characteristic line can be quite large: for example, in the radiation
from a copper target operated at 30 kV, the Kα line has an intensity about 90 times
that of the wavelengths immediately adjacent to it in the continuous spectrum.

IKline � Bi1V � VK 2
n
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Besides being very intense, characteristic lines are also very narrow, most of them
less than 0.001 Å wide measured at half their maximum intensity, as indicated in
Fig. 5. The existence of this strong sharp Kα line is what makes a great deal of x-ray
diffraction possible, because many diffraction experiments require the use of mono-
chromatic or approximately monochromatic radiation.

The characteristic x-ray lines were discovered by W. H. Bragg [4] and system-
atized by H. G. Moseley [5] The latter found that the wavelength of any particular
line decreased as the atomic number of the emitter increased. In particular, he
found a linear relation (Moseley’s law) between the square root of the line fre-
quency v and the atomic number Z:

(7)

where C and are constants. This relation is plotted in Fig. 6 for the Kα1 and Lα1
lines, the latter being the strongest line in the L series. These curves show, inciden-
tally, that L lines are not always of long wavelength: the Lα1 line of a heavy metal
like tungsten, for example, has about the same wavelength as the Kα1 line of cop-
per, namely about 1.5 Å. The wavelengths of the characteristic x-ray lines of almost

s

2v � C 1Z � s 2 ,
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all the known elements have been precisely measured, mainly by M. Siegbahn and
coworkers. Data on weaker lines can be found in Vol. C of the International Tables
for Crystallography [G.1]

While the continuous spectrum results from the rapid deceleration of electrons
by the target, the origin of the characteristic spectrum lies in the atoms of the tar-
get material itself.To understand this phenomenon, it is enough to consider an atom
as consisting of a central nucleus surrounded by electrons lying in various shells
(Fig. 7), where the designation K, L, M, ... corresponds to the principal quantum
number n = 1, 2, 3, ... If one of the electrons bombarding the target has sufficient
kinetic energy, it can knock an electron out of the K shell, leaving the atom in an
excited, high-energy state. One of the outer electrons immediately falls into the
vacancy in the K shell, emitting energy in the process, and the atom is once again in
its normal energy state. The energy emitted is in the form of radiation of a definite
wavelength and is, in fact, characteristic K radiation.

The K-shell vacancy may be filled by an electron from any one of the outer
shells, thus giving rise to a series of K lines; Kα and Kβ lines, for example, result
from the filling of a K-shell vacancy by an electron from the L or M shells, respec-
tively. It is possible to fill a K-shell vacancy from either the L or M shell, so that one
atom of the target may be emitting Kα radiation while its neighbor is emitting Kβ;
however, it is more probable that a K-shell vacancy will be filled by an L electron
than by an M electron, and the result is that the Kα line is stronger than the Kβ line.
It also follows that it is impossible to excite one K line without exciting all the oth-
ers. L characteristic lines originate in a similar way: an electron is knocked out of
the L shell and the vacancy is filled by an electron from some outer shell.

The existence of a critical excitation voltage for characteristic radiation is relat-
ed to the sharply defined shells of the atoms being bombarded. K radiation, for
example, cannot be excited unless the tube voltage provides the bombarding elec-
trons with enough energy to knock an electron out of the K shell of a target atom.

K�K�

L�
M  shell

L  shell

K  shell

nucleus

Figure 7 Electronic transitions in an atom (schematic).
Emission processes indicated by arrows.
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If WK is the work required to remove a K electron, then the necessary kinetic ener-
gy of the electrons is given by

(8)

It requires less energy to remove an L electron than a K electron, since the former
is farther from the nucleus; it therefore follows that the L excitation voltage is less
than the K and that K characteristic radiation cannot be produced without L, M,
etc., radiation accompanying it.

1
2

mv2 � WK.

5 ABSORPTION

Further understanding of the electronic transitions which can occur in atoms can be
gained by considering not only the interaction of electrons and atoms, but also the
interaction of x-rays and atoms.When x-rays encounter any form of matter, they are
partly transmitted and partly absorbed. Early on Röntgen established that the frac-
tional decrease in the intensity I of an x-ray beam as it passes through any homo-
geneous substance is proportional to the distance traversed x [1]. In differential
form,

(9)

where the proportionality constant μ is called the linear absorption coefficient and
is dependent on the substance considered, its density, and the wavelength of the x-
rays. Integration of Eq. (9) gives

(10)

where Io = intensity of incident x-ray beam and Ix = intensity of transmitted beam
after passing through a thickness x.

The linear absorption coefficient μ is proportional to the density ρ, which means
that the quantity μ/ρ is a constant of the material and independent of its physical
state (solid, liquid, or gas). This latter quantity, called the mass absorption coeffi-
cient, is the one usually tabulated. Equation (10) may then be rewritten in a more
usable form:

(11)

Values of the mass absorption coefficient μ/ρ appear in “Appendix: Mass
Absorption Coefficients μ/ρ (cm2/gm) and Densities ρ” for various characteristic
wavelengths commonly used in diffraction and in Vol. C of the International Tables
for Crystallography [G.1], for other wavelengths.

It is occasionally necessary to know the mass absorption coefficient of a sub-
stance containing more than one element. Whether the substance is a mechanical
mixture, a solution, or a chemical compound, and whether it is in the solid, liquid,

Properties of X-Rays

�
dI

I
� m dx
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or gaseous state, its mass absorption coefficient is simply the weighted average of
the mass absorption coefficients of its constituent elements. If w1, w2, etc., are the
weight fractions of elements 1, 2, etc., in the substance and (μ/ρ)1, (μ/ρ)2, etc., their
mass absorption coefficients, then the mass absorption coefficient of the substance
is given by

(12)

The way in which the absorption coefficient varies with wavelength gives the
clue to the interaction of x-rays and atoms.The lower curve of Fig. 8 shows this vari-
ation for a nickel absorber; it is typical of all materials. The curve consists of two
similar branches separated by a sharp discontinuity called an absorption edge.
Along each branch the absorption coefficient varies with wavelength approximate-
ly according to a relation of the form

(13)

where k = a constant, with a different value for each branch of the curve, and Z =
atomic number of absorber. Short-wavelength x-rays are therefore highly penetrat-
ing and are termed hard, while long-wavelength x-rays are easily absorbed and are
said to be soft.

Matter absorbs x-rays in two distinct ways, by scattering and by true absorption,
and these two processes together make up the total absorption measured by the
quantity μ/ρ. The scattering of x-rays by atoms is similar in many ways to the scat-
tering of visible light by dust particles in the air. It takes place in all directions, and
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absorber

detector
I0 Ix

source

slits

Figure 9 Experimental arrangement for measuring absorption. Narrow slits or pinholes define the
beam. The detector measures the intensity Io of the incident beam when the absorber is removed and
the intensity Ix of the transmitted beam when the absorber is in place. Although the scattered radia-
tion (dashed lines) does not represent energy absorbed in the specimen, it does constitute energy
removed from the beam and accordingly forms part of the total absorption represented by the coeffi-
cient .m>r

since the energy in the scattered beams does not appear in the transmitted beam,
it is, so far as the transmitted beam is concerned, said to be absorbed (Fig. 9). The
phenomenon of scattering is beyond the scope of this chapter; it is enough to note
here that, except for the very light elements, it is responsible for only a small frac-
tion of the total absorption of x-rays with wavelengths in the range normally used
in diffraction. True absorption is caused by electronic transitions within the atom
and is best considered from the viewpoint of quantum theory. Just as an electron of
sufficient energy can knock a K electron, for example, out of an atom and thus
cause the emission of K characteristic radiation, so also can an incident quantum of
x-rays, provided it has the same minimum amount of energy WK. In the latter case,
the ejected electron is called a photoelectron and the emitted characteristic radia-
tion is called fluorescent radiation. It radiates in all directions and has exactly the
same wavelength as the characteristic radiation caused by electron bombardment
of a metal target. (In effect, an atom emits the same K radiation no matter how the
K-shell vacancy was originally created.) This phenomenon is the x-ray counterpart
of the photoelectric effect in the ultraviolet region of the spectrum; there, photo-
electrons can be ejected from the outer shells of a metal atom by the action of ultra-
violet radiation, provided the latter has a wavelength less than a certain critical
value.

To say that the energy of the incoming quanta must exceed a certain value WK is
equivalent to saying that the wavelength must be less than a certain value λK, since
the energy per quantum is hv and wavelength is inversely proportional to frequen-
cy. These relations may be written

(14)

where vK and λK are the frequency and wavelength, respectively, of the K absorp-
tion edge. Now consider the absorption curve of Fig. 8 in light of the above. Suppose
that x-rays of wavelength 2.5 Å are incident on a sheet of nickel and that this wave-
length is continuously decreased. At first the absorption coefficient is about 180
cm2/g, but, as the wavelength decreases, the frequency increases and so does the

WK � hvK �
hc

lK
,
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Figure 10 Absorption coefficients of lead, show-
ing K and L absorption edges [6].

energy per quantum, as shown by the upper curve, thus causing the absorption coef-
ficient to decrease, since the greater the energy of a quantum the more easily it
passes through an absorber. When the wavelength is reduced just below the critical
value λK, which is 1.488 Å for nickel, the absorption coefficient suddenly increases
about eightfold in value. True K absorption is now occurring and a large fraction of
the incident quanta simply disappear, their energy being converted into K fluores-
cent radiation and the kinetic energy of ejected photoelectrons. Since energy must
be conserved in the process, it follows that the energy per quantum of the fluores-
cent radiation must be less than that of the incident radiation, or that the wave-
length λK of the K absorption edge must be shorter than that of any K characteris-
tic line of the absorber (The eight-fold increase in μ/ρ mentioned above means a
tremendous decrease in transmitted intensity, because of the exponential nature of
Eq. (11). If the transmission factor Ix/Io of a particular nickel sheet is 0.1 for a wave-
length just longer than λK, then it is only 10-8 for a wavelength just shorter.)

As the wavelength of the incident beam decreases below λK, the absorption coef-
ficient begins to decrease again, even though the production of K fluorescent radi-
ation and photoelectrons still occurs. At a wavelength of 1.0 Å, for example, the
incident quanta have more than enough energy to remove an electron from the K
shell of nickel. But the more energetic the quanta become, the greater is their prob-
ability of passing right through the absorber, with the result that less and less of
them take part in the ejection of photoelectrons.

Plotting the absorption curve of nickel for wavelengths longer than 2.5 Å, i.e.,
beyond the limit of Fig. 8, reveals other sharp discontinuities.These are the L, M, N,
etc., absorption edges; in fact, there are three closely spaced L edges (LI, LII, and
LIII), five M edges, etc. (Fig. 10). Each of these discontinuities marks the wavelength
of the incident beam whose quanta have just sufficient energy to eject an L, M, N,
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etc., electron from the atom. The right-hand branch of the curve of Fig. 8, for exam-
ple, lies between the K and L absorption edges; in this wavelength region incident
x-rays have enough energy to remove L, M, etc., electrons from nickel but not
enough to remove K electrons. Absorption-edge wavelengths vary with the atomic
number of the absorber in the same way, but not quite as exactly, as characteristic
emission wavelengths, that is, according to Moseley’s law.

The measured values of the absorption edges can be used to construct an ener-
gy-level diagram for the atom, which in turn can be used in the calculation of char-
acteristic-line wavelengths. For example, if the energy of the neutral atom is defined
as zero, then the energy of an ionized atom (an atom in an excited state) will be
some positive quantity, since work must be done to pull an electron away from the
positively charged nucleus. If a K electron is removed, work equal to WK must be
done and the atom is said to be in the K energy state. The energy WK may be cal-
culated from the wavelength of the K absorption edge by the use of Eq. (14).
Similarly, the energies of the L, M, etc., states can be calculated from the wave-
lengths of the L, M, etc., absorption edges and the results plotted in the form of an
energy-level diagram for the atom (Fig. 11).

Although this diagram is simplified, in that the substructure of all the levels is
not shown, it illustrates the main principles. The arrows show the transitions of the
atom, and their directions are therefore just the opposite of the arrows in Fig. 7,
which shows the transitions of the electron.Thus, if a K electron is removed from an
atom (whether by an incident electron or x-ray), the atom is raised to the K state.
If an electron then moves from the L to the K level to fill the vacancy, the atom
undergoes a transition from the K to the L state. The emission of Kα characteristic
radiation accompanies this transition, and the arrow indicating Kα emission is
accordingly drawn from the K state to the L state.

Figure 11 shows clearly how the wavelengths of characteristic emission lines can
be calculated, since the difference in energy between two states will equal hv, where
v is the frequency of the radiation emitted when the atom goes from one state to
the other. Consider the Kα1 characteristic line, for example. The “L level” of an
atom is actually a group of three closely spaced levels (LI, LII, and LIII) , and the
emission of the Kα1 line is due to a K LIII transition. The frequency of this
line is therefore given by the equations

(15)

where the subscripts K and L111 refer to absorption edges and the subscript Kα1 to
the emission line.

1
lKa1

�
1
lK

�
1
lLIII

,

hvKa1
� hvK � hvLIII

,

hvKa1
� WK � WLIII

,

vKa1
«
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Excitation voltages can be calculated by a relation similar to Eq. (4). To excite K
radiation, for example, in the target of an x-ray tube, the bombarding electrons must
have energy equal to WK. Therefore

(16)

where VK is the K excitation voltage and λK is the K absorption edge wavelength
(in angstroms).

Figure 12 summarizes some of the relations developed above. This curve gives
the short-wavelength limit of the continuous spectrum as a function of applied volt-

VK �
12.40 � 103

lK
,

VK �
hc

elK
,

eVK � WK � hvK �
hc

lK
,
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age. Because of the similarity between Eqs. (4) and (16), the same curve also allows
determination of the critical excitation voltage from the wavelength of an absorp-
tion edge.

It might be inferred, from the last two sections, that every atom that has a vacan-
cy in, for example, the K shell will always emit K radiation. That is not so. An atom
with a K-shell vacancy is in an ionized, high-energy state. It can lose this excess
energy and return to its normal state in two ways: (1) by emitting K radiation (“nor-
mal” production of characteristic radiation), or (2) by emitting an electron (Auger
effect [8, 9]). In the Auger process a K-shell vacancy is filled from, say, the L11 level;
the resulting K radiation does not escape from the atom but ejects an electron from,
say, the L111 level. The ejected electron, called an Auger electron, has kinetic energy
related to the energy difference between the K and L11 states.

The Auger effect is by no means a minor one. In fact, atoms with an atomic num-
ber Z less than 31 (gallium) are more likely to eject Auger electrons than to emit x-
rays. The likelihood of the Auger process can be found from the fluorescence yield
ω, which is defined, for the K shell, by

(17)

(This quantity is called the fluorescence yield, whether the vacancy is caused by inci-
dent x-rays or by electrons.) Some values of ωK are 0.03 for Mg (Z = 12), 0.41 for
Cu (Z = 29), and 0.77 for Mo (Z = 42) [G.2, p. 131]. The probability of the Auger
process occurring is (1 - ωK), which amounts to some 97 percent for Mg and 23 per-
cent for Mo.

Electrons of moderate energy like Auger electrons cannot travel very far in a
solid, and an Auger electron emitted by one atom in a solid specimen cannot escape
from the specimen unless the atom is situated within about 10 Å of the surface. The
electrons that do escape have kinetic energies related to the differences between
energy levels of the parent atom, i.e., their energies are characteristic of that atom.

�K �
number of atoms that emit K radiation

number of atoms with a K�shell vacancy
.
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Means are available for measuring these energies, providing a method for chemical
analysis of very thin surface layers, called Auger electron spectroscopy, used in stud-
ies of catalysts, corrosion, impurity segregation at surfaces, etc.

6 FILTERS
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Figure 13 Comparison of the spectra of copper radiation (a) before and (b) after passage through a
nickel filter (schematic). The dashed line is the mass absorption coefficient of nickel.

Many x-ray diffraction experiments require radiation which is as closely mono-
chromatic as possible. However, the beam from an x-ray tube operated at a voltage
above VK contains not only the strong Kα line but also the weaker Kβ line and the
continuous spectrum. The intensity of these undesirable components can be
decreased relative to the intensity of the Kα line by passing the beam through a fil-
ter made of a material whose K absorption edge lies between the Kα and Kβ wave-
lengths of the target metal. Such a material will have an atomic number one less
than that of the target metal, for metals with Z near 30.

A filter so chosen will absorb the Kβ component much more strongly than the
Kα component, because of the abrupt change in its absorption coefficient between
these two wavelengths. The effect of filtration is shown in Fig. 13, in which the par-
tial spectra of the unfiltered and filtered beams from a copper target (Z = 29) are
shown superimposed on a plot of the mass absorption coefficient of the nickel fil-
ter (Z = 28).

The thicker the filter the lower the ratio of intensity of Kβ to Kα in the trans-
mitted beam. But filtration is never perfect, of course, no matter how thick the
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filter, and one must compromise between reasonable suppression of the Kβ com-
ponent and the inevitable weakening of the Kα component which accompanies it.
In practice, a reduction in the intensity of the Kα line to about half its original value
decreases the ratio of intensity of Kβ to Kα from about 1/9 in the incident beam to
about 1/500 in the transmitted beam; this level is sufficiently low for most purpos-
es. Table 1 shows the filters used in conjunction with the common target metals, the
thicknesses required, and the transmission factors for the Kα line. Filter materials
are usually used in the form of thin foils. If it is not possible to obtain a given metal
in the form of a stable foil, the oxide of the metal may be used.The powdered oxide
is mixed with a suitable binder and spread on a paper backing, the required mass of
metal per unit area being given in Table 1.

7 PRODUCTION OF X-RAYS

Since x-rays are produced whenever high-speed electrons collide with a metal tar-
get, any x-ray tube must contain (a) a source of electrons, (b) a high accelerating
voltage, and (c) a metal target. Furthermore, since most of the kinetic energy of the
electrons is converted into heat in the target, the latter is almost always water-
cooled to prevent its melting.

All x-ray tubes contain two electrodes, an anode (the metal target) maintained,
with few exceptions, at ground potential, and a cathode, maintained at a high nega-
tive potential, normally of the order of 30,000 to 50,000 volts for diffraction work.
X-ray tubes may be divided into two basic types, according to the way in which elec-
trons are provided: gas tubes, in which electrons are produced by the ionization of
a small quantity of gas (residual air in a partly evacuated tube), and filament tubes,
in which the source of electrons is a hot filament.

Target Filter
Incident beam*

Filter thickness for

in trans. beam

mg/cm2 in

Mo
Cu
Co
Fe
Cr

Zr
Ni
Fe
Mn
V

5.4
7.5
9.4
9.0
8.5

77 0.0046
18 0.0008
14 0.0007
12 0.0007
10 0.0006

0.29
0.42
0.46
0.48
0.49

I Kα( )
I Kβ( )
---------------

I Kα( )
I Kβ( )
---------------

500
1

---------=
I Kα( ) trans

I Kα( ) incident
------------------------------------------

TABLE 1 FILTERS FOR SUPPRESSION OF K� RADIATION

* This is the intensity ratio at the target [G.1]. This ratio outside the x-ray tube will be changed some-
what by the differential absorbtion of K	 and K� by the tube window, typically beryllium, 0.01 inch
(0.25 mm) thick.
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Gas Tubes

These resemble the original x-ray tube used by Röntgen. They are now obsolete.

Filament Tubes

These were invented by Coolidge in 1913 [1.10]. They consist of an evacuated glass
envelope which insulates the anode at one end from the cathode at the other, the
cathode being a tungsten filament and the anode a water-cooled block of copper
containing the desired target metal as a small insert at one end. Figure 14 is a pho-
tograph of such a tube, and Fig. 15 shows its internal construction. One lead of the

Figure 14 Sealed x-ray tube. Cooling-water tubes at center connect with internal ducts leading to anode
at left end. Three windows: two for projecting square focal spots and one for projecting a line focal spot.
Focal spots of three sizes are available with this tube (Type A-5): 1.2 � 12.5 mm, 0.75 � 12.5 mm, and
0.45 � 12.5 mm. (Courtesy of Machlett Laboratories, Inc.)

cooling water

x-rays

x-rays
vacuum

electrons

tungsten filament
glass

to transformer

metal focusing cup

copper

target

beryllium window

Figure 15 Cross section of sealed x-ray tube (schematic).
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high-voltage transformer is connected to the filament and the other to ground, the
target being grounded by its own cooling-water connection. The filament is heated
by a filament current of about 3 amp and emits electrons which are rapidly drawn
to the target by the high voltage across the tube. Surrounding the filament is a small
metal cup maintained at the same high (negative) voltage as the filament: it there-
fore repels the electrons and tends to focus them into a narrow region of the target,
called the focal spot. X-rays are emitted from the focal spot in all directions and
escape from the tube through two or more windows in the tube housing. Since these
windows must be vacuum tight and yet highly transparent to x-rays, they are usual-
ly made of beryllium.

Although one might think that an x-ray tube would operate only from a dc
source, since the electron flow must occur only in one direction, it is actually possi-
ble to operate a tube from an ac source such as a transformer because of the recti-
fying properties of the tube itself. Current exists during the half-cycle in which the
filament is negative with respect to the target; during the reverse half-cycle the
filament is positive, but no electrons can flow since only the filament is hot enough
to emit electrons. Thus a simple circuit such as shown in Fig. 16 suffices for many
installations, although more elaborate circuits, containing rectifying tubes, smooth-
ing capacitors, and voltage stabilizers, are now the rule. In Fig. 16, the voltage
applied to the tube is controlled by the autotransformer which controls the voltage
applied to the primary of the high-voltage transformer. The voltmeter shown meas-
ures the input voltage but normally is calibrated to read the output voltage applied
to the tube. The milliammeter measures the tube current, i.e., the flow of electrons
from filament to target. This current is normally of the order of 10 to 25 mA and is
controlled by the filament rheostat. The rheostat controls the output voltage of the
filament transformer; this voltage determines the filament current and, in turn, the
temperature of the filament and the number of electrons it can emit per second.
Although the filament transformer is a low-voltage step-down transformer, since it

x-ray tube

high-voltage transformer

filament
transformer

110 volts AC

110 volts AC

filament
rheostatground

autotransformer

MA

V

Figure 16 Wiring diagram for self-rectifying filament tube.
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need apply only about 5 volts to the filament, it is itself at a high negative voltage
relative to ground and must be well insulated.

Two kinds of filament tube exist: sealed and demountable. A sealed tube is evac-
uated and sealed at the factory. It is by far the easier kind to operate, since no high-
vacuum pumping equipment is needed; however, it is expensive (one needs as many
tubes as there are target metals required), and the life of the tube is determined by
the life of the filament. In demountable tubes, which are used nowadays only for
special purposes, both the filament and the target are accessible for replacement;
burned-out filaments can be replaced and targets can be interchanged at will.
However, the demountable tube must be pumped continuously during operation,
and both a diffusion and a mechanical pump are necessary to obtain the
required vacuum.

The old gas tube, although tricky to operate, had the advantage of producing the
purest radiation available, since the target never became contaminated with a for-
eign metal. In filament tubes, on the other hand, some tungsten occasionally evap-
orates from the filament and deposits on the target, and the tungsten then emits
characteristic L radiation (the L excitation voltage of tungsten is only 10,200 volts),
as well as the radiation characteristic of the target metal itself.

Focal Spot

The size and shape of the focal spot of an x-ray tube is one of its most important
characteristics. Within limits, it should be as small as possible in order to concen-
trate the electron energy into a small area of the target and so produce an x-ray
source of high flux (i.e., intensity per unit area of the x-ray source).

Filament tubes usually have the filament wound in a helix in order to produce a
so-called “line focus” which is actually a narrow rectangle (Fig. 17). The total elec-
tron energy is thus spread over a rather large focal spot A, which helps to dissipate
the heat formed; yet the cross section B of the beam issuing at a small target-to-
beam angle α is that of a small square, and this beam contains more photons per
unit area of the source (i.e., is brighter) than one leaving the focal spot at some larg-
er angle α. The best value of the take-off angle α is about 6°, and a good tube will
have a projected focal-spot size at this angle of less than 1 mm square. If the tube
has a window so arranged that a beam can issue from the focal spot A almost

target
metal focal spot

A

B

	

Figure 17 Top and side views of target showing reduction
in apparent size of focal spot.
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normal to the plane of Fig 17 and at a small angle α, then the cross section of the
beam will be an extremely narrow line; such a beam is quite useful in some diffrac-
tion experiments.

Power Rating

All x-ray tubes have a maximum power rating which cannot be exceeded without
injury to the tube. This limit is fixed by the amount of heat that can be dissipated by
the target and is usually stated by the manufacturer in terms of the maximum allow-
able tube current (in mA) for a given tube voltage (in kV).

Rotating-Anode Tubes

Since an x-ray tube is less than 1 percent efficient in producing x-rays and since the
diffraction of x-rays by crystals is far less efficient than this, it follows that the inten-
sities of diffracted x-ray beams are extremely low. In fact, photographic film may
require as much as several hours exposure in order to detect them at all. One way
of increasing the intensity of the x-ray source is the rotating-anode tube, in which
rotation of the anode continuously brings fresh target metal into the focal-spot area
and so allows a greater power input without excessive heating of the anode. Figure
18 shows two designs that have been used successfully; the shafts rotate through
vacuum-tight seals in the tube housing. Such tubes can operate at a power level 5
to 10 times higher than that of a fixed-focus tube, [11].

Microfocus Tubes

Some diffraction methods require extremely fine x-ray beams. Such beams are most
efficiently produced by special demountable x-ray tubes, called microfocus tubes, in
which special attention is paid to achieving a very small focal spot.The design prob-
lem—fine focusing of the electron beam—is similar to that of the electron micro-
scope or the x-ray microprobe. One focusing method is electrostatic and consists

anode

x-rays

electrons

x-rays

electrons

Figure 18 Schematic drawings of two types of rotating anode
for high-power  x-ray tubes.
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simply in maintaining the focusing cup around the filament at a potential of a few
hundred volts more negative than the filament, thus concentrating the electrons
into a narrower beam.

The focal spots of these tubes have areas of less than 1 percent of those of con-
ventional tubes.Typical sizes are 0.1 � 1 mm for a line focus and 0.05 mm (= 50 �m)
diameter for a circular focus, and focal spot diameters smaller than 0.01 mm can be
obtained.

Pulsed (or Flash) Tubes

The maximum power at which an x-ray tube can operate continuously is limited by
the rate at which the target can be cooled. But if the tube is operated for only a
small fraction of a second, a pulse of x-rays can be obtained at a very high power
level without any cooling. This can be done by slowly charging a bank of capacitors
and then abruptly discharging them across a special x-ray tube. In this way an x-ray
pulse lasting about 30 nanoseconds at a peak voltage of 300 kV and a peak current
of 5000 amperes has been produced [12]. (Such a brief flash of x-rays is useful only
if its results, in radiography or diffraction, can be recorded.)

Miniature Tubes

If increased attention is given, during the design of an x-ray tube, to focusing of the
electron beam and to the shape and placement of the target, the intensity of the
beam issuing from the tube can be made about as large as that from a convention-
al tube, but with a power input of one-tenth or less. As a result, water cooling is not
needed; air cooling is sufficient. This feature is important for portable apparatus
such as those used for in situ residual stress measurements.

Such tubes are commercially available [13]. They are small, only about 4 to 8 in
(10 to 20 cm) in length, and operate typically at a voltage of about 50 kV and a tube
current of the order of 1 mA, as compared to 10 mA or more in conventional tubes.

High Voltage Tubes and Linear Accelerators

Specialized sealed tubes and linear accelerators are used to produce very penetrat-
ing radiation and can be used for x-ray diffraction, but these sources are used pri-
marily in the area of nondestructive evaluation [14].

Synchrotron Radiation

As discussed before, acceleration of charged particles produces electromagnetic
radiation; the continuous spectrum emitted from an x-ray tube is one example. If
electrons or positrons moving at relativistic velocities (in, say, an accelerator such
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as an electron synchrotron) are deflected along a curved trajectory by a magnetic
field, synchrotron radiation is produced. A continuous spectrum results, spanning
from microwaves to very hard x-rays (Fig. 19). Not only is radiation produced in
energy ranges where no other usable sources exist, but storage rings emitting syn-
chrotron radiation are the best source of x-rays for many purposes including dif-
fraction.

Several factors give synchrotron radiation an advantage over tube sources for x-
ray diffraction. The intensity of x-rays delivered to a sample is far greater than that
of other sources, and synchrotron radiation can be tuned to the most advantageous
x-ray wavelength. The relativistic character of the synchrotron radiation process
confines radiation to directions very close to the plane of electron or positron orbit,
and the resulting divergence of the x-ray beam is very small. Therefore, this source
of very high flux x-rays has an even higher brightness and spectral brightness
(intensity per unit area of source and intensity per unit area per unit solid angle per
unit energy bandwidth, respectively). Many diffraction experiments at the frontiers
of materials research are feasible only with synchrotron x-radiation.

Several types of devices provide the intense magnetic fields required to produce
synchrotron radiation. Bending magnets situated periodically around the storage
ring deflect the electrons or positrons and force them to circulate within the ring.
Insertion devices placed between the bending magnets and consisting of a relative-
ly closely spaced array of magnets are another source of radiation. There are five
storage rings producing x-rays for diffraction in the US alone, along with several
other storage rings producing softer radiation; and each ring has its own peculiar
combination of ring energy, bending magnets, and insertion devices. Brightness as a
function of x-ray wavelength is compared for some of the synchrotron radiation
sources in Fig. 19. Values typical of sealed tube and rotating anode sources are also
shown. Further details appear elsewhere, e.g., [15, 16], and new reviews appear
annually.

Typically a single experiment (and the associated researchers) occupies each sta-
tion (beamline) at a time; and data collection continues around the clock for the
entire period the experiment is on-line (from several days to a month).Activity cen-
ters around a radiation-tight enclosure containing the experimental apparatus and
connected to the storage ring by radiation transport pipes. Support apparatus
including computers cluster around the hutch, and the adjacent beamline and
equipment can be as close as a few meters away. Most storage rings have between
ten and fifty such stations, some very specialized and some general purpose.

The advantages of synchrotron radiation for materials characterization must be
balanced against the limited accessibility (geographic and temporal) and the diffi-
culty of working away from one’s own laboratory. New users are generally encour-
aged by the administration of the different facilities although the how, what and
why of a proposed experiment must be evaluated before beam is provided. In many,
if not most, circumstances, characterization needs to be done on a day-in, day-out
basis. This reason alone is enough to insure that characterization using x-ray tubes
continues to flourish.
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Figure 19 Intensity of synchrotron radiation as a function of photon energy for various sources: ALS
(Advanced Light Source, Lawrence Berkeley National Laboratory), APS (Advanced Photon Source
Argonne National Laboratory), NSLS (National Synchrotron Light Source, Brookhaven National
Laboratory), SSRL (Stanford Synchrotron Radiation Laboratory). Note that Spectra from both undu-
lators and bending magnets are included for ALS and APS, and values typical of laboratory sources are
shown for commparison.
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8 DETECTION OF X-RAYS

The principal means used to detect x-ray beams are fluorescent screens, photo-
graphic film, and electronic detectors. More recently image (storage) plates have
become popular as an alternative to photographic emulsions, particularly at syn-
chrotron radiation sources. Discussion of the detectors’ interactions with x-rays is
beyond the scope of this chapter.

9 SAFETY PRECAUTIONS

The operator of x-ray apparatus is exposed to two obvious dangers, electric shock
and radiation injury, but both of these hazards can be reduced to negligible pro-
portions by proper design of equipment and reasonable care on the part of the user.
Nevertheless, it is only prudent for the x-ray worker to be continually aware of
these hazards.

Electric Shock

The danger of electric shock is always present around high-voltage apparatus. The
anode end of most x-ray tubes is usually grounded and therefore safe, but the cath-
ode end is a source of danger. X-ray tubes of the nonshockproof variety (such as
the one shown in Fig. 14) must be so mounted that their cathode end is absolutely
inaccessible to the user during operation; this may be accomplished by placing the
cathode end below a table top, in a box, behind a screen, etc.The installation should
be so contrived that it is impossible for the operator to touch the high-voltage parts
without automatically disconnecting the high voltage. (i.e., interlocks should be
present). Shock-proof sealed tubes are also available: these are encased in a
grounded metal covering, and an insulated, shock-proof cable connects the cathode
end to the transformer. Being shock-proof, such a tube has the advantage that it
need not be permanently fixed in position but may be set up in various positions as
required for particular experiments.

Radiation Hazard

The radiation hazard is due to the fact that x-rays can kill human tissue; in fact, it is
precisely this property which is utilized in x-ray therapy for killing cancer cells. The
biological effects of x-rays include burns (due to localized high-intensity beams),
radiation sickness (due to radiation received generally by the whole body), and, at
a lower level of radiation intensity, genetic mutations. The burns are painful and
may be difficult, if not impossible, to heal. Slight exposures to x-rays are not cumu-
lative, but above a certain level called the “tolerance dose,” they do have a cumula-
tive effect and can produce permanent injury. The x-rays used in diffraction are
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* Answers to starred problems are given at the end of the chapter.

particularly harmful because they have relatively long wavelengths and are there-
fore easily absorbed by exposed organs such as the skin and eyes.

There is no excuse today for receiving serious injuries as early x-ray workers did
through ignorance. There would probably be no accidents if x-rays were visible and
produced an immediate burning sensation, but they are invisible and burns may not
be felt immediately. If the body has received general radiation above the tolerance
dose, the first noticeable effect will be a lowering of the white-blood-cell count, so
periodic blood counts are advisable if there is any doubt about the general level of
intensity in the laboratory.

Portable detectors, called radiation survey meters, are available for surveying var-
ious areas around x-ray equipment for possible radiation leaks. Apparatus should
be checked for radiation leaks periodically and whenever the instrument’s configu-
ration is changed. Film badges should be worn on the torso or wrist of persons who
spend a large fraction of their working day near x-ray equipment. Government reg-
ulations regarding radiation safety are becoming increasingly severe. Most research
institutions have radiation safety offices and require training of radiation workers
as well as certification of the safety of apparatus producing ionizing radiation such
as x-rays.

Current generations of diffraction apparatus are designed to have no open beam
paths or to be operated in radiation enclosures. In both cases, interlocks are includ-
ed which automatically shut off the x-ray tube if the interlock switch is activated,
i.e., the enclosure is opened. Interlocks can be defeated or fail, however, so that the
experimenter always needs to be cautious. If an experimenter needs to work with
an open beam, say during the alignment of the apparatus, the safest procedure for
the experimenter to follow is: first, to check the level of the scattered radiation
when the shutter of the x-ray tube is open; second, to locate the primary beam from
the tube with a small fluorescent screen fixed to the end of a rod and thereafter
avoid it; and second, to make sure that he or she is well shielded by lead or lead-
glass screens from the radiation scattered by the camera or other apparatus which
may be in the path of the primary beam. Strict and constant attention to these pre-
cautions will go a long way toward insuring safety.

PROBLEMS

*1 What is the frequency (per second) and energy per quantum (in joules) of x-ray
beams of wavelength 0.71 Å (Mo Kα) and 1.54 Å (Cu Kα)?
2 Calculate the velocity and kinetic energy with which the electrons strike the tar-
get of an x-ray tube operated at 50,000 volts. What is the short-wavelength limit of
the continuous spectrum emitted and the maximum energy per quantum of radia-
tion?
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3 Show that the velocity with which electrons strike the target of an x-ray tube
depends only on the voltage between anode (target) and cathode and not on the
distance between them. [The force on a charge e (coulombs) by a field E (volts/m)
is eE newtons.]
4 Graphically verify Moseley’s law for the Kβ1 lines of Cu, Mo, and W.
5 Plot the ratio of transmitted to incident intensity vs. thickness of lead sheet for Mo
Kα radiation and a thickness range of 0.00 and 0.02 mm.
*6 Graphically verify Eq. (13) for a lead absorber and Mo Kα, Rh Kα, and Ag Kα
radiation. (The mass absorption coefficients of lead for these radiations are 122.8,
84.13, and 66.14 cm2/g, respectively.) From the curve, determine the mass absorp-
tion coefficient of lead for the shortest wavelength radiation from a tube operated
at 30,000 volts.
7 Lead screens for the protection of personnel in x-ray diffraction laboratories are
usually at least 1 mm thick. Calculate the “transmission factor” (Itrans./Iincident) of
such a screen for Cu Kα, Mo Kα, and the shortest wavelength radiation from a tube
operated at 30,000 volts.
*8 (a) Calculate the mass and linear absorption coefficients of air for Cr Kα radia-
tion.Assume that air contains 80 percent nitrogen and 20 percent oxygen by weight
and has a density of 1.29 � 10-3 g/cm3. (b) Plot the transmission factor of air for Cr
Kα radiation and a path length of 0 to 20 cm.
*9 Calculate the K excitation voltage of copper.
*10 Calculate the wavelength of the L111 absorption edge of molybdenum.
*11 Calculate the wavelength of the Cu Kα1 line.
*12 Plot the curve shown in Fig. 12 and save it for future reference.
*13 What voltage must be applied to a molybdenum-target tube in order that the
emitted x-rays excite K fluorescent radiation from a piece of copper placed in the
x-ray beam? What is the wavelength of the fluorescent radiation?

In Problems 14 and 15 take the intensity ratios of Kα to Kβ in unfiltered radiation
from Table 1.

14 Suppose that a nickel filter is required to produce an intensity ratio of Cu Kα to
Cu Kβ of 100/1 in the filtered beam. Calculate the thickness of the filter and the
transmission factor for the Cu Kα line.
*15 Filters for Co K radiation are usually made of iron oxide (Fe2O3) powder rather
than iron foil. If a filter contains 5 mg Fe2O3/cm2, what is the transmission factor for
the Co Kα line? What is the intensity ratio of Co Kα to Co Kβ in the filtered beam?
16 A copper-target x-ray tube is operated at 40,000 volts and 25 mA. The efficiency
of an x-ray tube is so low that, for all practical purposes, one may assume that all
the input energy goes into heating the target. If there were no dissipation of heat by
water-cooling, conduction, radiation, etc., how long would it take a 100-g copper tar-
get to melt? (Melting point of copper = 1083C, mean specific heat = 6.65
cal/mole/C, latent heat of fusion = 3220 cal/mole.)
*17 Assume that the sensitivity of x-ray film is proportional to the mass absorption
coefficient of the silver bromide in the emulsion for the particular wavelength
involved. What, then, is the ratio of film sensitivities to Cu Kα and Mo Kα
radiation?
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ANSWERS TO SELECTED PROBLEMS

1.

6. 33 cm2/gm

8. a) 26.97 cm2/gm,

b) Ix/I0 = 0.50 for 20 cm of air

9. 8980 volts 11. 1.541 Å

13. 8980 volts; mainly 1.54 Å ( ) and 1.39 Å  ( )

15. 0.80, 26 to 1 17. 3.5 to 1

Cu KbCu Ka

3.48 � 10�2 cm�1

4.23 � 1018 sec�1, 2.80 � 10�15 J; 1.95 � 1018 sec�1, 1.29 � 10�15 J
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Geometry of Crystals
1 INTRODUCTION

Turning from the properties of x-rays, consider next the geometry and structure of
crystals in order to discover what there is about crystals in general that enables
them to diffract x-rays. Particular crystals of various kinds and how the very large
number of crystals found in nature are classified into a relatively small number of
groups must also be considered. The final sections of the chapter focus on the ways
in which the orientation of lines and planes in crystals can be represented in terms
of symbols or in graphical form.

Crystallography is a very broad subject and its origins precede the discovery of
x-rays by many years. Only the more basic aspects are covered here: how atoms are
arranged in some common crystals and how this arrangement determines the way
in which a particular crystal diffracts x-rays. Readers who need a deeper knowledge
of crystallography should consult such books as those by McKie and McKie [G.3],
Borchardt-Ott [G.4], Sands [G.5] or Hammond [G.6].

2 LATTICES

A crystal may be defined as a solid composed of atoms, ions or molecules arranged
in a pattern periodic in three dimensions. As such, crystals differ in a fundamental
way from gases and liquids because the atomic, ionic or molecular arrangements in
the latter do not posses the essential requirement of periodicity. Many solids are
crystalline; if they are not single-crystals they consist of many contiguous crystals,
i.e., they are polycrystalline. Not all solids are crystalline, however; some are amor-
phous, like glass, and do not have any regular interior arrangement of atoms, ions
or molecules. There is, in fact, no essential difference between an amorphous solid
and a liquid, and the former is often termed an “undercooled liquid.” It is impor-
tant to emphasize that not only are the atom, ion or molecule positions repetitious
but also that there are certain symmetry relationships in their arrangement.

In thinking about crystals it is often convenient to ignore the actual atoms, ions,
or molecules and to focus on the geometry of periodic arrays. The crystal is then
represented as a lattice, that is, a three-dimensional array of points (lattice points),

From Chapter 2 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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1 Vectors are here represented by boldface symbols. The same symbol in italics stands for the magnitude
of the vector.

each of which has identical surroundings. As mathematical constructs, lattices are
infinite in extent whereas crystals are not. In practical terms, most crystals consist
of enough atoms to render this distinction moot.

Consider first a one-dimensional lattice. The entire “space” is this line with zero
thickness. The points of the lattice are separated by a lattice translation vector a
whose length, the lattice parameter, is written as |a|, a or a0 (Fig. 1a)1. Translation of
na from a lattice point, where n is an integer, brings one to another lattice point.
Planar or two-dimensional lattices consist of two non-collinear lattice vectors a and
b. These vectors have length a and b and are separated by an angle (Fig. 1b). Any
translation , where p as well as n are integers, returns one to an equivalent
position within the lattice or planar mesh. If a third translation vector c, non-copla-
nar with a and b, operates on the mesh of Fig. 1b, a three-dimensional or space lat-
tice results (Fig. 1c).Thus, the points of this lattice can be generated solely by apply-
ing (repeatedly) the three translation vectors.

Normally a, b and c are defined in a right-handed sense (if the index finger of the
right hand points along a and the middle finger is bent to point along b, the thumb
will point along c) The vectors a, b and c define a unit cell, that is a prism or paral-
lelopiped volume. Stacking the unit cells face-to-face is, in fact, another way of gen-
erating a lattice and sometimes offers greater clarity than considering only the
translation vectors. Unit cells can also be defined using the six scalar lattice param-
eters (the lengths of the three lattice translation vectors a0, b0 and c0 and the three
inter-axial angles , between b and c, , between c and a, and ). Figure 2a shows
the relationship between axes and angles which is easy to commit to memory using
Table 1. It is important to emphasize that the unit cell (its faces and interior) com-
pletely defines the lattice. Adjacent unit cells touch, and eight unit cells share each
vertex, four each edge and two each face. Thus, even though there are eight lattice
points in the unit cell shown in Fig. 1c, each is shared by eight other unit cells, only
one-eighth of each may be attributed to the particular unit cell pictured. Therefore,
there is only one lattice point per unit cell, and this and other unit cells, chosen such
that they contain only one lattice point, are termed primitive.

Translation of the boundaries of the unit cell shown in Fig. 1c by a vector of the
type centers the unit cell on one of the lattice points (indicated
by an open instead of solid sphere) and illustrates that the particular unit cell ori-
gin or shape one chooses depends on what is most convenient. In Fig. 2b the arrows
show the shift of the unit cell corners from the setting in Fig. 1c, and two of the unit
cell body diagonals indicate the relationship between the lattice point and the cor-
ners of the unit cells. The gray areas represent projections, along a lattice vector, of
a unit cell face onto a plane parallel to that face and containing a plane of lattice
points. As a further aid to the eye, the separations of nearest neighbor lattice points
from the unit cell faces are indicated with heavy lines. Non-primitive unit cells of
some lattices, for example, are employed to illustrate important aspects of perio-

;a>2 � b>2 � c>2

gba

na � pb
g
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a a
Figure 1 (a) One-dimensional 
lattice with parameter a.

a a

b
g

b

Figure 1 (b) Two-dimensional lattice with lattice translation vectors a and b and interaxial angle �.

Figure 1 (c) Three-dimensional lattice with a primitive unit cell highlighted in bold. Lattice points are
represented by the solid circles/spheres.

Geometry of Crystals

dicity or symmetry. Once a particular unit cell or unit cell origin is defined, it must
be consistently applied throughout the lattice.
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Figure 2 (b) Unit cells with the lattice points located at the cell corners and an alternative unit cell cen-
tered on one lattice point.

�
�

�

a

b

c

c

b

aFigure 2 (a) Illustration of lattice vector and 
interaxial angle designations.

Axis a b c a

Inter-axial Angle γ α β

TABLE 1 DETERMINING WHICH INTER-AXIAL ANGLE IS BETWEEN WHICH PAIR OF AXES. THE ANGLE BETWEEN
ANY TWO TRANSLATION VECTORS IS GIVEN BETWEEN THOSE VECTORS ON THE LINE BELOW.

A different notation for the lattice vectors uses a1, a2 and a3 in place of a, b and
c, respectively. While use of a1 may seem somewhat more abstract than necessary,
this notation can be much more convenient (see Section 4). One or the other of

Geometry of Crystals
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these notations will be used in this book, and what aspects of periodicity are being
emphasized will determine which will be used.

3 DESIGNATION OF POINTS, LINES, AND PLANES

Every point within the lattice is uniquely defined with respect to the origin of the
lattice by position vector r = u’a + v’b + w’c. If the origin of the lattice lies on a lat-
tice point and if u’, v’ and w’ are integers, the point located by r must be a lattice
point and its coordinates are written simply as an ordered triplet u’v’w’. Points in
space which are not lattice points have non-integer values of u’, v’ or w’, and it is
possible to write r as the sum of integer multiples n, p and q of the lattice vectors
plus fractions u,v and w of the translation vectors:

r = (n + u) a + (p + v) b + (q + w) c. (1)

Rearranging terms yields 

r = (na + pb + qc) + (ua + vb + wc), (2)

i.e., a vector between lattice points or between corners of equivalent unit cells plus
a vector from the corner of a unit cell to a point within the unit cell at position uvw
relative to the corner of that unit cell.

The direction of any line in a lattice may be described by first drawing a line
through the origin parallel to the given line and then giving the coordinates of any
point on the line through the origin. Let the line pass through the origin of the unit
cell and any point having coordinates u’ v’ w’, where these numbers are not neces-
sarily integral. (This line will also pass through the points 2u’ 2v’ 2w’, 3u’ 3v’ 3w’,
etc.) Then [uvw], written in square brackets, are the indices of the direction of the
line. They are also the indices of any line parallel to the given line, since the lattice
is infinite and the origin may be taken at any point. Whatever the values of u’, v’,
w’, they are always converted to a set of smallest integers by multiplication or divi-
sion throughout: thus, , [112], and [224] all represent the same direction, but
[112] is the preferred form. Negative indices are written with a bar over the num-
ber, e.g., . Direction indices are illustrated in Fig. 3. Note how one can men-
tally shift the origin, to avoid using the adjacent unit cell, in finding a direction like

.
Directions related by symmetry are called directions of a form, and a set of these

are represented by the indices of one of them enclosed in angular brackets: for
example, the four body diagonals of a cube, [111], , , and , may
all be represented by the symbol <111>.

The orientation of planes in a lattice may also be represented symbolically,
according to a system popularized by the English crystallographer Miller [1]. In
the general case, the given plane will be tilted with respect to the crystallographic
axes, and, since these axes form a convenient frame of reference, the orientation of
the plane might be described by giving the actual distances, measured from the ori-

31 1 1 431 1 1 431 1 1 4

312�0 4

3uvw 4

3 12 
1
2 1 4
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Figure 4 Plane designation by Miller indices.

gin, at which it intercepts the three axes. Better still, by expressing these distances
as fractions of the axial lengths, the numbers become are independent of the par-
ticular axial lengths involved in the given lattice. But a difficulty then arises when
the given plane is parallel to a certain crystallographic axis, because such a plane
does not intercept that axis, i.e., its “intercept” can only be described as “infinity.”
To avoid the introduction of infinity into the description of plane orientation, the
reciprocal of the fractional intercept is used, this reciprocal being zero when the
plane and axis are parallel. A workable symbolism results for the orientation of a
plane in a lattice, the Miller indices, which are defined as the reciprocals of the frac-
tional intercepts which the plane makes with the crystallographic axes. For example,
if the Miller indices of a plane are (hkl), written in parentheses, then the plane
makes fractional intercepts of l/h, l/k, l/l with the axes, and, if the axial lengths are
a, b, c, the plane makes actual intercepts of a/h, b/k, c/l, as shown in Fig. 4(a).
Parallel to any plane in any lattice, there is a whole set of parallel equidistant
planes, one of which passes through the origin; the Miller indices (hkl) usually
refer to that plane in the set which is nearest the origin, although they may be
taken as referring to any other plane in the set or to the whole set taken together.

Geometry of Crystals
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Figure 5 Miller indices of lattice planes. The distance d is the plane spacing.

Geometry of Crystals

Determining the Miller indices of the plane shown in Fig. 4(b) requires the fol-
lowing steps.

Axial lengths 4Å 8Å 3Å

Intercept lengths 1Å 4Å 3Å

Fractional intercepts 1/4 1/2 1

Miller indices 4 2 1

As stated earlier, if a plane is parallel to a given axis, its fractional intercept on
that axis is taken as infinity and the corresponding Miller index is zero. If a plane
cuts a negative axis, the corresponding index is negative and is written with a bar
over it. Planes whose indices are the negatives of one another are parallel and lie
on opposite sides of the origin, e.g., and . The planes (nh nk nl) are par-
allel to the planes (hkl) and have l/nth the spacing. The same plane may belong to
two different sets, the Miller indices of one set being multiples of those of the other;
thus the same plane belongs to the (210) set and the (420) set, and, in fact, the
planes of the (210) set form every second plane in the (420) set. In the cubic crys-
tal system it is convenient to remember that a direction [hkl] is always perpendicu-
lar to a plane (hkl) of the same indices, but this is not generally true in other crys-
tal systems. Further familiarity with Miller indices can be gained from a study of
Fig. 5.

The various sets of planes in a lattice have various values of interplanar spacing.
The planes of large spacing have low indices and pass through a high density of lat-

1210 21210 2
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Figure 6 Two-dimensional lattice, showing that lines of lowest indices have the greatest spacing and the
greatest density of lattice points.

tice points, whereas the reverse is true of planes of small spacing. Figure 6 illustrates
this for a two-dimensional lattice, and it is equally true in three dimensions. The
interplanar spacing dhkl, measured at right angles to the planes, is a function both of
the plane indices (hkl) and the lattice constants (a, b, c, ).a,  b, g

4 RECIPROCAL LATTICE

Vectors ai (i.e., a, b, and c) define the basis vectors of a three-dimensional lattice.
This direct space lattice, however, is not the only way that the periodicity and sym-
metry of a given arrangement of lattice points can be represented. As introduced
by J. Willard Gibbs [2], a reciprocal lattice bi (i.e., a lattice in reciprocal space) can
be defined for every direct space lattice ai by

(3)

The cyclic permutation of the indices in the numerator insures that a right-handed
reciprocal lattice is obtained. Strictly speaking, the denominator should be written
using the same permutation of indices as the numerator, but this vector product is
the volume of the unit cell of the direct space lattice and this volume is the same

b3 �
a1 	 a2

a1 � a2 	 a3
.

b2 �
a3 	 a1

a1 � a2 	 a3
        and

b1 �
a2 	 a3

a1 � a2 	 a3
,
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2 If the notation a, b and c is used for the direct space vectors, then a*, b* and c* are used for the cor-
responding reciprocal space vectors.

regardless of the order in which the ai are multiplied.2 One should note that the
units of the reciprocal lattice are Å-1 and not Å.

The physical significance of the reciprocal lattice in diffraction is due to Ewald
[3] and not to Gibbs. The reciprocal lattice has several important properties. First,
the cross-product in the numerator means that b1 is perpendicular to a2 and a3, that
b2 is perpendicular to a3 and a1 and that b3 is perpendicular to a1 and a2. This rela-
tionship means that the reciprocal lattice has the property of orthonormality, i.e.,

(4)

where is the Kroenecker delta and equals 0 if  and 1 if  i = j. It can be
shown that the volume of the reciprocal lattice unit cell is the reciprocal of the vol-
ume of the direct space unit cell. Second, a vector Hhkl drawn from the origin of
reciprocal space to any point in reciprocal space having coordinates h,k,l is per-
pendicular to the plane in direct space whose Miller indices are hkl. The length Hhkl
of the reciprocal lattice vector Hhkl = hb1 + kb2 + lb3 equals the reciprocal of the
periodicity of (hkl), i.e., .

Two examples of direct space lattices and the corresponding reciprocal space lat-
tices appear in Figure 7. Sometimes drawings of the lattices are shown superim-
posed, but it is best to place the direct space and reciprocal space lattices side-by-
side in order to avoid confusion in terms of units, etc. Note that the axes of each pair
of lattices are shown in the correct alignment: b2 is perpendicular to both a3 and a1,
etc.Also, in both cases, axes a3 are perpendicular to a1 and a2 and to the plane of the
paper. The corresponding reciprocal lattices also have b3 perpendicular to the sheet
of paper, and the hk0 plane of the reciprocal lattice is shown. In the case of the
cubic lattice, b1 is parallel to a1 but for the hexagonal lattice b1 is not parallel to a1.
Several planes in the direct space lattices are indicated along with their Miller
indices. In the cubic lattice (110) and (210) are shown, and one can see that the
reciprocal lattice vectors H110 and H210 are perpendicular to the corresponding
planes. Similarly, in the hexagonal lattice, one can see that H120 is perpendicular to
(120) and H110 is perpendicular to (110). Comparing the direct space vector [120]
with the orientation of (120) in the drawing of hexagonal lattice demonstrates what
should always be remembered: the direct space vector [hkl] in non-cubic systems
will not necessarily be perpendicular to (hkl). One can also demonstrate by direct
measurement that the lengths of the reciprocal lattice vectors are equal to the
inverse of the spacing between corresponding planes.

In crystallographic terms, all that is needed to uniquely identify a set of parallel
lattice planes (hkl) is their orientation and their periodicity. These are given by the
normal to the planes (a single direction) and the spacing between the planes (dhkl).
A single lattice point in reciprocal space, defined by vector Hhkl, is sufficient, there-
fore, to represent the infinite series of physical direct space planes. In other words,

Hhkl � 1>dhkl

i � j

ai � bj � dij,
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Figure 7 Illustration of crystal lattices (left side) and corresponding reciprocal lattices (right side) for a
cubic system (top) and an hexagonal system (bottom).

the transformation from direct space to reciprocal space maps all direct space
planes (hkl) onto a single point (i.e., the reciprocal lattice point with coordinates
h,k,l). Note that the symmetry which is present in direct space appears in recipro-
cal space. The reciprocal lattice representation of a crystal is a powerful tool for
understanding diffraction.

5 SYMMETRY

One type of repetition, lattice translation, underlies the periodicity of one-, two-
and three- dimensional nets. As mentioned in Sec. 2, the surroundings of each lat-
tice point are identical, not only in kind but also in orientation. Symmetry is the sec-
ond type of repetition required to define the periodicity of two-dimensional pat-
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A1 A2
A1

A4

A2

A3

(a)

A1

A2

(c)

A1 A1


A2

(d)

(b)

Figure 8 Some symmetry ele-
ments of a cube. (a) Reflection
plane. A1 becomes A2. (b)
Rotation axes. 4-fold axis: A1

becomes A2; 3-fold axis: A1

becomes A2; 2-fold axis: A1

becomes A4. (c) inversion cen-
ter. A1 becomes A2. (d)
Rotation-inversion axis, 4-fold
axis: A1 becomes A´2; inversion
center: A´1 becomes A2..

terns seen in wallpaper or of three-dimensional assemblies of atoms, ions or mole-
cules comprising crystals. The various symmetry operators act to change the orien-
tation of the repeated features or motifs which populate a lattice. These operators
are required to describe repeating patterns which are more complex than those
generated through the simple repetition of lattice translations. For simplicity, the
symmetry elements used in crystallography will be introduced distinct from lattices
and only later will be incorporated into lattices to produce crystal structures.

Before considering how symmetry is incorporated in lattices, it is necessary to
investigate how the symmetry elements operate on their surroundings. If a certain
object is at a certain position relative to the symmetry element, the type of symme-
try element dictates where to look to find an object identical, except for orientation,
to the first. Alternatively, a body or structure is said to be symmetrical when its
component parts are arranged in such balance, so to speak, that certain operations
can be performed on the body which will bring it into coincidence with itself. For
example, if a body is symmetrical with respect to a plane passing through it, then
reflection of either half of the body across the mirror plane will produce a body
coinciding with the other half. Thus a cube has several planes of symmetry, one of
which is shown in Fig. 8(a). Points A1 and A2 in Fig. 8(a) must be identical because
of the mirror plane through the center of the cube; they are related by reflection.
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3 So called to distinguish them from certain microscopic symmetry operations which are not of concern
here.The macroscopic elements can be deduced from the angles between faces of a well-developed crys-
tal, without any knowledge of the atomic arrangement inside the crystal. The microscopic symmetry ele-
ments, on the other hand, depend entirely on atom arrangement, and their presence cannot be inferred
from the external development of the crystal.
4 Texts such as that of Schwartz and Cohen [G.7] and those on crystallography [G.3-G.6] illustrate this
topic in considerably greater detail.

There are in all four macroscopic3 symmetry operations or elements: reflection,
rotation, inversion and roto-inversion.A body has n-fold rotational symmetry about
an axis if a rotation of 360°/n brings it into self-coincidence.Thus a cube has a 4-fold
axis normal to each face, a 3-fold axis along each body diagonal, and 2-fold axes
joining the center of opposite edges. Some of these are shown in  Fig. 8 where the
small plane figures (square, triangle, and ellipse) designate the various axes. In Fig.
8(b), points A1, A2, A3, and A4 are related by the four-fold rotation axis (Fig. 8(b))
while points A1 and A4 are also related by the two-fold axis inclined with respect to
the four-fold axis. In general, rotation axes may be 1-, 2-, 3-, 4- or 6-fold. Multiple 1-
fold axes are present in all objects, and these are normally not shown while a 5-fold
axis or one of higher degree than 6 are impossible, in the sense that unit cells hav-
ing such symmetry cannot be made to fill space without leaving gaps.

A body has an inversion center if corresponding points of the body are located
at equal distances from the center on a line drawn through the center. A body hav-
ing an inversion center will come into coincidence with itself if every point in the
body is inverted, or “reflected,” in the inversion center. A cube has such a center at
the intersection of body diagonals [Fig. 8(c)]. Finally, a body may have a rotation-
inversion axis, either 1-, 2-, 3-, 4- or 6-fold. If it has an n-fold rotation-inversion axis,
it can be brought into coincidence with itself by a rotation of 360°/n about the axis
followed by an inversion in a center lying on the axis. Figure 8(d) illustrates the
operation of a 4-fold rotation-inversion axis on a cube.

Consider next all of the positions and orientations an object or motif must take
due to the operation of various symmetry elements (Fig. 9). The motif must appear
even more frequently if, for example as in Fig. 9(g) and (h), two symmetry opera-
tors operate through the same point. The combined operation of a two-fold axis
lying within a mirror plane “produces” a second mirror plane, perpendicular to the
first mirror and also containing the two-fold axis (i.e., horizontal in Fig. 9(g)). When
a four-fold axis lies within a single mirror plane as shown in Fig. 9(h) symmetry
requires a total of eight identical motifs (in various orientations) and four mirror
planes to be present.

The different symmetry operations acting through a point are termed point
groups. In two-dimensions there are ten point groups which can be included in lat-
tices. In three-dimensions, the number of point groups increases to thirty-two:
unlike in two-dimensions, inversion centers are no longer equivalent to two-fold
axes, and combinations such as mirrors perpendicular to rotation axes are possible.4
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a. b. c. d.

e. f. g. h.

Figure 9 Symmetry operators for crystallography; the point group designations are in quotations. (a)-
(h) are 1-fold axis “1”, two-fold axis “2”, three-fold axis “3”, four-fold axis “4”, six-fold axis “6”, mirror
plane “m”, mirror plus two-fold axis “2m”, mirror plus four-fold axis “4m”, respectively.

It is important to emphasize that symmetry elements operate throughout space.
The discussion thus far has concentrated on direct space, but all the principles
described also apply in reciprocal space.

6 CRYSTAL SYSTEMS

In defining a lattice with three non-coplanar lattice vectors, units cells of various
shapes can result, depending on the length and orientation of the vectors. For exam-
ple, if the vectors a, b, c are of equal length and at right angles to one another, or
a = b = c and , the unit cell is cubic. Giving special values to the
axial lengths and angles, produces unit cells of various shapes and therefore various
kinds of point lattices, since the points of the lattice are located at the primitive unit
cell corners. It turns out that only seven different kinds of cells are necessary to
include all the possible point lattices. These correspond to the seven crystal systems
into which all crystals can be classified. These systems are listed in Table 2. (Some
writers consider the rhombohedral system as a subdivision of the hexagonal, thus
reducing the number of crystal systems to six.)

Seven different point lattices can be obtained simply by putting points at the cor-
ners of the unit cells of the seven crystal systems. However, there are other arrange-
ments of points which fulfill the requirements of a point lattice, namely, that each
lattice point have identical surroundings. The French crystallographer Bravais
worked on this problem and in 1848 demonstrated that there are fourteen possible

a � b � g � 90o
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System Axial lengths and angles
Bravais
lattice

Lattice
symbol

Cubic
Three equal axes at right angles Simple

Body-centered
Face-centered

P
I
F

Tetragonal
Three axes at right angles, two equal Simple

Body-centered
P
I

Orthorhombic
Three unequal axes at right angles

Simple
Body-centered
Base-centered
Face-centered

P
I
C
F

Rhombohedral*
Three equal axes, equally inclined

Simple R

Hexagonal
Two equal coplanar axes at 120º,
third axis at right angles Simple P

Monoclinic
Three unequal axes,
one pair not at right angles Simple

Base-centered
P
C

Triclinic
Three unequal axes, unequally inclined
and none at right angles Simple P

a b c α β γ 90°===,= =

a b c α β γ 90°= = =,≠=

a b c α β γ 90°= = =,≠ ≠

a b c α β γ 90°≠= =,= =

a b c α β 90° γ 120°=( )= =,≠=

a b c α γ 90° β≠= =,≠ ≠

a b c α β γ 90°≠ ≠ ≠( ),≠ ≠

TABLE 2 CRYSTAL SYSTEMS AND BRAVAIS LATTICES

(The symbol 	 means that equity is not required by symmetry. Accidental equality may occur, as
shown by an example in Sec. 4.)

* Also called trigonal.

point lattices and no more [4]; this important result is commemorated by the use of
the terms Bravais lattice and point lattice as synonymous. For example, if a point is
placed at the center of each cell of a cubic point lattice, the new array of points also
forms a point lattice. Similarly, another point lattice can be based on a cubic unit
cell having lattice points at each corner and in the center of each face.

The fourteen Bravais lattices are described in Table 2 and illustrated in Fig. 10.
Some unit cells are simple, or primitive, cells (symbol P or R), and some are non-
primitive cells (any other symbol): primitive cells have only one lattice point per cell
while nonprimitive have more than one. A lattice point in the interior of a cell
“belongs” to that cell, while one in a cell face is shared by two cells and one at a cor-
ner is shared by eight. The number of lattice points per cell is therefore  given by
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Figure 10 The fourteen Bravais lattices.
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a

a

c

Figure 11 Relation of tetragonal C lattice (full lines) to
tetragonal P lattice (dashed lines).

a

a

a

b

b

b

cc

Figure 12 Extension of lattice points through
space by the unit cell vectors a, b, c.

where Ni = number of interior points, Nf = number of points on faces, and NC = num-
ber of points on corners. Any cell containing lattice points on the corners only is
therefore primitive, while one containing additional points in the interior or on
faces is nonprimitive.The symbols F and I refer to face-centered and body-centered
cells, respectively, while A, B, and C refer to base-centered cells, centered on one
pair of opposite faces A, B, or C. (The A face is the face defined by the b and c axes,
etc.) The symbol R is used especially for the rhombohedral system. In Fig. 10, axes
of equal length in a particular system are given the same symbol to indicate their
equality, e.g., the cubic axes are all marked a, the two equal tetragonal axes are
marked a and the third one c, etc.

At first glance, the list of Bravais lattices in Table 2 appears incomplete.Why not,
for example, a base-centered tetragonal lattice? The full lines in Fig. 11 delineate
such a cell, centered on the C face, but the same array of lattice points can be
referred to the simple tetragonal cell shown by dashed lines, so that the base-cen-
tered arrangement of points is not a new lattice. However, the base-centered cell is
a perfectly good unit cell and may be used rather than the simple cell. Choice of one
or the other has certain consequences.

The lattice points in a nonprimitive unit cell can be extended through space by
repeated applications of the unit-cell vectors a, b, c just like those of a primitive cell.
The lattice points associated with a unit cell can be translated one by one or as a
group. In either case, equivalent lattice points in adjacent unit cells are separated by
one of the vectors a, b, c, wherever these points happen to be located in the cell
(Fig. 12).

Now, the possession of a certain minimum set of symmetry elements is a funda-
mental property of each crystal system, and one system is distinguished from
another just as much by its symmetry elements as by the values of its axial lengths
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System Minimum symmetry elements

Cubic
Tetragonal
Orthorhombic
Rhombohedral
Hexagonal
Monoclinic
Triclinic

Four 3-fold rotation axes
One 4-fold rotation (or rotation - inversion) axis 
Three perpendicular 2-fold rotation (or rotation - inversion) axes
One 3-fold rotation (or rotation - inversion) axis
One 6-fold rotation (or rotation - inversion) axis
One 2-fold rotation (or rotation - inversion) axis
None

TABLE 3 SYMMETRY ELEMENTS

and angles. In fact, these are interdependent. For example, the existence of 4-fold
rotation axes normal to the faces of a cubic cell requires that the cell edges be equal
in length and at to one another. On the other hand, a tetragonal cell has only
one 4-fold axis, and this symmetry requires that only two cell edges be equal,
namely, the two that are at right angles to the rotation axis.

The minimum number of symmetry elements possessed by each crystal system is
listed in Table 3. Some crystals may possess more than the minimum symmetry ele-
ments required by the system to which they belong, but none may have less. The
existence of certain symmetry elements often implies the existence of others. For
example, a crystal with three 4-fold rotation axes necessarily has, in addition, four
3-fold axes and falls in the cubic system. The converse is not true; there are cubic
lattices which do not have three four-fold axes (see the unit cell of AuBe shown in
Fig. 23).

Symmetry operations apply not only to the unit cells shown in Fig. 10, considered
merely as geometric shapes, but also to the point lattices associated with them. The
latter condition rules out the possibility that the cubic system, for example, could
include a base-centered point lattice, since such an array of points would not have
the minimum set of symmetry elements required by the cubic system, namely four
3-fold rotation axes. Such a lattice would be classified in the tetragonal system,
which has no 3-fold axes and in which accidental equality of the a and c axes is
allowed.

Crystals in the rhombohedral (trigonal) system can be referred to either a rhom-
bohedral or a hexagonal lattice. Appendix: The Rhombohedral-Hexagonal
Transformation gives the relation between these two lattices and the transforma-
tion equations which allow the Miller indices of a plane (see Sec. 8) to be expressed
in terms of either set of axes.

90°

7 PRIMITIVE AND NONPRIMITIVE CELLS

In any point lattice a unit cell may be chosen in an infinite number of ways and may
contain one or more lattice points per cell. It is important to note that unit cells do
not “exist” as such in a lattice: they are a mental construct and can accordingly be
chosen for utility. The conventional cells shown in Fig. 10 are convenient and con-
form to the symmetry elements of the lattice.
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Figure 13 Face-centered cubic point lattice referred to
cubic and rhombohedral cells.

Any of the fourteen Bravais lattices may be referred to a primitive unit cell. For
example, the face-centered cubic lattice shown in Fig. 13 may be referred to the
primitive cell indicated by dashed lines. The latter cell is rhombohedral, its axial
angle is , and each of its axes is times the length of the axes of the cubic
cell. Each cubic cell has four lattice points associated with it, each rhombohedral
cell has one, and the former has, correspondingly, four times the volume of the lat-
ter. Nevertheless, it is usually more convenient to use the cubic cell rather than the
rhombohedral one because the former immediately suggests the cubic symmetry
which the lattice actually possesses. Similarly, the other centered non-primitive cells
listed in Table 2 are preferred to the primitive cells possible in their respective lat-
tices.

Why then do the centered lattices appear in the list of the fourteen Bravais lat-
tices? If the two cells in Fig. 13 describe the same set of lattice points, as they do,
why not eliminate the cubic cell and let the rhombohedral cell serve instead? The
answer is that this cell is a particular rhombohedral cell with an axial angle of

. In the general rhombohedral lattice no restriction is placed on the angle ; the
result is a lattice of points with a single 3-fold symmetry axis. When becomes
equal to , the lattice has four 3-fold axes, and this symmetry places it in the cubic
system. The general rhombohedral cell is still needed.

If nonprimitive lattice cells are used, the vector from the origin to any point in
the lattice will now have components which are nonintegral multiples of the unit-
cell vectors a, b, c. The position of any lattice point in a cell may be given in terms
of its coordinates; if the vector from the origin of the unit cell to the given point has
components xa, yb, zc, where x, y, and z are fractions, then the coordinates of the
point are x y z. Thus, point A in Fig. 13, taken as the origin, has coordinates 0 0 0
while points B, C, and D, when referred to cubic axes, have coordinates , ,
and , respectively. Point E has coordinates and is equivalent to point D,
being separated from it by the vector c. The coordinates of equivalent points in dif-
ferent unit cells can always be made identical by the addition or subtraction of a set
of integral coordinates: in this case, subtraction of 0 0 1 from (the coordinates
of E) gives (the coordinates of D).1
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Geometry of Crystals

Note that the coordinates of a body-centered point, for example, are always 
no matter whether the unit cell is cubic, tetragonal, or orthorhombic, and whatever
its size. The coordinates of a point position, such as , may also be regarded as an
operator which, when “applied” to a point at the origin, will move or translate it to
the position , the final position being obtained by simple addition of the opera-
tor and the original position 0 0 0. In this sense, the vectors between 000 and all
body-centered positions in the eight adjacent unit cells, i.e., are called the
“body-centering translations,” since they will produce the two point positions char-
acteristic of a body-centered cell when applied to a point at the origin. Similarly, the
four point positions characteristic of a face-centered cell, namely, 0 0 0, ,
and , are related by the face-centering translations . The base-centering
translations depend on which pair of opposite faces are centered; if centered on the
C face, for example, the equivalent positions are 0 0 0, and the C-face center-
ing translations are not nor . These centering translations, sum-
marized below, should be memorized:

Normally one writes “000 + body-centering translation”, “000 + face-centering
translation” or “000 + base-centering translation” when discussing unit cells with
only one atom per lattice point (i.e., Nb, Ni, Cu). Other unit cells have more than
one atom per unit lattice point. Silicon, for example, has a face-centered cubic
Bravais lattice with atoms at 000 and plus face centering translations, for a total
of four lattice points but eight atoms per unit cell. More complex molecular crys-
tals, typical of substances found in biological systems, have large numbers of atoms
of different types per lattice point.

Note that the indices of a plane or direction are meaningless unless the orienta-
tion of the unit-cell axes is given. This means that the indices of a particular lattice
plane depend on the unit cell chosen. For example, consider the right-hand vertical
plane of the cell shown by full lines in Fig. 11; the indices of this plane are of the
form {100} for the base-centered cell and {110} for the simple cell.

In any crystal system there are sets of equivalent lattice planes related by sym-
metry. These are called planes of a form or a family of planes, and the indices of any
one plane, enclosed in braces {hkl}, stand for the whole set. In general, planes of a
form have the same spacing but different Miller indices. For example, the faces of a
cube, (100), (010), , , (001), and , are planes of the form {100}, since
all of them may be generated from any one by operation of the 4-fold rotation axes
perpendicular to the cube faces. In the tetragonal system, however, only the planes
(100), (010), , and belong to the form {100}; the other two planes, (001)1010211002

100121010211002
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and , belong to the different form {001}; the first four planes mentioned are
related by a 4-fold axis and the last two by a 2-fold axis.5

Planes of a zone are planes which are all parallel to one line, called the zone axis,
and the zone, i.e., the set of planes, is specified by giving the indices of the zone axis.
Such planes may have quite different indices and spacings, the only requirement
being that they are parallel to a single line. Figure 14 shows some examples. If the
axis of a zone has indices [uvw], then any plane belongs to that zone whose indices
(hkl) satisfy the relation

(6)

Any two nonparallel planes are planes of a zone since they are both parallel to
their line of intersection. If their indices are (h1k1l1) and (h2k2l2), then the indices of
their zone axis [uvw] are given by [h1k1l1] [h2k2l2], that is,

(7)

Before turning to the special system of indexing for hexagonal crystal systems, it
is important to revisit the topic of interplanar spacings dhkl for {hkl}. The exact rela-
tion depends on the crystal system involved and for the cubic system takes on the
relatively simple form

(Cubic) (8)

In the tetragonal system the spacing equation naturally involves both a and c since
these are not generally equal:

(9)

In the cubic system, it is important to remember that [hkl] is perpendicular to (hkl).
It is equally important never to forget that for all other crystal systems [hkl] gener-
ally is not perpendicular to (hkl).

1Tetragonal 2  dhkl �
a

2h2 � k2 � l21a2>c2 2
. 

dhkl �
a

2h2 � k2 � l2
.

w � h1k2 � h2k1.

v � l1h2 � l2h1,

u � k1l2 � k2l1,

�

hu � kv � lw � 0.

1001 2

5 Certain important crystal planes are often referred to by name without any mention of their Miller
indices. Thus, planes of the form {111} in the cubic system are often called octahedral planes, since these
are the bounding planes of an octahedron. In the hexagonal system, the (0001) plane is called the basal
plane, planes of the form are called prismatic planes, and planes of the form are called
pyramidal planes.

510116510106
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Figure 14 All shaded planes in the cubic lattice
shown are planes of the zone {001}.
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Figure 15 (a) The hexagonal unit cell (heavy lines) and (b) indices of planes and directions.

8 INDEXING IN THE HEXAGONAL SYSTEM

A slightly different system of plane indexing is used in the hexagonal system. The
unit cell of a hexagonal lattice is defined by two equal and coplanar vectors a1 and
a2, at to one another, and a third axis c at right angles [Fig. 15(a)]. The com-
plete lattice is constructed, as usual, by repeated translations of the points at the
unit cell corners by the vectors a1, a2, c. Some of the points so generated are shown
in the figure, at the ends of dashed lines, in order to exhibit the hexagonal symme-
try of the lattice, which has a 6-fold rotation axis parallel to c.The third axis a3, lying
in the basal plane of the hexagonal prism, is so symmetrically related to a1 and a2

120°
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that it is often used in conjunction with the other two. Thus the indices of a plane in
the hexagonal system, called Miller-Bravais indices, refer to four axes and are writ-
ten (hkil). The index i is the reciprocal of the fractional intercept on the a3 axis.
Since the intercepts of a plane on a1 and a2 determine its intercept on a3, the value
of i depends on the values of h and k. The relation is

(10)

Since i is determined by h and k, it is sometimes replaced by a dot and the plane
symbol written Sometimes even the dot is omitted. However, this usage
defeats the purpose for which Miller-Bravais indices were devised, namely, to give
similar indices to similar planes. For example, the side planes of the hexagonal
prism in Fig. 15(b) are all similar and symmetrically located, and their relationship
is clearly shown in their full Miller-Bravais symbols: , , , ,

, . On the other hand, the abbreviated symbols of these planes,
, , , , , do not immediately suggest this

relationship.
Directions in a hexagonal lattice are best expressed in terms of the three basic

vectors a1, a2, and c. Figure 15(b) shows several examples of both plane and direc-
tion indices. Another system, involving four indices, is sometimes used to designate
directions. The required direction is broken up into four component vectors, paral-
lel to a1, a2, a3, and c and so chosen that the third index is the negative of the sum of
the first two.Then, if [UVW] are the indices of a direction referred to three axes and
[uvtw] the four-axis indices, the two are related as follows:

(11)

Thus, [100] becomes , [210] becomes , etc.31010 432110 4

w � W.

t � �1u � v 2 � �1U � V 2 >3W � w

V � v � t     v � 12V � U 2 >3

U � u � t  u � 12U � V 2 >3

111 # 0 2101 # 0 2110 # 0 2111 # 0 2101 # 0 2110 # 0 2
11100 210110 2

11010 211100 210110 211010 2

1hk # l 2

h � k � �i.

9 CRYSTAL STRUCTURE

So far discussion focused on topics from the field of mathematical (geometrical)
crystallography and barely acknowledged actual crystals and the atoms of which
they are composed. In fact, all of the above was well known long before the dis-
covery of x-ray diffraction, i.e., long before there was any certain knowledge of the
interior arrangements of atoms in crystals.
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d

Figure 16 (a) One dimensional lattice with unit cells marked by vertical bars. (b) One-dimensional lat-
tice populated with a “dash-dot” motif and showing one-fold symmetry. The borders of the unit cells are
indicated by the vertical dashed lines. (c) Three representations of the same one-dimensional lattice
populated with the dash-dot motif. The top line shows only the dash-dot motifs and unit cell boundaries.
The middle lattice shows where mirror planes occur in the lattice (vertical bars) while the bottom lat-
tice includes two-fold axes. (d) One-dimensional lattice with a basis consisting of two dash-dot motifs.

It is now time to describe the structure of some actual crystals and to relate this
structure to the point lattices, crystal systems, and symmetry elements discussed
above. The cardinal principle of crystal structure is that the atoms of a crystal are set
in space in some fixed relation to the points of a Bravais lattice. It follows from this
that the atoms of a crystal will be arranged periodically in three dimensions and
that this arrangement of atoms will exhibit many of the properties of a Bravais lat-
tice, in particular many of its symmetry elements.

The features associated with each lattice point are termed the basis of the lattice,
and this applies to one- and two-dimensional lattices as well as three-dimensional
crystal structures. Figure 16 shows three different bases for a one-dimensional lat-
tice; the vertical dashed lines mark the end of the unit cells. The basis for lattice (b)
is a single dot-dash, with the dot to the right of the dash, that for (c) is a dash-dot
dot-dash combination and that for (d) is a dash-dot dash-dot combination.The sym-
metry in Fig. 16(c) can be represented by mirrors (solid vertical lines in the figure)
or by 2-fold rotation axes perpendicular to the page. Note that the mirror at “O”
(or the 2-fold axis at “O” in the alternate version) acts throughout the entire one-
dimensional space: the features at A and B appear at A’ and B’.

The term space group defines the entire spatial arrangement of a crystal system,
that is, translation (i.e., the vectors which define the size and shape of the unit cell)
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FCCBCC

Figure 17 Structures of some common metals.
Body-centered cubic: �-Fe, Cr, Mo, V, etc.: face-
centered cubic: �-Fe, Cu, Pb, Ni, etc.

combined with the symmetry elements acting through a point (i.e., the point group)
specify the space group. There are two point groups and two space groups for one-
dimensional lattices, 17 space groups in two-dimensions and 230 unique space
groups in three-dimensions. Thus, the combination of symmetry elements with dif-
ferent lattice types (not all symmetry element combinations nor lattice types have
been covered here, see [G.3-G.6] for more details) dictate that three-dimensional
crystals cannot have any atomic arrangement, only one of the 230 possibilities cat-
aloged in Volume A of the International Tables for Crystallography [G.1]. Instead,
different crystals have different bases ranging from single atoms to thousands or
millions of atoms.

The simplest crystals imaginable are those formed by placing atoms of the same
kind on the points of a Bravais lattice. Not all such crystals exist but many metals
crystallize in this simple fashion, and Fig. 17 shows two common metal structures
based on the body-centered cubic (BCC) and face-centered cubic (FCC) lattices.
The former has two atoms per unit cell and the latter four.

The next degree of complexity is encountered when two or more atoms of the
same kind are “associated with” each point of a Bravais lattice, as exemplified by
the hexagonal close-packed (HCP) structure common to many metals. This struc-
ture is simple hexagonal and is illustrated in Fig. 18. There are two atoms per unit
cell, as shown in (a), one at 0 0 0 and the other at (or at , which is an equiv-
alent position). Figure 18(b) shows the same structure with the origin of the unit cell
shifted so that the point 1 0 0 in the new cell is midway between the atoms at 100
and in (a), the nine atoms shown in (a) corresponding to the nine atoms marked
with an X in (b). The “association” of pairs of atoms with the points of a simple
hexagonal Bravais lattice is suggested by the dashed lines in (b). Note, however,
that the atoms of a close-packed hexagonal structure do not themselves form a
point lattice, the surroundings of an atom at 000 being different from those of an
atom at . Figure 18 (c) shows still another representation of the HCP structure:
the three atoms in the interior of the hexagonal prism are directly above the cen-
ters of alternate triangles in the base and, if repeated through space by the vectors
a1 and a2, would also form a hexagonal array just like the atoms in the layers above
and below.

The HCP structure is so called because it is one of the two ways in which spheres
can be packed together in space with the greatest possible density and still have a
periodic arrangement. Such an arrangement of spheres in contact is shown in Fig.
18(d) and appears to have first been noted by Kepler [5], who is better known for
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(c) (d)

(a) (b)

c

a1

a2

120˚

Figure 18 The hexagonal close-packed structure, shared by Zn, Mg, Be, �Ti, etc.

his work in astronomy. If these spheres are regarded as atoms, then the resulting
picture of an HCP metal is much closer to physical reality than is the relatively open
structure suggested by the drawing of Fig. 18(c), and this is true, generally, of all
crystals. On the other hand, it may be shown that the ratio of c to a in an HCP struc-
ture formed of spheres in contact is 1.633 whereas the c/a ratio of metals having this
structure varies from about 1.58 (Be) to 1.89 (Cd). As there is no reason to suppose
that the atoms in these crystals are not in contact, it follows that they must be ellip-
soidal in shape rather than spherical.

The FCC structure is an equally close-packed arrangement. Its relation to the
HCP structure is not immediately obvious, but Fig. 19 shows that the atoms on the
(111) planes of the FCC structure are arranged in a hexagonal pattern just like the
atoms on the (0002) planes of the HCP structure. The only difference between the
two structures is the way in which these hexagonal sheets of atoms are arranged
above one another. In an HCP metal, the atoms in the second layer are above the
hollows in the first layer and the atoms in the third layer are above the atoms in the
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Figure 19 Comparison of FCC and HCP structures. The black atoms in the FCC drawing delineate half
a hexagon, which is completed on the same plane extended into the next unit cell below (not shown).

first layer, so that the layer stacking sequence can be summarized as
. The first two atom layers of an FCC metal are put down in the

same way, but the atoms of the third layer are so placed in the hollows of the sec-
ond layer that not until the fourth layer does a position repeat. FCC stacking there-
fore has the sequence . These stacking schemes are indicated in
the plan views shown in Fig. 19.

Another example of the “association” of more than one atom with each point of
a Bravais lattice is given by uranium. The structure of the form stable at room tem-
perature, -uranium, is illustrated in Fig. 20 by plan and elevation drawings. In such
drawings, the height, of an atom (expressed as a fraction of the axial length) above
the plane of the drawing (which includes the origin of the unit cell and two of the
cell axes) is given by the numbers marked on each atom.The Bravais lattice is base-
centered orthorhombic, centered on the C face, and Fig. 20 shows how the atoms
occur in pairs through the structure, each pair associated with a lattice point. There
are four atoms per unit cell, located at , , , and . Here is an1

2 1
1
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1
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Figure 20 The structure of �-uranium, after

example of a variable parameter y in the atomic coordinates. Crystals often contain
such variable parameters, which may have any fractional value without destroying
any of the symmetry elements of the structure. A quite different substance might
have exactly the same structure as uranium except for slightly different values of a,
b, c, and y. For uranium y is 0.105 ± 0.005.

Turning to the crystal structure of compounds of unlike atoms, structures are
built on the skeleton of a Bravais lattice but that certain other rules must be
obeyed, precisely because there are unlike atoms present. Consider, for example, a
crystal of AxBy which might be an ordinary chemical compound, an intermediate
phase of relatively fixed composition in some alloy system, or an ordered solid solu-
tion. Then the arrangement of atoms in AxBy must satisfy the following conditions:

1. Body-, face-, or base-centering translations, if present, must begin and end
on atoms of the same kind. For example, if the structure is based on a body-
centered Bravais lattice, then it must be possible to go from an A atom, say,
to another A atom by the translation 

2. The set of A atoms in the crystal and the set of B atoms must separately
possess the same symmetry elements as the crystal as a whole, since in fact
they make up the crystal. In particular, the operation of any symmetry ele-
ment present must bring a given atom, A for example, into coincidence
with another atom of the same kind, namely A.

Consider the structures of a few common crystals in light of the above require-
ments. Figure 21 illustrates the unit cells of two ionic compounds, CsCl and NaCl.
These structures, both cubic, are common to many other crystals and, wherever they
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(b) NaCl(a) CsCl

Na�

Cl�
Cs�
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a3

a1a1

a3

Figure 21 The structures of (a) CsCl (common to CsBr, NiAl, ordered �-brass, ordered CuPd, etc.) and
(b) NaCl (common to KCl, CaSe, PbTe, etc.).

occur, are referred to as the “CsCl structure” and the “NaCl structure.” In consid-
ering a crystal structure, one of the most important things to determine is its Bravais
lattice, since that is the basic framework on which the crystal is built and because it
has a profound effect on the way in which that crystal diffracts x-rays.

What is the Bravais lattice of CsCl? Figure 21 (a) shows that the unit cell con-
tains two atoms, ions really, since this compound is completely ionized even in the
solid state: a cesium ion at 000 and a chlorine ion at . The Bravais lattice is obvi-
ously not face-centered, but the body-centering translation connects two atoms.
However, these are unlike atoms and the lattice is therefore not body-centered. It
is, by elimination, simple cubic. If one wishes, one may think of both ions, the cesium
at 000 and the chlorine at , as being associated with the lattice point at 0 0 0. It
is not possible, however, to associate any one cesium ion with any particular chlo-
rine ion and refer to them as a CsCl molecule; the term “molecule” therefore has
no real physical significance in such a crystal, and the same is true of most inorganic
compounds and alloys.

Close inspection of Fig. 21(b) will show that the unit cell of NaCl contains 8 ions,
located as follows:

The sodium ions are clearly face-centered, and the face-centering translations [000]
and , when applied to the chlorine ion at , will reproduce all the chlorine-1
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a3

a2

a1

C

(a) Diamond (b) Zinc blend

S

A

B

Zn

Figure 22 The structures of (a) diamond (common to Si, Ge, and gray Sn) and (b) the zinc-blende form
of ZnS (common to HgS, CuI, AlSb, BeSe, etc.).

ion positions. The Bravais lattice of NaCl is therefore face-centered cubic. The ion
positions, incidentally, may be written in summary form as:

Note also that in these, as in all other structures, the operation of any symmetry
element possessed by the lattice must bring similar atoms or ions into coincidence.
For example, in Fig. 21(b), rotation about the 4-fold [010] rotation axis shown
brings the chlorine ion at into coincidence with the chlorine ion at , the
sodium ion at 0 1 1 with the sodium ion at 1 1 1, etc

Elements and compounds often have closely similar structures. Figure 22 shows
the unit cells of diamond and the zinc-blende form of ZnS. Both are face-centered
cubic. Diamond has 8 atoms per unit cell, located at

In other words, a “molecule” of two atoms is associated with each of the face-cen-
tered lattice points. The atom positions in zinc blende are identical with these, but
the first set of positions is now occupied by one kind of atom (S) and the other by
a different kind (Zn).

Note that diamond and a metal like copper have quite dissimilar structures,
although both are based on a face-centered cubic Bravais lattice. To distinguish
between these two, the terms “diamond cubic” and “face-centered cubic” are usu-
ally used. The industrially important semiconductor, silicon has the diamond cubic
structure.

Instead of referring to a structure by name, such as the “NaCl structure,” one can
use the designations introduced years ago in Strukturbericht [G.8]. These consist of
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a letter and a number: the letter A indicates an element, B an AB compound, C an
AB2 compound, etc.The structure of copper, for example, is called the A1 structure,

is A2, zinc is A3, diamond is A4, NaCl is B1, etc. A full list is given by Pearson
[G.9, Vol. 1, p. 85].

Some rather complex crystals can be built on a cubic lattice. For example, the fer-
rites, which are magnetic and are used in recording tapes, computer floppy disks
and in hard drives, have the formula , where M is a divalent metal ion
like Mn, Ni, Fe, Co, etc. Their structure is related to that of the mineral spinel. The
Bravais lattice of the ferrites is face-centered cubic, and the unit cell contains 8
“molecules” or a total of . There are therefore 56/4 or 14 ions asso-
ciated with each lattice point.

The number of atoms per unit cell in any crystal is partially dependent on its
Bravais lattice. For example, the number of atoms per unit cell in a crystal based on
a body-centered lattice must be a multiple of 2, since there must be, for any atom in
the cell, a corresponding atom of the same kind at a translation of from the first.
The number of atoms per cell in a base-centered lattice must also be a multiple of
2, as a result of the base-centering translations. Similarly, the number of atoms per
cell in a face-centered lattice must be a multiple of 4.

The reverse of these propositions is not true. It would be a mistake to assume,
for example, that if the number of atoms per cell is a multiple of 4, then the lattice
is necessarily face-centered.The unit cell of the intermediate phase AuBe, for exam-
ple (Fig. 23), contains 8 atoms and yet it is based on a simple cubic Bravais lattice.
The atoms are located as follows:

4 Au at

4 Be at

where u = 0.100 and w = 0.406, each ±0.005. If the parameter u is put equal to zero,
the atomic coordinates of the gold atoms become those of a face-centered cubic
cell. The structure of AuBe may therefore be regarded as distorted face-centered
cubic, in which the presence of the beryllium atoms has forced the gold atoms out
of their original positions by a distance ±u, ±u, ±u. These translations are all in
directions of the form <111>, i.e., parallel to body diagonals of the cube, and are
shown as dotted lines in Fig. 23. The three-fold axes characteristic of cubic Bravais
lattices remain, but four-fold axes are not present due to the distortion. Thus, this
structure is an example of a cubic crystal system without set of three perpendicular
four-fold axes.

It should now be apparent that the term “simple,” when applied to a Bravais lat-
tice, is used in a very special, technical sense and that some very complex structures
can be built up on a “simple” lattice. In fact, they may contain more than a hundred
atoms per unit cell. The only workable definition of a simple lattice is a negative

w   w   w,   112 � w2 112 � w2w,  w112 � w2 112 � w2,   112 � w2w112 � w2,

u u u, 112 � u2 112 � u2u,  u112 � u2 112 � u2, 112 � u2u112 � u2,
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a3

a2

a1 Au

Be

Figure 23 The structure of AuBe, shared by FeSi, NiSi, CoSi, MnSi, etc. It is known as the FeSi structure
[7].

one: a given lattice is simple if it is neither body-, base-, nor face-centered; these lat-
ter possibilities can be ruled out by showing that the set of atomic positions does
not contain the body-, base-, or face-centering translations. There is no rule gov-
erning the allowable number of atoms per cell in a simple lattice: this number may
take on any one of the values 1, 2, 3, 4, 5, etc., although not in every crystal system
and not every higher integer is permitted. Incidentally, not every theoretical possi-
bility known to mathematical crystallography is realized in nature; for example, no
known element crystallizes with a simple hexagonal lattice containing one atom per
unit cell.

There is another way of arranging unlike atoms on a point lattice besides those
considered so far and that is exemplified by the structure of solid solutions. These
solutions are of two types, substitutional and interstitial; in the former, solute atoms
substitute for, or replace, solvent atoms on the lattice of the solvent, while in the lat-
ter, solute atoms fit into the interstices of the solvent lattice. The interesting feature
of these structures is that the solute atoms are distributed more or less at random.
For example, consider a 10 atomic percent solution of molybdenum in chromium,
which has a BCC structure. The molybdenum atoms can occupy either the corner
or body-centered positions of the cube in a random, irregular manner, and a small
portion of the crystal might have the appearance of Fig. 24(a). Five adjoining unit
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Figure 24 Structure of solid solutions: (a) Mo in Cr (substitutional); (b) C in �-Fe (interstitial).

6 Note the double meaning of the word ferrite: (1) metallurgical, for the metallic solid solution men-
tioned above, and (2) ceramic or mineralogical, for the oxide previously described.
7 Of course, when the solution becomes concentrated, there is no real distinction between “solvent” and
“solute.” There is only one lattice, with two or more kinds of atoms distributed on it.

MO � Fe2O3

cells are shown there, with a total of 29 atoms, 3 of which are molybdenum.This sec-
tion of the crystal therefore contains somewhat more than 10 atomic percent
molybdenum, but the next five cells would probably contain somewhat less. Such a
structure does not obey the ordinary rules of crystallography: for example, the
right-hand cell of the group shown does not have cubic symmetry, and one finds
throughout the structure that the translation given by one of the unit cell vectors
may begin on an atom of one kind and end on an atom of another kind.All that can
be said of this structure is that it is BCC on the average, and experimentally it dis-
plays the x-ray diffraction effects proper to a BCC lattice. This is not surprising
since the x-ray beam used to examine the crystal is so large compared to the size of
a unit cell that it observes, so to speak, millions of unit cells at the same time and so
obtains only an average “picture” of the structure.

The above remarks apply equally well to interstitial solid solutions. These form
whenever the solute atom is small enough to fit into the solvent lattice without
causing too much distortion. Ferrite, the solid solution of carbon in , is a good
example.6 In the unit cell shown in Fig. 24(b), there are two kinds of “holes” in the
lattice: one at and equivalent positions in the centers of the cube
faces and edges, and one at ) and equivalent positions. All the evi-
dence at hand points to the fact that the carbon atoms in ferrite are located in the
holes at and equivalent positions. On the average, however, no more than about
1 of these positions in 500 unit cells is occupied, since the maximum solubility of
carbon in ferrite is only about 0.1 atomic percent.

Still another type of structure worth noting is that of ordered solid solutions. As
described above, a typical substitutional solid solution has solute atoms distributed
more or less at random on the lattice points of the solvent.7 On the other hand,
there are solutions in which this is true only at elevated temperatures; when cooled
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to lower temperatures, the solute atoms take up an orderly, periodic arrangement
while still remaining on the lattice points of the solvent. The solid solution is then
said to be ordered and to possess a superlattice. The alloy AuCu3 is a classic exam-
ple: at high temperatures the copper and gold atoms are located more or less at ran-
dom on face-centered cubic lattice sites, while at low temperature the gold atoms
occupy only the cube corner positions and the copper atoms only the face-centered
positions. In its temperature range of stability then, an ordered solid solution
resembles a chemical compound, with atoms of one kind on one set of lattice sites
and atoms of a different kind on another set. But an ordered solid solution is a
“half-hearted compound” because, when heated, it disorders before it melts; a real
compound, like NaCl, remains ordered right up to the melting point.
Crystallographically, the structures of the disordered and ordered solid solutions
are quite different; disordered AuCu3 is, on the average, face-centered cubic while
the ordered form is simple cubic.

10 ATOM SIZES AND COORDINATION

When two or more unlike atoms unite to form a chemical compound, intermediate
phase, or solid solution, the kind of structure formed is dependent, in part, on the
relative sizes of the atoms involved. But what is meant by the size of an atom? To
regard an atom as something like a billiard ball with a sharply defined bounding
surface is surely an oversimplification, since electron density decreases gradually at
the “surface” of the atom and that there is a small but finite probability of finding
an electron at quite large distances from the nucleus. One, not entirely satisfactory,
way of defining atomic size lies in considering a crystal as a collection of rigid
spheres in contact. The size of an atom, then, is given by the distance of closest
approach of atom centers in a crystal of the element, and this distance can be cal-
culated from the lattice parameters.

For example, the lattice parameter a of is 2.87 Å, and in a BCC lattice the
atoms are in contact only along the diagonals of the unit cube. The diameter of an
iron atom is therefore equal to one half the length of the cube diagonal, or

Å. The following formulas give the distance of closest approach in
the three common structures:

HCP � a 1between atoms in basal plane2,

FCC �
22
2

a,

BCC �
23
2

a,

123>22a � 2.48

a—iron
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(12)

To a first approximation, the size of an atom is a constant. In other words, an iron
atom has about the same size whether it occurs in pure iron, an intermediate phase,
or a solid solution. This is a very useful fact to remember when investigating
unknown crystal structures, for it enables prediction of roughly how large a hole is
necessary in a proposed structure to accommodate a given atom. More precisely, it
is known that the size of an atom has a slight dependence on its coordination num-
ber, which is the number of nearest neighbors of the given atom and which depends
on crystal structure.The coordination number of an atom in the FCC or HCP struc-
tures is 12, in BCC 8, and diamond cubic 4. The smaller the coordination number,
the smaller the volume occupied by a given atom, and the approximate amount of
contraction to be expected with decrease in coordination number is found to be:

Change in coordination Size contraction, percent
12→8 3
12→6 3
12→4 12

This means, for example, that the diameter of an iron atom is greater if the iron is
dissolved in FCC copper than if it exists in a crystal of BCC or is dissolved
in BCC vanadium. If it were dissolved in copper, its diameter would be approxi-
mately 2.48/0.97, or 2.56 Å.

The size of an atom in a crystal also depends on whether its binding is ionic, cova-
lent, metallic, or van der Waals, and on its state of ionization. The more electrons
are removed from a neutral atom the smaller it becomes, as shown strikingly for
iron, whose atoms and ions Fe, Fe++, Fe+++ have diameters of 2.48, 1.66, and 1.34 Å,
respectively.

The spatial arrangement of atoms about a given point is often described by
words such as octahedral and tetrahedral. For example, in the NaCl structure of Fig.
21(b) the central Cl- ion at is said to be octahedrally surrounded by Na+ ions,
because the six Na+ ions in the face-centered positions lie on the corners of an octa-
hedron, a solid bounded by eight triangular sides. In the zinc blende structure of Fig.
22(b) the empty position marked A is octahedrally surrounded by sulphur atoms,
of which only four are in the cell shown, and would be referred to as an octahedral
hole in the structure. This group of atoms is shown separately in Fig. 25. In the same
structure the Zn atom at , marked B in Fig. 22(b), is surrounded by four S atoms
at the corners of a tetrahedron, a solid bounded by four triangular sides (Fig. 25).
In fact, all four of the Zn atoms in the unit cell have tetrahedral S surroundings.
Also in the ZnS structure the reader can demonstrate, by sketching three cells adja-
cent to the one shown, that the hole at A is tetrahedrally surrounded by Zn atoms.
Thus, the hole at A has both octahedral (s) and tetrahedral (Zn) surroundings, an
unusual circumstance.
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A

B
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S

Figure 25 Portion of the zinc blend
structure. Compare Figure 22(b). The
hole at A has octahedral surround-
ings. The Zn atom at B has tetrahe-
dral surroundings.

11 CRYSTAL SHAPE

The shape of crystals has been ignored thus far so that their internal structure could
be emphasized. However, the shape of crystals is, to the layman, perhaps their most
characteristic property, and nearly everyone is familiar with the beautifully devel-
oped flat faces exhibited by natural minerals or crystals artificially grown from a
supersaturated salt solution. In fact, it was with a study of these faces and the angles
between them that the science of crystallography began.

Nevertheless, the shape of crystals is really a secondary characteristic, since it
depends on, and is a consequence of, the interior arrangement of atoms. Sometimes
the external shape of a crystal is rather obviously related to its smallest building
block, the unit cell, as in the little cubic grains of ordinary table salt (NaCl has a
cubic lattice) or the six-sided prisms of natural quartz crystals (hexagonal lattice).
In many other cases, however, the crystal and its unit cell have quite different
shapes; gold, for example, has a cubic lattice, but natural gold crystals are octahe-
dral in form, i.e., bounded by eight planes of the form {111}.

An important fact about crystal faces was known long before there was any
knowledge of crystal interiors. It is expressed as the law of rational indices, which
states that the indices of naturally developed crystal faces are always composed of
small whole numbers, rarely exceeding 3 or 4. Thus, faces of the form {100}, {111},

, {210}, etc., are observed but not such faces as {510}, {719}, etc. Earlier dis-
cussion in this chapter concluded that planes of low indices have the largest density
of lattice points, and it is a law of crystal growth that such planes develop at the
expense of planes with high indices and few lattice points.

In materials work, however, crystals with well-developed faces are in the cate-
gory of things heard of but rarely seen. They occur occasionally on the free surface
of castings, in some electrodeposits, or under other conditions of no external con-
straint. Instead, a crystal is most usually a “grain,” seen through a microscope in the
company of many other grains on a polished section. If an isolated single crystal is
encountered it will have been artificially grown either from the melt, and thus have
the shape of the crucible in which it solidified, or by recrystallization, and thus have
the shape of the starting material, whether sheet, rod, or wire.

511006
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The shapes of the grains in a polycrystalline mass are the result of several kinds
of forces, all of which are strong enough to counteract the natural tendency of each
grain to grow with well-developed flat faces. The result is a grain roughly polygonal
in shape with no obvious aspect of crystallinity. Nevertheless, that grain is a crystal
and just as “crystalline” as, for example, a well-developed prism of natural quartz,
since the essence of crystallinity is a periodicity of inner atomic arrangement and
not any regularity of outward form.

12 CRYSTAL DEFECTS

There are a number of types of imperfections in the periodic structure of the indi-
vidual grains of crystalline solids. These crystallographic defects are broadly classi-
fied as point, line and planar defects and can have important consequences in the
mechanical, electrical, optical, etc. properties of a material. A large part of materi-
als science and engineering concerns itself with the control and/or characterization
of the different defects. Point defects such as substitutional or interstitial impurities
were briefly discussed in Sec. 10. Edge and screw dislocations and dislocations with
character intermediate between the two are linear defects in the periodic array of
atoms within a crystal. In metals, multiplication and motion of dislocations occur at
relatively low stress, and the relatively easy plastic deformation and high ductility
of metals is the product of this. Large strains and very high dislocation densities can
be introduced by operations such as forging, rolling, machining, shot peening or ball
milling. There are a variety of planar defects including stacking faults and twins;
these are described below.

In Sec. 9 the stacking sequence of close packed planes of the fcc and hcp struc-
tures was discussed. Stacking faults occur when the normal stacking sequence
is interrupted. In the fcc structure, the normal stacking sequence

can become or ,
for example, by the removal of a C-layer or a B-layer, respectively. The asterisk in
the previous sentence is used to indicate the position of the stacking fault. In
the hcp system, the stacking sequence can become

Faults producing AA, BB or CC neighboring layers have
a very high energy of formation, would require extraordinary circumstances to
appear and would probably rapidly split into a set of closely-spaced, lower energy
faults. In writing sequences such as those shown above, each letter represents a
layer of atoms. Each layer extends to the end of the fault, and such planar faults
must extend to the edge of the crystal or grain or must terminate at one or more
dislocations [8, 9].

Some crystals have two parts symmetrically related to one another. These, called
twinned crystals, are fairly common both in minerals and in metals and alloys. For
a detailed discussion of twinning, see Barrett and Massalski [G.10].

The relationship between the two parts of a twinned crystal is described by the
symmetry operation which will bring one part into coincidence with the other or

p ABABA*CBCBCB p

p ABABABAB p

p ABCA*CABCA pp ABCAB*ABC pp ABCABCABC p
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Figure 26 Twinned grains: (a) and (b) FCC annealing twins; (c) HCP deformation twin.

Geometry of Crystals

with an extension of the other. Two main kinds of twinning are distinguished,
depending on whether the symmetry operation is 180° rotation about an axis, called
the twin axis, or reflection across a plane, called the twin plane. The plane on which
the two parts of a twinned crystal are united is called the composition plane. In the
case of a reflection twin, the composition plane may or may not coincide with the
twin plane.

Of most interest to those who deal mainly with FCC, BCC, and HCP structures,
are the following kinds of twins:

1. Annealing twins, such as occur in FCC metals and alloys (Cu, Ni,
Al, etc.), which have been cold-worked and then annealed to cause recrys-
tallization.

2. Deformation twins, such as occur in deformed HCP metals (Zn, Mg, Be,
etc.) and BCC metals ( , W, etc.).

Annealing Twins

Annealing twins in FCC metals are rotation twins, in which the two parts are
related by a 180° rotation about a twin axis of the form <111>. Because of the high
symmetry of the cubic lattice, this orientation relationship is also given by a 60°
rotation about the twin axis or by reflection across the {111} plane normal to the
twin axis. In other words, FCC annealing twins may also be classified as reflection
twins. The twin plane is also the composition plane.

Occasionally, annealing twins appear under the microscope as in
Fig. 26(a), with one part of a grain (B) twinned with respect to the other part (A).
The two parts are in contact on the composition plane (111) which makes a straight-
line trace on the plane of polish. More common, however, is the kind shown in Fig.
26(b).The grain shown consists of three parts: two parts (A1 and A2) of identical ori-
entation separated by a third part (B) which is twinned with respect to A1 and A2.
B is known as a twin band.

Figure 27 illustrates the structure of an FCC twin band. The plane of the main
drawing is , the (111) twin plane is perpendicular to this plane, and the [111]11102

a—Fe

a—brass,
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twin axis lies in it. Open circles represent atoms in the plane of the drawing and
filled circles those in the layers immediately above or below. The reflection sym-
metry across the twin plane is suggested by the dashed lines connecting several
pairs of atoms.

The statement that a rotation twin of this kind is related to the parent crystal by
a 180° rotation about the twin axis is merely an expression of the orientation rela-
tionship between the two and is not meant to suggest that a twin is formed by a
physical rotation of one part of the crystal with respect to another. Actually, FCC
annealing twins are formed by a change in the normal growth mechanism. Suppose
that, during normal grain growth following recrystallization, a grain boundary is
roughly parallel to (111) and is advancing in a direction approximately normal to
this boundary, namely [111]. To say that the boundary is advancing is to say that
atoms are leaving the lattice of the consumed grain and joining that of the growing
grain. The grain is therefore growing by the addition of layers of atoms parallel to
(111), and these layers are piled up in the sequence in an FCC crys-
tal. If, however, a mistake should occur and this sequence become altered to

, the crystal so formed would still be FCC but it would be a twin of
the former. If a similar mistake occurred later, a crystal of the original orientation
would start growing and a twin band would be formed. With this symbolism, a twin
band appears as follows:

In this terminology, the symbols themselves are imaged in the mirror C, the twin
plane. At the left of Fig. 27 the positional symbols A, B, C are attached to various
(111) planes to show the change in stacking which occurs at the boundaries of the
twin band. Parenthetically, it should be remarked that twin bands visible under the
light microscope are thousands of times thicker than the one shown in this drawing.

There is still another way of describing the orientation relationship between an
FCC crystal and its twin: the (111) layers of the twin are in positions which would
result from homogeneous shear in a direction, each layer moving by an
amount proportional to its distance from the twin plane. In Fig. 27, this shear is indi-
cated by the arrows going from initial positions D, E, F to final positions in the twin.
Although it has been frequently suggested that such twins are formed by deforma-
tion, it is generally held that annealing twins are the result of the growth process
described above. Nevertheless, this hypothetical shear is sometimes a useful way of
describing the orientation relationship between a crystal and its twin.

3112 4

¡        0      ·      0       —

 crystal       0       band       0       crystal 
 parent       0        twin       0        parent

A B C A B C B A C B A C A B C A B C

CBACBA p
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Figure 27. Twin band in FCC lat-
tice. Plane of main drawing is ( ).110

Deformation Twins

Deformation twins are found in both BCC and HCP lattices and are all that their
name implies, since, in both cases, the cause of twinning is deformation. In each
case, the orientation relationship between parent crystal and twin is that of reflec-
tion across a plane.
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In BCC structures, the twin plane is (112) and the twinning shear is in the direc-
tion . The only common example of such twins is in (ferrite) deformed
by impact, where they occur as extremely narrow twin bands called Neumann
bands. It should be noted that, in cubic lattices, both {112} and {111} reflection twin-
ning produce the same orientation relationship; however, they differ in the inter-
atomic distances produced, and an FCC lattice can twin by reflection on {111} with
less distortion than on {112}, while for the same reason {112} is the preferred plane
for BCC lattices.

In HCP metals, the twin plane is normally . The twinning shear is not well
understood; in a gross sense, it takes place in the direction for metals with c/a
ratios less than  (Be, Ti, Mg) and in the reverse direction for metals with
c/a larger than (Zn, Cd), but the direction of motion of individual atoms during
shear is not definitely known. Figure 26(c) illustrates the usual form of a twin band
in HCP metals, and it will be noted that the composition “plane,” although proba-
bly parallel or nearly parallel to the twin plane, is not quite flat but often exhibits
appreciable curvature.

General

Twins, in general, can form on different planes in the same crystal. For example,
there are four {111} planes of different orientation on which twinning can take
place in an FCC crystal. Accordingly, in the microstructure of recrystallized copper,
for example, one often sees twin bands running in more than one direction in the
same grain.

A crystal may also twin repeatedly, producing several new orientations. If crys-
tal A twins to form B, which twins to form C, etc., then B, C, etc., are said to be first-
order, second-order, etc., twins of the parent crystal A. Not all these orientations are
new. In Fig. 26(b), for example, B may be regarded as the first-order twin of A1, and
A2 as the first-order twin of B. A2 is therefore the second-order twin of A1 but has
the same orientation as A1.

23
3211 423

3211 4
110122

a—iron3111 4

13 THE STEREOGRAPHIC PROJECTION

Crystal drawings made in perspective or in the form of plan and elevation have
their uses but are not suitable for displaying the angular relationship between lat-
tice planes and directions. These angular relationships are often more interesting
than any other aspect of the crystal, and a kind of drawing is needed on which the
angles between planes can be accurately measured and which will permit graphical
solution of problems involving such angles. The stereographic projection [10] fills
this need. For details not given below, see Barrett and Massalski [G.10] and McKie
and McKie [G.3].

The orientation of any plane in a crystal can be represented just as well by the
inclination of the normal to that plane relative to some reference plane as by the
inclination of the plane itself. All the planes in a crystal can thus be represented by
a set of plane normals radiating from some one point within the crystal. If a refer-
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Figure 29 Angle between two planes.

ence sphere is now described about this point, the plane normals will intersect the
surface of the sphere in a set of points called poles. This procedure is illustrated in
Fig. 28, which is restricted to the {100} planes of a cubic crystal. The pole of a plane
represents, by its position on the sphere, the orientation of that plane.

A plane may also be represented by the trace the extended plane makes in the
surface of the sphere, as illustrated in Fig. 29, where the trace ABCDA represents
the plane whose pole is P1.This trace is a great circle, i.e., a circle of maximum diam-
eter, if the plane passes through the center of the sphere. A plane not passing
through the center will intersect the sphere in a small circle. On a ruled globe, for
example, the longitude lines (meridians) are great circles, while the latitude lines,
except the equator, are small circles.

The angle between two planes is evidently equal to the angle between their
great circles or to the angle between their normals (Fig. 29). But this angle, in
degrees, can also be measured on the surface of the sphere along the great circle
KLMNK connecting the poles P1 and P2 of the two planes, if this circle has been
divided into 360 equal parts. The measurement of an angle has thus been trans-
ferred from the planes themselves to the surface of the reference sphere.

a
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Figure 30 The stereographic pro-
jection 

Measuring angles on a flat sheet of paper rather than on the surface of a sphere,
requires the same sort of transformation as used by the geographer who wants to
transfer a map of the world from a globe to a page of an atlas. Of the many known
kinds of projections, a map-maker usually chooses a more or less equal-area pro-
jection so that countries of equal area will be represented by equal areas on the
map. In crystallography, however, an equiangular stereographic projection is most
useful since it preserves angular relationships faithfully although distorting areas. It
is made by placing a plane of projection normal to the end of any chosen diameter
of the sphere and using the other end of that diameter as the point of projection. In
Fig. 30 the projection plane is normal to the diameter AB, and the projection is
made from the point B. If a plane has its pole at P, then the stereographic projec-
tion of P is at P´, obtained by drawing the line BP and extending it until it meets
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the projection plane. Alternately stated, the stereographic projection of the pole P
is the shadow cast by P on the projection plane when a light source is placed at B.
The observer, incidentally, views the projection from the side opposite the light
source.

The plane NESW is normal to AB and passes through the center C. It therefore
cuts the sphere in half and its trace in the sphere is a great circle. This great circle
projects to form the basic circle N´E´S´W´ on the projection, and all poles on the
left-hand hemisphere will project within this basic circle. Poles on the right-hand
hemisphere in Fig. 30 will project outside this basic circle, and those near B will
have projections lying at very large distances from the center. In order to plot such
poles, the point of projection must move to A and the projection plane to B; minus
signs designate the new set of points while plus signs identify, the previous set (pro-
jected from B). Note that movement of the projection plane along AB or its exten-
sion merely alters the magnification; this plane is usually tangent to the sphere, as
illustrated, but it can pass through the center of the sphere, for example, in which
case the basic circle becomes identical with the great circle NESW.

A lattice plane in a crystal is several steps removed from its stereographic pro-
jection, and it may be worth-while at this stage to summarize these steps:

1. The plane C is represented by its normal CP.
2. The normal CP is represented by its pole P, which is its intersection with

the reference sphere.
3. The pole P is represented by its stereographic projection P´.

After gaining some familiarity with the stereographic projection, the student will
be able mentally to omit these intermediate steps and will then refer to the pro-
jected point P´ as the pole of the plane C or, even more directly, as the plane C itself.

Great circles on the reference sphere project as circular arcs on the projection or,
if they pass through the points A and B (Fig. 31), as straight lines through the cen-
ter of the projection. Projected great circles always cut the basic circle in diametri-
cally opposite points, since the locus of a great circle on the sphere is a set of dia-
metrically opposite points. Thus the great circle ANBS in Fig. 31 projects as the
straight line N´S´ and AWBE as W´E´; the great circle NGSH, which is inclined to
the plane of projection, projects as the circle are N´G´S´. If the half great circle W
AE is divided into 18 equal parts and these points of division projected on W´ AE´,
a graduated scale, at 10° intervals, is produced on the equator of the basic circle.

Small circles on the sphere also project as circles, but their projected center does
not coincide with their center on the projection. For example, the circle AJEK
whose center P lies on AEBW projects as AJ´E´K´. Its center on the projection is at
C, located at equal distances from A and E´, but its projected center is at P´, located
an equal number of degrees (45° in this case) from A and E´.

The device most useful in solving problems involving the stereographic projec-
tion is the Wulff net (named after its popularizer) [11] shown in Fig. 32. It is the 
projection of a sphere ruled with parallels of latitude and longitude on a plane par-
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Figure 31 Stereographic projection of great and small circles.

allel to the north-south axis of the sphere.The latitude lines on a Wulff net are small
circles extending from side to side and the longitude lines (meridians) are great cir-
cles connecting the north and south poles of the net.These nets are available in var-
ious sizes and can be plotted readily from equations available elsewhere [G.16], one
of 18-cm diameter giving an accuracy of about one degree, which is satisfactory for
most problems; to obtain greater precision, either a larger net or mathematical cal-
culation must be used. Wulff nets are used by making the stereographic projection
on tracing paper and with the basic circle of the same diameter as that of the Wulff
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Figure 32 Wulff net drawn to 2° intervals.

Geometry of Crystals

net; the projection is then superimposed on the Wulff net, with the centers always
coinciding.

Drawing the stereographic projection on tracing paper is not only more eco-
nomical than drawing it directly on a Wulff net, but it also allows differentiation
between the frame of reference of the crystal (represented by the stereographic
projection on the paper) and the frame of reference of the laboratory, i.e., of the
equipment on which the crystal is positioned for various measurements (the Wulff
net). The sample and laboratory reference frames are not identical and both are
needed. The sample may be mounted in a number of orientations on the equip-
ment, and it may be necessary to realign the sample relative to the apparatus, e.g.
with <001> in different orientations relative to vertical and to the incident beam
direction S0.

75
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



8 Here the planes are represented by their normals, as was discussed above.

To return to the problem of the measuring the angle between two crystal planes,
Fig. 29 showed that this angle could be measured on the surface of the sphere along
the great circle connecting the poles of the two planes. This measurement can also
be carried out on the stereographic projection if, and only if, the projected poles lie
on a great circle. In Fig. 33, for example, the angle between the planes8 A and B or
C and D can be measured directly, simply by counting the number of degrees sep-
arating them along the great circle on which they lie. Note that the angle C-D
equals the angle E-F, there being the same difference in latitude between C and D
as between E and F.

If the two poles do not lie on a great circle, then the projection is rotated relative
to the Wulff net until they do lie on a great circle, where the desired angle meas-
urement can then be made. Figure 34(a) is a projection of the two poles P1 and P2
shown in perspective in Fig. 29, and the angle between them is found by the rota-
tion illustrated in Fig. 34(b). This rotation of the projection is equivalent to rotation
of the poles on latitude circles of a sphere whose north-south axis is perpendicular
to the projection plane.

As shown in Fig. 29, a plane may be represented by its trace in the reference
sphere. This trace becomes a great circle in the stereographic projection. Since
every point on this great circle is 90° from the pole of the plane, the great circle may
be found by rotating the projection until the pole falls on the equator of the under-
lying Wulff net and tracing that meridian which cuts the equator 90° from the pole,
as illustrated in Fig. 35. If this is done for two poles, as in Fig. 36, the angle between
the corresponding planes may also be found from the angle of intersection of the
two great circles corresponding to these poles; it is in this sense that the stereo-
graphic projection is said to be angle-true.This method of angle measurement is not
as accurate, however, as that shown in Fig. 34(b).

Often poles must be rotated around various axes. Rotation about an axis normal
to the projection is accomplished simply by rotation of the projection around the
center of the Wulff net. Rotation about an axis lying in the plane of the projection
is performed by, first, rotating the axis about the center of the Wulff net until it coin-
cides with the north-south axis if it does not already do so, and, second, moving the
poles involved along their respective latitude circles the required number of
degrees. Suppose it is required to rotate the poles A1 and B1 shown in Fig. 37 by 60°
about the NS axis, the direction of motion being from W to E on the projection.
Then A1 moves to A2 along its latitude circle as shown. B1, however, can rotate only
40° before reaching the edge of the projection; then it moves 20° in from the edge
to the point B´1 on the other side of the projection, staying always on its own lati-
tude circle. The final position of this pole on the positive side of the projection is at
B2 diametrically opposite B´1.

(The student should carefully note that the angle between A1 and A2, for exam-
ple, in Fig. 37 is not 60°. The pole A2 is the position of A1 after a 60° rotation about
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Figure 33 Stereographic projection
superimposed on Wulff net for
measurement of angle between
poles. For illustrative purposes this
net is graduated at 10° intervals..

NS, which is not the same thing. Consider the two great circles NA1S and NA2S;
these are the traces of two planes between which there is a true dihedral angle of
60°. Any pole initially on NA1S will be on NA2S after a 60° rotation about NS, but
the angle between the initial and final positions of the poles will be less than 60°,
unless they lie on the equator, and will approach zero as the poles approach N.)

Rotation about an axis inclined to the plane of projection is accomplished by
compounding rotations about axes lying in and perpendicular to the projection
plane. In this case, the given axis must first be rotated into coincidence with one or
the other of the two latter axes, the given rotation performed, and the axis then
rotated back to its original position. Any movement of the given axis must be
accompanied by a similar movement of all the poles on the projection.

For example, suppose A must be rotated about B1 by 40° in a clockwise direction
(Fig. 38). In (a) the pole to be rotated A1 and the rotation axis B1 are shown in their
initial position. In (b) the projection has been rotated to bring B1 to the equator of
a Wulff net. A rotation of 48° about the NS axis of the net brings B1 to the point B2
at the center of the net; at the same time A1 must go to A2 along a parallel of lati-
tude. The rotation axis is now perpendicular to the projection plane, and the
required rotation of 40° brings A2 to A3 along a circular path centered on B2. The
operations which brought B1 to B2 must now be reversed in order to return B2 to
its original position. Accordingly, B2 is brought to B3 and A3 to A4, by a 48° reverse
rotation about the NS axis of the net. In (c) the projection has been rotated back to
its initial position, construction lines have been omitted, and only the initial and
final positions of the rotated pole are shown. During its rotation about B1, A1 moves
along the small circle shown. This circle is centered at C on the projection and not
at its projected center B1. To find C, use the fact that all points on the circle must lie
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Figure 34 (a) Stereographic projection of poles P1 and P2 of Fig. 29. (b) Rotation of projection to put
poles on same great circle of Wulff net. Angle between poles = 30°.
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Figure 35 Method of finding the trace of a pole (the pole P´2 in Fig. 34).
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Figure 36 Measurement of an angle
between two poles (P1 and P2 of
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angle of intersection of the corre-
sponding traces.
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Figure 37 Rotation of poles about
NS axis of projection.

at equal angular distances from B1; in this case, measurement on a Wulff net shows
that both A1 and A4 are 76° from B1. Accordingly, locate other points, such as D,
which are 76° from B1, and, knowing three points on the required circle, its center
C can be found by the methods of plane geometry.

In dealing with problems of crystal orientation a standard projection is of very
great value, since it shows at a glance the relative orientation of all the important
planes in the crystal. Such a projection is made by selecting some important crystal
plane of low indices as the plane of projection [e.g., (100), (110), (111), or (0001)]
and projecting the poles of various crystal planes onto the selected plane. The con-
struction of a standard projection of a crystal requires a knowledge of the interpla-
nar angles for all the principal planes of the crystal. A set of values applicable to all
crystals in the cubic system is given in Table 4[TR 4]], but those for crystals of other
systems depend on the particular axial ratios involved and must be calculated for
each case by the equations given in Appendix: Lattice Geometry. A simple spread-
sheet program suffices if interplanar angles are needed beyond those listed in Table
4 (for cubic crystals). Much time can be saved in making standard projections by
making use of the zonal relation: the normals to all planes belonging to one zone
are coplanar and at right angles to the zone axis. Consequently, the poles of planes
of a zone will all lie on the same great circle on the projection, and  the axis of the
zone will be at 90° from this great circle. Furthermore, important planes usually
belong to more than one zone and their poles are therefore located at the intersec-
tion of zone circles. It is also helpful to remember that important directions, which
in the cubic system are normal to planes of the same indices, are usually the axes of
important zones.

Figure 39(a) shows the principal poles of a cubic crystal projected on the (001)
plane of the crystal or, in other words, a standard (001) projection. The location of
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Figure 39 Standard projections of cubic crystals, (a) on (001) and (b) on (011).

the {100} cube poles follows immediately from Fig. 28. To locate the {110} poles first
note from Table 4 that they must lie at 45° from {100} poles, which are themselves
90° apart. In this way (011) is found for example, on the great circle joining (001)
and (010) and at 45° from each. After all the {110} poles are plotted, the {111} poles
are found at the intersection of zone circles. Inspection of a crystal model or draw-
ing or use of the zone relation given by Eq. (6) will show that (111), for example,
belongs to both the zone and the zone . The pole of (111) is thus located
at the intersection of the zone circle through , (101), and (010) and the zone
circle through , (011), and (100). This location may be checked by measure-
ment of its angular distance from (010) or (100), which should be 54.7°. The (011)
standard projection shown in Fig. 39(b) is plotted in the same manner.
Alternatively, it may be constructed by rotating all the poles in the (001) projection
45° to the left about the NS axis of the projection, since this operation will bring the
(011) pole to the center. In both of these projections symmetry symbols have been
given each pole in conformity with Fig. 8(b), and it will be noted that the projection
itself has the symmetry of the axis perpendicular to its plane, Figs. 39(a) and (b)
having 4-fold and 2-fold symmetry, respectively.

Figure 40 is a standard (001) projection of a cubic crystal with considerably more
detail and a few important zones indicated. A standard (0001) projection of a
hexagonal crystal (zinc) is given in Fig. 41.

It is sometimes necessary to determine the Miller indices of a given pole on a
crystal projection, for example the pole A in Fig. 42(a), which applies to a cubic
crystal. If a detailed standard projection is available, the projection with the
unknown pole can be superimposed on it and its indices will be disclosed by its
coincidence with one of the known poles on the standard.Alternatively, the method
illustrated in Fig. 42 may be used. The pole A defines a direction in space, normal
to the plane (hkl) whose indices are required, and this direction makes angles

1100 2
1010 2
3011 43101 4
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Figure 40 Standard (001) projection of a cubic crystal, after Barrett.

with the coordinate axes a, b, c. These angles are measured on the projection
as shown in (a). Let the perpendicular distance between the origin and the (hkl)
plane nearest the origin be d [Fig. 42(b)], and let the direction cosines of the line A
be p, q r. Therefore

(13)

For the cubic system the simple result is that the Miller indices required are in the
same ratio as the direction cosines.

The lattice reorientation caused by twinning can be shown clearly on the stereo-
graphic projection. In Fig. 43 the open symbols are the {100} poles of a cubic crys-
tal projected on the (001) plane. If this crystal is FCC, then one of its possible twin

h:k:l � pa:qb:rc.

p � cos r �
d

a>h
,     q � cos s �

d

b>k
,     r � cos t �

d

c>l
,

r, s, t
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Figure 42 Determination of the Miller indices of a pole.

planes is , represented on the projection both by its pole and its trace.The cube
poles of the twin formed by reflection in this plane are shown as solid symbols;

1111 2
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Figure 43 Stereographic projection of an FCC
crystal and its twin.

these poles are located by rotating the projection on a Wulff net until the pole of
the twin plane lies on the equator, after which the cube poles of the crystal can be
moved along latitude circles of the net to their final position.

The main principles of the stereographic projection have now been presented
and they will be used later in dealing with various practical problems in x-ray crys-
tallography. Merely reading this section is not sufficient preparation for such prob-
lems. Practice with a Wulff net and tracing paper is required before the stereo-
graphic projection can be manipulated with facility and before three dimensions
can be visualized from what is represented in two.

PROBLEMS

1 Draw the following planes and directions in a tetragonal unit cell: (001), (011),
(113), [110], [201], . Show cell axes.
2 Show by means of a sectional drawing that [111] is perpendicular to (111) in
the cubic system, but not, in general, in the tetragonal system.
3 In a drawing of a hexagonal prism, indicate the following planes and directions

, , , [110], , [021]. Show cell axes.
4 Derive Eq. (2) of the text.
5 Show that the planes , , and belong to the zone [111].
6 Do the following planes all belong to the same zone: ? If so,
what is the zone axis? Give the indices of any other plane belonging to this zone.
*7 Prepare a cross-sectional drawing of an HCP structure which will show that all
atoms do not have identical surroundings and therefore do not lie on a point lattice.
8 Show that c/a for hexagonal close packing of spheres is 1.633.
9 Show that the HCP structure (with c/a = 1.633) and the FCC structure are equal-
ly close-packed, and that the BCC structure is less closely packed than either of the
former.

1110 2 , 1311 2 , 11322
1312 21121 21110 2

3111 411011 211012 211210 2

1110 2
3101 4
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10 The unit cells of several orthorhombic crystals are described below. What is the
Bravais lattice of each and how do you know? Do not change axes. (In solving this
kind of problem, examining the given atom positions for the existence or nonexis-
tence of centering translations is generally more helpful than making a drawing of
the structure.)

a) Two atoms of the same kind per unit cell located at .
b) Four atoms of the same kind per unit cell located at

.
c) Four atoms of the same kind per unit cell located at

.
d) Two atoms of one kind A located at ; and two atoms of another

kind B located at .
*11 Make a drawing, similar to Fig. 23, of a (112) twin in a BCC lattice and show the
shear responsible for its formation. Obtain the magnitude of the shear strain graph-
ically.
12 Construct a Wulff net, 18 cm in diameter and graduated at 30° intervals, by the
use of compass, dividers, and straightedge only. Show all construction lines.

In some of the following problems, the coordinates of a point on a stereographic projection are
given in terms of its latitude and longitude, measured from the center of the projection. Thus,
the N pole is 90° N, 0° E, the E pole is 0° N, 90° E, etc.

13 Plane A is represented on a stereographic projection by a great circle passing
through the N and S poles and the point 0°N, 70°W. The pole of plane B is located
at 30°N, 50°W.

a) Find the angle between the two planes by measuring the angle between the
poles of A and B.

b) Draw the great circle of plane B and demonstrate that the stereographic
projection is angle-true by measuring with a protractor the angle between
the great circles of A and B.

*14 Pole A, whose coordinates are 20°N, 50°E, is to be rotated about the axes
described below. In each case, find the coordinates of the final position of pole A
and show the path traced out during its rotation.

a) 100° rotation about the NS axis, counterclockwise looking from N to S.
b) 60° rotation about an axis normal to the plane of projection, clockwise to

the observer.
c) 60° rotation about an inclined axis B, whose coordinates are 10°S, 30°W,

clockwise to the observer.
15 Draw a standard (111) projection of a cubic crystal, showing all poles of the form
{100}, {110}, {111} and the important zone circles between them. Compare with Figs.
39(a) and (b).
16 Draw a standard (001) projection of white tin (tetragonal, c/a = 0.545), showing
all poles of the form {001}, {100}, {110}, {011}, {111} and the important zone circles
between them. Compare with Fig. 39(a).

0 0 12, 
1
2 

1
2 0

1
2 0 0, 0 12 

1
2

x y z,  x y z, 112 � x 2 112 � y 2z, 112 � x 2 112 � y 2z

0 0 z, 0 12 z, 0 12 1
1
2 � z 2 ,  0 0 112 � z2

0 12 0, 12 0 12
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17 Draw a standard (0001) projection of beryllium (hexagonal, c/a = 1.57), showing
all poles of the form , , , and the important zone circles
between them. Compare with Fig. 40.
18 On a standard (001) projection of a cubic crystal, in the orientation of Fig. 36(a),
the pole of a certain plane has coordinates 53.3°S, 26.6°E. What are its Miller
indices? Verify your answer by comparison of measured angles with those given in
Table 4.
*19 Duplicate the operations shown in Fig. 43 and thus find the locations of the
cube poles of a reflection twin in a cubic crystal. What are their coordinates?
20 Show that the twin orientation found in Prob. 19 can also be obtained by

a) Reflection in a {112} plane. Which one?
b) 180° rotation about a axis. Which one?
c) 60° rotation about a  axis. Which one?

In (c), show the paths traced out by the cube poles during their rotation.
*21 Plot the great-circle route from Washington, D.C. (39°N, 77°W) to Moscow
(56°N, 38°E).

a) What is the distance between the two cities? (Radius of the earth = 6360
km.)

b) What is the true bearing of an airplane flying from Washington to Moscow
at the beginning, midpoint, and end of the trip? (The bearing is the angle
measured clockwise from north to the flight direction. Thus east is 90° and
west is 270°.)

22 Cellulose (C6H10O5)x crystallizes as monoclinic crystals with lattice parameters a
= 7.87 Å, b = 10.31 Å, c = 10.13 Å, and .

a) Plot the lattice points for (h0l), i.e., in direct space. Superimpose the lattice
points of the adjacent (h0l) on the first plot.

b) Plot the h0l net of the reciprocal lattice (i.e., the reciprocal lattice plane
containing reciprocal lattice points of the form h0l). Superimpose the
points of the (h1l) reciprocal lattice net onto the first plot.

23 Lutetium has  a  hexagonal  structure with lattice parameters a = 3.516 Å and       c
= 5.570 Å. Plot the h0l plane of the reciprocal lattice of this material.
24 Aluminum silicate (mullite) Al6Si2O13 has an orthorhombic Bravais lattice and
lattice parameters a = 7.5456 Å, b = 7.6898 Å and c = 2.8842 Å. Assuming that the
Bravais lattice is simple orthorhombic, in one diagram plot the h0l net of the recip-
rocal lattice, and in a second diagram plot the 0kl net of the reciprocal lattice.
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ANSWERS TO SELECTED PROBLEMS

7. A section on  will show this

11. Shear strain = 0.707

14. a) 20 S, 30 W; b) 27 S, 48 E; c) 39 S, 61 E

19. 42 N, 26 E; 19 S, 45 W; 42 S, 63 E

21. a) 7890 km b) 34 , 68 , 135 .°°°

°°°°°°

°°°°°°
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1 INTRODUCTION

After the preliminary survey of the physics of x-rays and the geometry of crystals,
this chapter will fit the two together and discuss the phenomenon of x-ray diffrac-
tion, which is an interaction of the two. Historically, this is exactly the way this field
of science developed. For many years, mineralogists and crystallographers had
accumulated knowledge about crystals, chiefly by measurement of interfacial
angles, chemical analysis, and determination of physical properties. There was little
knowledge of interior structure, however, although some very shrewd guesses had
been made, namely, that crystals were built up by periodic repetition of some unit,
probably an atom or molecule, and that these units were situated some 1 or 2 Å
apart. On the other hand, there were indications, but only indications, that x-rays
might be electromagnetic waves about 1 or 2 Å in wavelength. In addition, the phe-
nomenon of diffraction was well understood, and it was known that diffraction, as
of visible light by a ruled grating, occurred whenever wave motion encountered a
set of regularly spaced scattering objects, provided that the wavelength of the wave
motion was of the same order of magnitude as the repeat distance between the scat-
tering centers.

Such was the state of knowledge in 1912 when the German physicist von Laue
(1879-1960) took up the problem. Stimulated by a discussion with P. P. Ewald of
Ewald’s doctoral dissertation (scattering of electromagnetic waves by an array of
harmonic oscillators [1]), von Laue reasoned that, if crystals were composed of reg-
ularly spaced atoms which might act as scattering centers for x-rays, and if x-rays
were electromagnetic waves of wavelength about equal to the interatomic distance
in crystals, then it should be possible to diffract x-rays by means of crystals. Under
his direction, Friedrich and Knipping conducted experiments to test this hypothe-
sis:A crystal of copper sulfate was set up in the path of a narrow beam of x-rays and
a photographic plate was arranged to record the presence of diffracted beams, if
any. The second attempt was successful and showed without doubt that x-rays were
diffracted by the crystal out of the primary beam to form a pattern of spots on the
photographic plate [2]. These experiments proved, at one and the same time, the
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From Chapter 3 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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wave nature of x-rays and the periodicity of the arrangement of atoms within a
crystal. Hindsight is always easy and these ideas appear quite simple now, when
viewed from the vantage point of ninety years’ development of the subject, but they
were not at all obvious in 1912, and von Laue’s hypothesis and its experimental ver-
ification must stand as a great intellectual achievement [G.11]

The account of these experiments was read with great interest by two English
physicists, W. H. Bragg (1862-1942) and his son W. L. Bragg (1890-1971). The latter,
although only a young student at the time-it was still the year 1912-successfully ana-
lyzed the Laue experiment and was able to express the necessary conditions for dif-
fraction in a considerably simpler mathematical form than that used by von Laue
[3]. He also attacked the problem of crystal structure with the new tool of x-ray dif-
fraction and, in the following year, solved the structures of NaCl, KCl, KBr, and KI,
all of which have the NaCl structure; these were the first complete crystal-structure
determinations ever made [4].The simpler structures of metals like iron and copper
were not determined until later.

2 DIFFRACTION

A B

A� B�

E

1

2

3

x
�

�

Figure 1 Effect of path difference on relative phase.

Diffraction is due essentially to the existence of certain phase relations between
two or more waves, and it is advisable, at the start, to get a clear notion of what is
meant by phase relations. Consider a beam of x-rays, such as beam 1 in Fig. 1, pro-
ceeding from left to right. For convenience only, this beam is assumed to be plane-
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polarized so that the electric field vector E always lies in the plane of the drawing.
Imagine this beam to be composed of two equal parts, ray 2 and ray 3, each of half
the amplitude of beam 1.These two rays, on the wave front AA , are said to be com-
pletely in phase or in step; i.e., their electric-field vectors have the same magnitude
and direction at the same instant at any point x measured along the direction of
propagation of the wave.A wave front is a surface perpendicular to this direction of
propagation.

Now consider an imaginary experiment, in which ray 3 is allowed to continue in
a straight line but ray 2 is diverted by some means into a curved path before rejoin-
ing ray 3. What is the situation on the wave front BB where both rays are pro-
ceeding in the original direction? On this front, the electric vector of ray 2 has its
maximum value at the instant shown, but that of ray 3 is zero. The two rays are
therefore out of phase. Adding these two imaginary components of the beam
together, produces the form of beam 1 shown in the upper right of the drawing. If
the amplitudes of rays 2 and 3 are each 1 unit, then the amplitude of beam 1 at the
left is 2 units and that of beam 1 at the right is 1.4 units, if a sinusoidal variation of
E with x is assumed.

Two conclusions may be drawn from this illustration:
1. Differences in the length of the path traveled lead to differences in phase.
2. The introduction of phase differences produces a change in amplitude.

The greater the path difference, the greater the difference in phase, since the
path difference, measured in wavelengths, exactly equals the phase difference, also
measured in wavelengths. If the diverted path of ray 2 in Fig. 1 were a quarter wave-
length longer than shown, the phase difference would be a half wavelength.The two
rays would then be completely out of phase on the wave front BB and beyond, and
they would therefore annul each other, since at any point their electric vectors
would be either both zero or of the same magnitude and opposite in direction. If
the difference in path length were made three quarters of a wavelength greater
than shown, the two rays would be one complete wavelength out of phase, a condi-
tion indistinguishable from being completely in phase since in both cases the two
waves would combine to form a beam of amplitude 2 units, just like the original
beam. Thus, two rays are completely in phase whenever their path lengths differ
either by zero or by a whole number of wavelengths.

Differences in the path length of various rays arise quite naturally when consid-
ering how a crystal diffracts x-rays. Figure 2 shows a section of a crystal, its atoms
arranged on a set of parallel planes A, B, C, D, , normal to the plane of the draw-
ing and spaced a distance apart. Assume that a beam of perfectly parallel, per-
fectly monochromatic x-rays of wavelength is incident on this crystal at an angle
, called the Bragg angle, where is measured between the incident beam and the

particular crystal planes under consideration.
Whether this incident beam of x-rays will be diffracted by the crystal and, if so,

under what conditions, are the questions central to this chapter. A diffracted beam
may be defined as a beam composed of a large number of scattered rays mutually
reinforcing one another. Diffraction is, therefore, essentially a scattering phenome-
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Figure 2 Diffraction of x-rays by a crystal.

1 Note that these angles are defined differently in x-ray diffraction and in general optics. In the latter,
the angles of incidence and reflection are the angles which the incident and reflected beams make with
the normal to the reflecting surface.

non and not one involving any “new” kind of interaction between x-rays and atoms.
Atoms scatter incident x-rays in all directions and the following paragraphs demon-
strate that in some of these directions the scattered beams will be completely in
phase and so reinforce each other to form diffracted beams.

For the particular conditions described by Fig. 2, the only diffracted beam
formed is that shown, namely one making an exit angle with respect to the dif-
fraction planes1 equal to the angle of incidence. This will be shown, first, for one
plane of atoms and, second, for all the atoms making up the crystal. Consider rays
1 and 1a in the incident beam; they strike atoms K and P in the first plane of atoms
and are scattered in all directions. Only in the directions and , however, are
these scattered beams completely in phase and so capable of reinforcing one anoth-
er; they do so because the difference in their length of path between the wave fronts
XX and YY is equal to

Similarly, the rays scattered by all the atoms in the first plane in a direction paral-
lel to are in phase and add their contributions to the diffracted beam.This will be
true of all the planes separately, and it remains to find the condition for reinforce-
ment of rays scattered by atoms in different planes. Rays 1 and 2, for example, are
scattered by atoms K and L, and the path difference for rays 1K and 2L is

ML � LN � d¿  sin  u � d¿  sin  u.

2¿1¿

1¿

QK � PR � PK cos  u � PK cos  u � 0.

¿¿

1a¿1¿

u

u
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2 If the scattering atoms were not arranged in a regular, periodic fashion but in some independent man-
ner, then the rays scattered by them would have a random phase relationship to one another. In other
words, there would be an equal probability of the phase difference between any two scattered rays hav-
ing any value between zero and one wavelength. Neither constructive nor destructive interference takes
place under these conditions, and the intensity of the beam scattered in a particular direction is simply
the sum of the intensities of all the rays scattered in that direction. If there are N scattered rays each of
amplitude A and therefore of intensity in arbitrary units, then the intensity of the scattered beam is

. On the other hand, if the rays are scattered by the atoms of a crystal in a direction satisfying Bragg’s
law, then they are all in phase and the amplitude of the scattered beam is the sum of the amplitudes of
the scattered rays. The total amplitude is then N times the amplitude A of each scattered ray, or NA. The
intensity of the scattered beam is therefore , or N times as large as if reinforcement had not
occurred. Since N is very large for the scattering of x-rays from even a small bit of crystal, (N = 1.1 
1019 atoms for 1 mg of iron), the role of reinforcement in producing a strong diffracted beam is consid-
erable.

�
N2A2

NA2
A2

This is also the path difference for the overlapping rays scattered by S and P in the
direction shown, since in this direction there is no path difference between rays
scattered by S and L or P and K. Scattered rays and will be completely in
phase if this path difference is equal to a whole number n of wavelengths, or if

(1)

This relation was first formulated by W. L. Bragg and is known as Bragg’s law. It
states the essential condition which must be met if diffraction is to occur. n is called
the order of diffraction; it may take on any integral value consistent with not
exceeding unity and is equal to the number of wavelengths in the path difference
between rays scattered by adjacent planes. Therefore, for fixed values of and ,
there may be several angles of incidence at which diffraction may
occur, corresponding to n = 1, 2, 3, . In a first-order reflection (n = 1), the scat-
tered rays and of Fig. 2 would differ in length of path (and in phase) by one
wavelength, rays and by two wavelengths, rays and by three wavelengths,
and so on throughout the crystal. The rays scattered by all the atoms in all the
planes are therefore completely in phase and reinforce one another (constructive
interference) to form a diffracted beam in the direction shown. In all other direc-
tions of space the scattered beams are out of phase and annul one another (destruc-
tive interference). The diffracted beam is rather strong compared to the sum of all
the rays scattered in the same direction, simply because of the reinforcement which
occurs,2 but is extremely weak compared to the incident beam since the atoms of a
crystal scatter only a small fraction of the energy incident on them.

It is helpful to distinguish three scattering modes:
1. By atoms arranged randomly in space, as in a monatomic gas. This scatter-

ing occurs in all directions and is weak. Intensities add.
2. By atoms arranged periodically in space, as in a perfect crystal:

a) In a very few directions, those satisfying Bragg’s law, the scattering is

4¿1¿3¿1¿

2¿1¿

p

u1, u2, u3, p

d¿l

sinu

nl � 2d¿  sin  u.

2¿1¿
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b) In most directions, those not satisfying Bragg’s law, there is no scattering
because the scattered rays cancel one another.

At first glance, the diffraction of x-rays by crystals and the reflection of visible
light by mirrors appear very similar, since in both phenomena the angle of inci-
dence is equal to the angle of reflection. It seems that the planes of atoms act as lit-
tle mirrors which “reflect” the x-rays. Diffraction and reflection, however, differ
fundamentally in at least three aspects:

1. The diffracted beam from a crystal is built up of rays scattered by all the
atoms of the crystal which lie in the path of the incident beam. The reflec-
tion of visible light takes place in a thin surface layer only.

2. The diffraction of monochromatic x-rays takes place only at those particu-
lar angles of incidence which satisfy Bragg’s law. The reflection of visible
light takes place at any angle of incidence.

3. The reflection of visible light by a good mirror is almost 100 percent effi-
cient. The intensity of a diffracted x-ray beam is extremely small compared
to that of the incident beam.

Despite these differences, the terms “reflecting planes” and “reflected beams”
are often used when diffracting planes and diffracted beams are described. This is
common usage and, from now on, these terms will appear without quotation marks
but with the tacit understanding that diffraction is meant and not reflection.3 Also,
always remember it is the constructive interference of scattering from the atoms
which produces diffracted intensity. Lack of understanding of what the commonly
used term “diffracting planes” represents, can lead to errors.

To sum up, diffraction is essentially a scattering phenomenon in which a large
number of atoms cooperate. Since the atoms are arranged periodically on a lattice,
the rays scattered by them have definite phase relations between them; these phase
relations are such that destructive interference occurs in most directions of scatter-
ing, but in a few directions constructive interference takes place and diffracted
beams are formed. Strictly speaking, for interference to occur, the interacting waves
must be superimposed physically (i.e., waves and in Fig. 2), but given the
cloud-like distribution of electrons around the nucleus of each scattering atom, the
relatively large depth of penetration of the x-ray beam and the large number of
scattering events which typically occur in a sample, the requirement for physical
superposition is normally left implicit in treatments of diffraction. The two essen-
tials are a wave motion capable of interference (x-rays) and a set of periodically
arranged scattering centers (the atoms of a crystal).

2a¿1a¿

3 For the sake of completeness, it should be mentioned that x-rays can be totally reflected by a solid sur-
face, just as visible light is by a mirror, but only at very small angles of incidence (below about one
degree). X-ray reflectivity is a powerful technique for studying surfaces and internal interfaces which lie
in the vicinity of the surface [5]. Commercial instrumentation ranging from high resolution diffractome-
ters to dedicated x-ray reflectometers are available, and the theory and experimental methods are sum-
marized elsewhere [6, 7].
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3 BRAGG’S LAW

4 This means the reflection from the (100) planes. Conventionally, the Miller indices of a diffraction
plane hkl, written without parentheses, stand for the diffracted beam from the plane (hkl).

Two geometrical facts are worth remembering: (1) The incident beam, the normal
to the diffraction plane, and the diffracted beam are always coplanar. (2) The angle
between the diffracted beam and the transmitted beam is always . This is known
as the diffraction angle, and it is this angle, rather than , which is usually measured
experimentally.

As previously stated, diffraction in general occurs only when the wavelength of
the wave motion is of the same order of magnitude as the repeat distance between
scattering centers. This requirement follows from Bragg’s law. Since cannot
exceed unity,

(2)

Therefore, must be less than 2d´. For diffraction, the smallest value of n is 1.
(n = 0 corresponds to the beam diffracted in the same direction as the transmitted
beam. It cannot be observed.) Therefore the condition for diffraction at any observ-
able angle is

(3)

For most sets of crystal planes d´ is of the order of 3 Å or less, which means that 
cannot exceed about 6 Å. A crystal could not possibly diffract ultraviolet radiation,
measuring for example, of wavelength about 500 Å. On the other hand, if is very
small the diffraction angles requires very specialized equipment.

Bragg’s law may be written in the form

(4)

Since the coefficient of is now unity, a reflection of any order can be considered
as a first-order reflection from planes, real or fictitious, spaced at a distance 1/n of
the previous spacing. This turns out to be a real convenience, so that d = d /n and

(5)

This form will be used throughout this book.
This usage is illustrated by Fig. 3. Consider the second-order 100 reflection4

shown in (a) for a simple cubic substance. Since it is second-order, the path differ-
ence ABC between rays scattered by adjacent (100), say i and i + 1 planes must be
two whole wavelengths.

l � 2d sin  u.
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l

l � 2
d¿

n
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In the simple cubic structure all of the lattice points are on one of the (100) and
are separated by d = a/(12 + 0 + 0)0.5 = a. If there were scatterers on the dotted plane
midway between the ith and (i+1)th planes (Fig. 3b),5 they would scatter one wave-
length out of phase with the atoms on the ith and (i+1)th planes. The ith, (i+1/2)th
and (i+1)th planes are, therefore, positions of equal phase in the diffracted beam.
This periodicity, that for second order 100 diffraction, is a/2 and is indicated by d200.
Note that the formula for d-spacings using h = 2, k = 0 and l = 0 yields d200 = a/2.
Similar considerations hold for diffraction of the third, fourth, etc., orders of (100),
i.e., the, 300, 400, etc. reflections. In general, nth-order diffraction from (hkl) with
spacing d may be considered as a first-order diffraction from (nh nk nl) with spac-
ing d = d /n. Note that this convention accords with the definition of Miller indices
since (nh nk nl) are the Miller indices of planes parallel to (hkl) but with 1/nth the
spacing of the latter. The presence or absence of atoms at different positions with-
in the unit cell, such as on the (i+1/2)th plane in Fig. 3, has a profound effect on the
diffracted intensity observed for different reflections.

¿

¿

4 LAUE’S EQUATIONS

5 The dotted plane in Fig. 3 is occupied by atoms in the face-centered and body-centered Bravais lat-
tices.

Bragg’s equation describes diffraction in terms of a scalar equation. Crystals are, in
general, three-dimensional entities, and, for greatest generality, equations devel-
oped to describe the diffracted beam directions need to be expressed in terms of
vectors.

Consider a one-dimensional array of scatterers spaced a apart (Fig. 4). Let the
incident beam direction be denoted S0 and make an angle with the line of scat-
terers, and define the diffracted beam direction as S. In order for the path differ-
ence to be an integral multiple of wavelengths , the angle which S makes with
the line of scatterers must satisfy:

(6a)

This equation is satisfied for a series of cones with axes concentric with the row of
scatterers and with semi-apex angle of .

Next consider a two-dimensional network of scatterers with spacing a along one
axis and b along the second axis. If the angles S0 and S make with the rows spaced
b apart are 0 and , respectively, a second equation must be simultaneously be sat-
isfied in order for constructive interference to occur:

(6b)

where k is an integer. Similarly, a third condition arises when one considers a three-
dimensional array of scatterers with spacing c in the third dimension:

b1cos  b � cos  b0 2 � kl,

bb

a

a1cos  a � cos  a0 2 � hl.

ahl

ao
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Figure 3 Equivalence of (a) a second-order 100 reflection and (b) a first-order 200 reflection.The inci-
dent and diffracted beam directions are S0 and S, respectively, and the ith, (i+1/2)th and (i+1)th planes
are labeled.
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Figure 4 One-dimensional array of scatters with periodicity a, beam S0 incident at angle and dif-
fracted beam S at angle .a

ao

(6c)

where l is an integer. The Eq. 6 are collectively known as Laue’s Equations and
emphasize the three-dimensional nature of diffraction. Generally, Bragg’s law is
more convenient to use for numerical purposes, and, as will be shown in the fol-
lowing section, the three-dimensionality of diffraction is more easily seen using the
reciprocal lattice.

c1cos  g � cos  g0 2 � ll,
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5 RECIPROCAL LATTICE AND DIFFRACTION

The reciprocal lattice can also be used to determine the geometric conditions for
diffraction. First, in the direct space lattice consider the interference between scat-
tering from two lattice points O and A (Fig. 5). Point O is at the origin of the lattice,
and point A is located relative to O by vector OA = pa1 + qa2 + ra3, where r, q, and
p are integers. Note that p, q, and r must be integers since both O and A are lattice
points. For x-rays of wavelength , incident beam S0 and diffracted beam S, the path
difference for x-rays scattered from O and A is

(7)

and the corresponding phase difference (in radians) is

SS        ··  OA (8)

where S and S0 are unit vectors and SS and is termed the scattering
vector. Note that SS is in units of Å-1. Implicit in this treatment is that vectors ai are
for a primitive unit cell for whatever crystal system is being considered. Giving the
vectors a´i in terms of a non-primitive unit cell has important consequences, how-
ever, which are beyond the scope of this chapter.

The link to the reciprocal latttice comes through defining SS as a vector in that
space, i.e., by letting

� 1S � S0>l 2

f � 2pd>l � �
2p1S � S0 2 # OA

l
� �2p #

f

� �OA # 1S � S0 2 ,
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# OA � 1�S 2 # OA

� Om � On

d � uA � Av

d

l

S

S0

�S

(S�S0)

(S�S0)

O
�

�

�

m
n

v

u

A

Figure 5 X-ray scattering by
atoms at O and A. After
Guinier [G.13].
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6 In the case of electrons used in the transmission electron microscope, wavelengths are at least an order
of magnitude smaller than those of x-rays used in diffractometry. The result, as will be seen in Sec. 9, is
that multiple diffracted beams are the rule rather than the exception for electron diffraction.

SS (9)

and noting that h , k and l have no special significance and are continuously vari-
able. After substituting the vector expressions for SS and OA in Eq. 8, the result is

(10)

In order for diffraction to occur, must be an integral multiple of ; in order for
this to be true simultaneously for many p, q, r (i.e., for many different scattering
sites) h , k and l must be integers which will now be written h, k and l. Thus, SS or

must start and end on points of the reciprocal lattice.
The conditions for diffraction can be represented graphically in reciprocal space

using the Ewald sphere construction [2.3]. While the reciprocal lattice of a three
dimensional crystal is also three dimensional, a convenient plane through recipro-
cal space normally is plotted; the reciprocal lattice plane perpendicular to b3 and
through the origin of the reciprocal lattice is used to illustrate the Ewald sphere
construction. The first step in plotting the Ewald sphere representation of diffrac-
tion is to construct the reciprocal lattice in question. Next one plots parallel to
the incident beam direction, giving it length Å-1 and terminating it at the origin
of the reciprocal lattice. The sphere centered at the origin of vector and with
radius represents the locus of possible S for wavelength and is termed the
Ewald sphere. In order for diffraction to be observed (i.e., for Bragg’s law to be sat-
isfied), S and, hence, SS  must end on a reciprocal lattice point. This means that SS  is
parallel to the normal of (hkl)and has magnitude 1/dhkl, and Bragg’s law (or the
Laue equations) can be derived directly from the Ewald sphere construction.
Perhaps the most important point to remember is that the Ewald sphere must inter-
sect a reciprocal lattice point hkl for diffraction from (hkl) to be observed.

An important property of the transformation from the direct space lattice to the
reciprocal lattice (and the reverse transformation) is that vectors in one lattice are
physically parallel to their counterpart in the other lattice. For example, the direc-
tion from the Ewald sphere center to the reciprocal lattice point hkl on the sphere
is S and defines the direction along which the diffracted beam Shkl is observed. In
direct space the parallel vector, also written as S, defines the diffracted beam direc-
tion. It is possible for certain S0 to produce two or more diffracted beams simulta-
neously, but, given the wavelengths of x-rays used in diffractometry and the lattice
parameters of crystals, this possibility is unlikely. 6

l1>l
S0>l

1>l
S0>l

1S � S0>l 2
¿¿¿

2pf

� �2p1h¿p � k¿q � l¿r 2 .

f � �2p1h¿b1 � k¿b2 � l¿b3 2 # 1pa1 � qa2 � ra3 2

¿¿¿

� h¿b1 � k¿b2 � l¿b3,
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There is another way of viewing the direct space to reciprocal space transforma-
tion. Note that the incident and diffracted beams S0 and S each consist of many par-
allel rays displaced from each other in space. Then the transformation to reciprocal
space can be viewed as mapping all parallel rays to a single point, just as was seen
for the periodic “planar” arrays of lattice point being mapped onto a single point in
the reciprocal lattice. This aspect of the reciprocal lattice is covered in more detail
in Sec. 9.

An example of the Ewald sphere construction is shown in Fig. 6 for a simple
orthorhombic crystal with lattice parameters a1 = 2.0 Å, a2 = 1.0 Å and a3 = 3.0 Å.
The corresponding magnitudes of the reciprocal lattice vectors are b1 = 0.5 Å-1,
b2 = 1.0 Å-1 and b3 = 0.33 Å-1, and Fig. 6 shows the reciprocal lattice adjacent to the
direct space lattice. If the orthorhombic crystal is oriented for 100 diffraction with

radiation ( = 1.54 Å), S0 must make an angle of 22.6° with (100). This is
shown for S0 in the plane of the paper, i.e., this S0 makes an angle of 22.6° with a2,
and the resulting S makes the same angle with -a2.

Remember that the Bragg angle for 100 is not equal to that for 010 or 001 in the
orthorhombic system. The lengths of and are (1.54 Å)-1 = 0.649 Å-1, and

and the corresponding Ewald sphere are shown to scale and in the correct ori-
entation in the reciprocal lattice. The Ewald sphere intersects the reciprocal lattice
point (1,0,0), and 100 diffraction will occur. Note that the direction of the diffract-
ed beam in reciprocal space is parallel to that in direct space and that the angle
between S0 and S in Fig. 6 is 2 . One should also note that the symmetry present in
the direct space lattice must also be reflected in the reciprocal lattice.

Rotation of S0 about a3 can be used to orient the crystal to diffract from other
<h00>.7 In order to orient the crystal shown in Fig. 6 for 200 diffraction, i.e., second
order 100 diffraction, S0 must rotate 27.75° from its orientation in Fig. 6 toward a1.
This rotation brings the Ewald sphere into contact with the 200 reciprocal lattice
point. Similarly, S0 must rotate 45.2° counterclockwise from the orientation pictured
in Fig. 6 in order to produce diffraction.

The possible diffraction beam directions for a given crystal can also be deter-
mined using the Ewald sphere construction. Consider the reciprocal lattice for the
simple orthorhombic crystal shown in Fig. 6. Remembering that the condition for
diffraction from (hkl) is that the Ewald sphere intersects the hkl reciprocal lattice
point, the Ewald sphere can be rotated about the origin of the reciprocal lattice,
through all possible orientations, to determine which hkl reflections are possible
(Fig. 7). The result is the limiting sphere centered on the origin of the reciprocal lat-
tice and with radius . All the diffracted beams corresponding to the reciprocal
lattice points lying within or on the limiting sphere can be excited for the proper
crystal orientation. One advantage of using the reciprocal lattice to determine

2>l

100

u

S0>l
S>lS0>l

lCu Ka

7 Users of x-ray diffraction often speak of rotating the incident beam while keeping the crystal orienta-
tion fixed. For practical reasons, it is actually the crystal which is rotated and the incident x-ray beam
which remains stationary.
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Figure 6 (a) Direct space lattice for a simple orthorhombic crystal and (b) the corresponding reciprocal
space lattice and Ewald sphere for radiation. The orientation of the incident beam S0 is such that
100 diffraction occurs, i.e., (100) are oriented to satisfy Bragg’s law and the reciprocal lattice point 100 is
on the Ewald sphere.

Cu Ka

which diffracted beams are possible is that the directions of S and S0 are obvious;
this is not the case for the numerical approach described in the previous paragraphs
of this section. When numerical values of the Bragg angle are required, however, it
is advantageous to use Bragg’s law directly.

6 DIFFRACTION DIRECTIONS

What determines the possible directions, i.e., the possible angles , in which a given
crystal can diffract a beam of monochromatic x-rays? Referring to Fig. 3, the vari-
ous diffraction angles can be obtained from the (100) planes by
using a beam incident at the correct angle and producing first-,
second-, third-, order reflections. But diffraction can also be produced by the
(110) planes, the (111) planes, the (213) planes, and so on. A general relation is
needed which will predict the diffraction angle for any set of planes. This relation is
obtained by combining Bragg’s law and the plane-spacing equation applicable to
the particular crystal involved.

For example, if the crystal is cubic, then

and

.
1

d2
�
1h2 � k2 � l2 2

a2

l � 2d  sin  u

p

u1, u2, u3, p

2u1, 2u2, 2u3, p

2u
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Figure 7 Illustration of the limiting sphere. The Ewald sphere and reciprocal lattice of Fig. 6 are shown
for reference; S0 is shown oriented for 100 diffraction. Diffraction from 100, 200, 110, 010, etc. is possible
for this crystal and x-ray wavelength; 300, 210, etc, diffraction cannot be observed.

Combining these equations rearranging terms produces

(11)

This equation predicts, for a particular incident wavelength and a particular cubic
crystal of unit cell size a, all the possible Bragg angles at which diffraction can occur
from the planes (hkl). For (110) planes, for example, Eq. (11) becomes

sin2 u110 �
l2

2a2
.

l

sin2 u �
l2

4a2
1h2 � k2 � l2 2 .
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If the crystal is tetragonal, with axes a and c, then the corresponding general equa-
tion is

(12)

and similar equations can readily be obtained for the other crystal systems.
These examples show that the directions in which a beam of given wavelength is

diffracted by a given set of lattice planes are determined by the crystal system to
which the crystal belongs and its lattice parameters. In short, diffraction directions
are determined solely by the shape and size of the unit cell.This is an important point
and so is its converse: all that can be determined about an unknown crystal by
measurements of the directions of diffracted beams are the shape and size of its unit
cell. Intensities of diffracted beams are determined by the positions of the atoms
within the unit cell, and it follows that intensities must be measured if any infor-
mation at all is to be obtained about atom positions. For many crystals, there are
particular atomic arrangements which reduce the intensities of some diffracted
beams to zero. In such a case, there is simply no diffracted beam at the angle pre-
dicted by an equation of the type of Eqs. (11) and (12). It is in this sense that equa-
tions of this kind predict all possible iffracted beams.

sin2 u �
l2

4
a

h2 � k2

a2
�

l2

c2
b

7 X-RAY SPECTROSCOPY

Experimentally, Bragg’s law can be applied in two ways. By using x-rays of known
wavelength and measuring , the spacing d of various planes in a crystal are deter-
mined: this is structure analysis and is the subject, in one way or another, of the
greater part of this book.Alternatively, a crystal with planes of known spacing d can
be used to measure , and thus determine the wavelength of the radiation used:
this is x-ray spectroscopy.

The essential features of an x-ray spectrometer [8] are shown in Fig. 8. X-rays
from the tube T are incident on a crystal C which may be set at any desired angle
to the incident beam by rotation about an axis through O, the center of the spec-
trometer circle. D is a detector which measures the intensity of the diffracted x-rays;
it can also be rotated about O and set at any desired angular position. The crystal is
usually cut or cleaved so that a particular set of diffracting planes of known spacing

lu

u

T

D

O

C

�

�

�2

Figure 8 The x-ray spectrometer.
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is parallel to its surface, as suggested by the drawing. In use, the crystal is positioned
so that its diffracting planes make some particular angle with the incident beam,
and D is set at the corresponding angle . The intensity of the diffracted beam is
then measured and its wavelength calculated from Bragg’s law, this procedure
being repeated for various angles . W. H. Bragg designed and used the first x-ray
spectrometer, and the Swedish physicist Siegbahn developed it into an instrument
of very high precision.

X-ray spectroscopy is of concern only insofar as it concerns certain units of
wavelength. Wavelength measurements made in the way just described are obvi-
ously relative, and their accuracy is no greater than the accuracy with which the
plane spacing of the crystal is known.

Before considering how the first plane spacing was determined, first consider the
subject of x-ray density. Normally the density of a solid is found by measuring the
volume, usually of the order of a few cubic centimeters, and the weight of a partic-
ular specimen. But x-ray diffraction allows measurement of the lattice parameters
of a crystal’s unit cell, and therefore its volume, together with the number of atoms
in the cell. Density determination can be based not on a few cubic centimeters but
on the volume of a single unit cell, by defining the

(13)

where = density (g/cm3), Σ A = sum of the atomic weights of all the atoms in the
unit cell, N = Avogadro’s number, and V = volume of unit cell (cm3). Inserting the
value of N produces

(14)

where is in g/cm3 and is the unit-cell volume in Å3.
The macroscopic density of a particular specimen, determined from the weight

and volume of that specimen, is usually less than, and cannot exceed, the x-ray den-
sity, because the macroscopic specimen will usually contain cracks and pores on the
macroscopic scale and vacancies in the lattice on the atomic scale. The x-ray densi-
ty is therefore a useful quantity to know. Comparing it to the macroscopic density
of, for example, a pressed and sintered metal or ceramic compact, determines the
percent porosity in the compact. X-ray densities are sometimes loosely called “the-
oretical densities”; they are not theoretical because they are determined experi-
mentally.

V¿r

r �
a A

NV
�

a A

16.02257 � 10232 1V¿ � 10�242
�

1.66042a A

V¿

,

r

r �
a A>N

V
,

x–ray density �
weight of atoms in unit cell

volume of unit cell
.

u
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u
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To return to the problem of wavelength determination, it is an interesting and
crucial fact that Bragg was able to solve the crystal structure of NaCl without know-
ing the wavelength of the x-rays being diffracted. All he knew—all he needed to
know—was that there was one single, strong wavelength in the radiation from the
x-ray tube, namely, the strong line of the tube target. Once the NaCl structure
is known, it follows that there are four sodium and four chlorine atoms per unit cell,
and that

If this value is inserted into Eq. (13) together with the macroscopic density , the
volume of the unit cell can be found. Because NaCl is cubic, the lattice parame-
ter a is given simply by the cube root of . From this value of a and the cubic plane-
spacing equation the spacing of any set of planes can be found.

In this way, Siegbahn obtained a value of 2.814 Å for the spacing of the (200)
planes of rock salt (NaCl), which he could use as a basis for wavelength measure-
ments [9]. This spacing was known to only four significant figures, because it was
derived from a macroscopic density of that precision. However, Siegbahn was able
to measure wavelengths in terms of this spacing much more accurately, namely, to
six significant figures. Not wishing to throw away the high relative precision he
could attain, he wisely decided to arbitrarily define a new unit in which relative
wavelengths could be expressed. This was the X unit (XU), so called because its
true value in absolute units (angstroms) was unknown. By defining the (200) spac-
ing of rock salt to six significant figures as 2814.00 XU, the new unit was made as
nearly as possible equal to 0.001 Å.

Once a particular wavelength was determined in terms of this spacing, the spac-
ing of a given set of planes in any other crystal could be measured. Siegbahn thus
measured the (211) spacing of calcite , which he found more suitable as a
standard crystal, and thereafter based all his wavelength measurements on this
spacing. Its value is 3029.45 XU. Later on, the kilo X unit (kX) was introduced, a
thousand times as large as the X unit and nearly equal to an angstrom. The kX unit
is therefore defined by the relation

. (15)

On this basis, Siegbahn and coworkers made very accurate measurements of wave-
length in relative (kX) units and these measurements form the basis of most pub-
lished wavelength tables.

It was found later that x-rays could be diffracted by a ruled grating such as is
used in the spectroscopy of visible light, provided that the angle of incidence (the
angle between the incident beam and the plane of the grating) is kept below the
critical angle for total reflection. Gratings thus offer a means of making absolute
wavelength measurements, independent of any knowledge of crystal structure. By

1 kX �
1211 2  plane spacing of calcite

3.02945

1CaCO3 2

V¿

V¿

r

a A � 41at. wt. Na 2 � 41at. wt. Cl 2 .

Ka
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a comparison of values so obtained with those found by Siegbahn from crystal dif-
fraction, it was possible to calculate the following relation between the relative and
absolute units:

1 kX = 1.00202Å.

This conversion factor was adopted in 1946 by international agreement. Later work
improved the accuracy of this factor, and the relation is now believed to be

1 kX = 1.002056Å*. (16)

Note that this relation is stated in terms of still another unit, the Å* unit, which was
introduced because of the still remaining uncertainty in the conversion factor. The
difference between Å and Å* is only some five parts per million, and the distinction
between the two units is negligible except in work of the very highest accuracy.

The present situation is not entirely clear, but the wavelength tables published
by the International Union of Crystallography [Vol. C, G.1] are the best available
value.

The distinction between kX and Å is unimportant if no more than about three
significant figures are involved, because the kX unit is only about 0.2 percent larg-
er than the angstrom. In precise work, on the other hand, units must be correctly
stated, and on this point there has been considerable confusion in the past. Some
wavelength values published prior to about 1946 are stated to be in angstrom units
but are actually in kX units. Some crystallographers have used such a value as the
basis for a precise measurement of the lattice parameter of a crystal, and the result
has been stated, again incorrectly, in angstrom units. Many published parameters
are therefore in error, and it is unfortunately not always easy to determine which
ones are and which ones are not. The only safe rule to follow, in stating a precise
parameter, is to give the wavelength of the radiation used in its determination.
Similarly, any published table of wavelengths can be tested for the correctness of its
units by noting the wavelength given for a particular characteristic line, for
example. The wavelength of this line is 1.540562 Å* (1974 value, 1.002056 as con-
version factor), 1.54051 Å (1946 value, 1.00202 factor), or 1.53740 kX.

Cu Ka1

8 DIFFRACTION METHODS

Diffraction can occur whenever Bragg’s law, , is satisfied. This equation
puts very stringent conditions on and for any given crystal. With monochromat-
ic radiation, an arbitrary setting of a single crystal in a beam of x-rays will not in
general produce any diffracted beams. Some way of satisfying Bragg’s law must be
devised, and this can be done by continuously varying either or during the
experiment. The ways in which these quantities are varied distinguish three main
diffraction methods:

ul

ul

l � 2d  sin u
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Method λ θ
Laue Variable Fixed

Rotating-crystal Fixed Variable (in part)
Powder Fixed Variable

Laue Method

The Laue method was the first diffraction method ever used, and it reproduces von
Laue’s original experiment. In this method, a beam of white radiation, the continu-
ous spectrum from an x-ray tube, falls on a fixed single crystal. The Bragg angle is
therefore fixed for every set of planes in the crystal, and each set selects and dif-
fracts that particular wavelength which satisfies Bragg’s law for the particular val-
ues of d and involved. Each diffracted beam thus has a different wavelength.

There are two variations of the Laue method, depending on the relative posi-
tions of source, crystal, and film (Fig. 9). In each, the film is flat and placed perpen-
dicular to the incident beam. The film in the transmission Laue method (the origi-
nal Laue method) is placed behind the crystal so as to record the beams diffracted
in the forward direction. This method is so called because the diffracted beams are
partially transmitted through the crystal. In the back-reflection Laue method the
film is placed between the crystal and the x-ray source, the incident beam passing
through a hole in the film, and the beams diffracted in a backward direction are
recorded.

In either method, the diffracted beams form an array of spots on the film as
shown in Fig. 10.This array of spots is commonly called a pattern, but the term is not
used in any strict sense and does not imply any periodic arrangement of the spots.
On the contrary, the spots are seen to lie on certain curves, as shown by the lines
drawn on the photographs. These curves are generally ellipses or hyperbolas for
transmission patterns [Fig. 10(a)] and hyperbolas for back-reflection patterns 
[Fig. 10(b)].

The spots lying on any one curve are reflections from planes belonging to one

u

u

(a) (b)

Figure 9 (a) Transmission and (b) back-reflection Laue methods.
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Figure 10 (a) Transmission and (b) back-reflection Laue patterns of an aluminum crystal (cubic).
Tungsten radiation, 30 kV, 19 mA.

Z.A.

Z.A.

(a) (b)

C

C

F F

�

�

Figure 11 Location of Laue spots (a) on ellipses in transmission method and (b) on hyperbolas in back-
reflection method. (C = crystal, F = film, Z.A. = zone axis.) 

zone. This is due to the fact that the Laue reflections from planes of a zone all lie
on the surface of an imaginary cone whose axis is the zone axis. As shown in
Fig. 11(a), one side of the cone is tangent to the transmitted beam, and the angle of
inclination of the zone axis (Z.A.) to the transmitted beam is equal to the semi-
apex angle of the cone. A film placed as shown intersects the cone in an imaginary
ellipse passing through the center of the film, the diffraction spots from planes of a
zone being arranged on this ellipse. When the angle exceeds 45°, a film placed
between the crystal and the x-ray source to record the back-reflection pattern will
intersect the cone in a hyperbola, as shown in Fig. 11(b).

The fact that the Laue reflections from planes of a zone lie on the surface of a
cone can be demonstrated nicely with the stereographic projection. In Fig. 12, the
crystal is at the center of the reference sphere, the incident beam I enters at the left,
and the transmitted beam T leaves at the right.The point representing the zone axis

f

f
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Figure 12 Stereographic projection of trans-
mission Laue method.

lies on the circumference of the basic circle and the poles of five planes belonging
to this zone, P1 to P5, lie on the great circle shown. The direction of the beam dif-
fracted by any one of these planes, for example the plane P2, can be found as fol-
lows. I, P2, D2 (the diffraction direction required), and T are all co-planar.Therefore
D2 lies on the great circle through I, P2, and T. The angle between I and P2 is

, and D2 must lie at an equal angular distance on the other side of P2, as
shown. The diffracted beams so found, D1 to D5, are seen to lie on a small circle, the
intersection with the reference sphere of a cone whose axis is the zone axis.

The positions of the spots on the film, for both the transmission and the back-
reflection method, depend on the orientation of the crystal relative to the incident
beam, and the spots themselves become distorted and smeared if the crystal has
been bent or twisted in any way. These facts account for the two main uses of the
Laue methods: the determination of crystal orientation and the assessment of crys-
tal quality.

The Ewald sphere treatment of diffraction of a single wavelength from a crys-
tal can be readily extended to the Laue method where multiple are incident. The
range of wavelengths used is represented by a series of parallel incident beams,
each with a different length proportional to . Note that each of these vectors
terminates at the origin of the reciprocal lattice, and each has a different origin
(Fig. 13). Thus, each incident beam has a corresponding Ewald sphere touch-
ing the origin of the reciprocal lattice and having radius . All of the different

pass through the origin of the reciprocal lattice, and the corresponding Ewald
spheres have centers lying on the line OACDB of Fig. 13, i.e., the incident beam
direction. The range of wavelengths present in the incident beam is of course not
infinite. It has a sharp lower limit at , the short-wavelength limit of the contin-
uous spectrum; the upper limit is less definite and depends on experimental factors
such as whether the transmission or back-reflection geometry is being used. In the
example of the Ewald sphere construction shown in Fig. 13, the upper wavelength
limit is taken as the wavelength of the K absorption edge of the silver in the emul-
sion (0.48 Å), because the effective photographic intensity of the continuous spec-
trum drops abruptly at that wavelength. This choice is most appropriate for trans-

lSWL

So>li

1>li

So>li

1>li

l

l

190° � u 2
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Figure 13 Reciprocal lattice (a) and corresponding schematic of the crystal in direct space (b) for the
Laue method. .1S � So 2>l � H

mission Laue patterns of crystals which are quite absorbing since the value of the
linear attenuation coefficient (of an element in a sample) rises rapidly with increas-
ing wavelength. For back-reflection Laue patterns considerable darkening of the
film wll occur for wavelengths above the silver edge and below the bromine K-edge
as well as for somewhat longer wavelengths.

To these two extreme wavelengths correspond two extreme Ewald spheres, as
shown in Fig. 13, which is a section through these spheres and the l = 0 layer of the
reciprocal lattice. The incident beam is along the b1 vector, i.e., perpendicular to the
(h00) planes of the crystal. The larger sphere shown is centered at B and has a
radius equal to the reciprocal of , while the smaller sphere is centered at A and
has a radius equal to the reciprocal of the wavelength of the silver K absorption
edge. A whole series of spheres lie between these two, and any reciprocal-lattice
point lying in the shaded region of the diagram is on the surface of one of these
spheres and corresponds to a set of crystal planes oriented to diffract one of the
incident wavelengths. In the forward direction, for example, a 120 reflection will be
produced.To find its direction, locate a point C on AB which is equidistant from the
origin O and the reciprocal-lattice point 120; C is therefore the center of the Ewald
sphere passing through the point 120. Joining C to 120 gives the diffracted-beam
vector for this reflection. The direction of the 410 reflection, one of the many
backward-diffracted beams, is found in similar fashion; here the reciprocal-lattice
point in question is situated on a Ewald sphere centered at D.

S>l

lSWL
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Rotating-Crystal Method

In the rotating-crystal method a single crystal is mounted with one of its axes, or
some important crystallographic direction, normal to a monochromatic x-ray beam.
A cylindrical film is placed around it and the crystal is rotated about the chosen
direction, the axis of the film coinciding with the axis of rotation of the crystal
(Fig. 14). As the crystal rotates, a particular set of lattice planes will, for an instant,
make the correct Bragg angle for diffraction of the monochromatic incident beam,
and at that instant a diffracted beam will be formed.The diffracted beams are again
located on imaginary cones but now the cone axes coincide with the rotation axis.
The result is that the spots on the film, when the film is laid flat, lie on imaginary
horizontal “layer” lines, as shown in Fig. 15. Since the crystal is rotated about only
one axis, the Bragg angle does not take on all possible values between 0° and 90°for
every set of planes. Not every set, therefore, is able to produce a diffracted beam;
sets perpendicular or almost perpendicular to the rotation axis are examples.

The Ewald sphere construction for monochromatic radiation can be used to
illustrate why beams diffracted from a single crystal rotated about one of its axes
lie on the surface of cones coaxial with the rotation axis. This interpretation of the
patterns of diffraction spots was emphasized by Bernal [10]. Suppose a simple cubic
crystal is rotated about the axis [001]. This is equivalent to rotation of the recipro-
cal lattice about the b3 axis. Figure 16 shows a portion of the reciprocal lattice ori-
ented in this manner, together with the adjacent Ewald sphere.

All crystal planes having indices (hk1) are represented by points lying on a plane
(called the “l = 1 layer”) in the reciprocal lattice, normal to b3. When the reciprocal
lattice rotates, this plane cuts the Ewald sphere in the small circle shown, and any

Figure 14 Rotating-crystal method.
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Figure 15 Rotating-crystal pattern of a quartz crystal (hexagonal) rotated about its c axis. Filtered cop-
per radiation. (The streaks are due to the white radiation not removed by the filter.) (Courtesy of B. E.
Warren.) 
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Figure 16 Reciprocal-lattice treatment of rotating-crystal method.

points on the l = 1 layer which touch the sphere surface must touch it on this circle.
Therefore all diffracted-beam vectors must end on this circle, which is equiva-
lent to saying that the diffracted beams must lie on the surface of a cone. In this par-

S>l
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ticular case, all the hk1 points shown intersect the surface of the sphere sometime
during their rotation about the b3 axis, producing the diffracted beams shown in
Fig. 16. In addition many hk0 and hk1 reflections would be produced, but these
have been omitted from the drawing for the sake of clarity.

The chief use of the rotating-crystal method and its variations were in the deter-
mination of unknown crystal structures, but the complete determination of complex
crystal structures is a subject beyond the scope of this book and outside the
province of the average materials scientist/engineer who uses x-ray diffraction as a
laboratory tool. Analyzing patterns consisting of layer lines of diffraction spots
remains important however, for polymers and is beyond the scope of this chapter.

Powder Method

In the powder method, the crystal to be examined is reduced to a very fine powder
or already is in the form of loose or consolidated microscopic grains. The sample in
a suitable holder is placed in a beam of monochromatic x-rays. Each particle of the
powder is a tiny crystal, or assemblage of smaller crystals, oriented at random with
respect to the incident beam. Just by chance, some of the crystals will be correctly
oriented so that their (100) planes, for example, can diffract the incident beam.
Other crystals will be correctly oriented for 110 reflections, and so on. The result is
that every set of lattice planes will be capable of diffraction. The mass of powder is
equivalent, in fact, to a single crystal rotated, not about one axis, but about all pos-
sible axes.

Consider one particular hkl reflection, and remember that S, S0 and Nhkl, the nor-
mal to the diffraction planes (hkl), must be coplanar. One or more little crystals
will, by chance, be so oriented that their (hkl) planes make the correct Bragg angle
for diffraction; Fig. 17(a) shows one plane in this set and the diffracted beam
formed. If this plane is now rotated about the incident beam in such a way that is
kept constant, then the diffracted beam will travel over the surface of a cone as
shown in Fig. 17 (b), the axis of the cone coinciding with the transmitted beam.

u

Nhkl

S0

90 - � 2 �

(a) (b)

�

�

Shkl

Figure 17 Formation of a diffracted cone of radiation in the powder method.
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8 Most authors term this technique the Debye–Scherrer method, but it seems reasonable to acknowl-
edge the independent and more-or-less simultaneous development in the US and Germany during the
First World War.

Equivalently, one can imagine rotating Nhkl about S0 while keeping the angle
between them equal to degrees.

This rotation does not actually occur, but the presence of a large number of crys-
tal particles having all possible orientations is equivalent to this rotation, since
among these particles there will be a certain fraction whose (hkl) planes make the
correct Bragg angle with the incident beam and which at the same time lie in all
possible rotational positions about the axis of the incident beam. The hkl reflection
from a stationary mass of powder thus has the form of a conical sheet of diffracted
radiation, and a separate cone is formed for each set of differently spaced lattice
planes.

Figure 18 shows three such cones and also illustrates a common powder-diffrac-
tion method. In this, the Hull/Debye–Scherrer method [11, 12], a narrow strip of
film is curved into a short cylinder with the specimen placed on its axis and the inci-
dent beam directed at right angles to this axis. 8 The cones of diffracted radiation
intersect the cylindrical strip of film in lines, and when the strip is unrolled and laid
flat, the resulting pattern appears as in Fig. 18(b). Actual patterns, produced by var-
ious metal powders, are shown in Fig. 19. Each diffraction line is made up of a large
number of small spots, each from a separate crystal particle, the spots lying so close
together that they appear as a continuous line. The lines are generally curved,
unless they occur exactly at 2 = 90° when they will be straight. From the measured
position of a given diffraction line on the film, can be determined, and from ,
knowing , the spacing d of the diffracting lattice planes which produced the line.

Conversely, if the shape and size of the unit cell of the crystal are known, the
position of all possible diffraction lines on the film can be predicted.The line of low-
est value is produced by diffraction from planes of the greatest spacing. In the
cubic system, for example, d is a maximum when (h2 + k2 + l2) is a minimum, and
the minimum value of this term is l, corresponding to (hkl) equal to (100). The 100
reflection is accordingly the one of lowest value. The next possible reflection will
have indices hkl corresponding to the next higher value of (h2 + k2 + l2), namely 2,
in which case (hkl) equals (110), and so on.

The reciprocal lattice of a randomly oriented powder sample consists of a series
of reciprocal lattice (rel) shells centered on the origin of the reciprocal lattice.
Remembering that all orientations are equally likely for a random powder sample,
constructing the reciprocal lattice representing the powder is straight-forward: first
draw the reciprocal lattice for a single grain and second rotate the reciprocal lattice
points through all possible orientations. Each reciprocal lattice point hkl for the
crystal becomes, therefore, a sphere of radius 1/dhkl, centered on the reciprocal lat-
tice origin (Fig. 20a). For an incident beam S0 and Bragg angles , a number of Shkluhkl

2u

2u

l

uu

u

90° � u
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Figure 18 Hull/Debye–Scherrer powder method: (a) relation of film to specimen and incident beam; (b)
appearance of film when laid flat.
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Figure 19 Hull/Debye–Scherrer powder patterns of copper (FCC), tungsten (BCC), and zinc (HCP).
Filtered copper radiation, camera diameter = 5.73 cm.
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Figure 20 (a) Reciprocal lattice shells with radii 1/d1, 1/d2, 1/d3 and 1/d4, and (b) diffraction cones from
the intersection of a reciprocal lattice shell and the Ewald sphere. When P1 is rotated about the recip-
rocal lattice origin, it intersects the Ewald sphere at P2, P3 and other points of a circle.

simultaneously satisfy Bragg’s law. The loci of Shkl are determined by the intersec-
tion of the rel shells and the Ewald sphere and consist of a series of cones centered
on S0 (diffraction in the forward direction) or on -S0 (diffraction in back-reflection).
The formation of one such cone is illustrated in Fig. 20b, but for clarity the Ewald
sphere is pictured and the reciprocal lattice shells are omitted. Instead, reciprocal
lattice point P on one shell is rotated through all possible orientations. The result-
ing intersection of the shell and the Ewald sphere is a circle, and the locus of Shkl is
a cone.

The x-ray spectrometer can be used as a tool in diffraction analysis. This instru-
ment is known as a diffractometer when it is used with x-rays of known wave-length
to determine the unknown spacing of crystal planes [13], and as a spectrometer in
the reverse case, when crystal planes of known spacing are used to determine
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Figure 21 Illustration of the role of the slit on the detector in measuring diffraction peaks in powder
diffractometry. Two diffraction cones are shown, NS is the normal to the sample, DA is the diffractome-
ter rotation axis; and S0, NS and the portions of S1 and S2 (portions of the cones intersecting the slit) are
coplanar.

unknown wavelengths.The diffractometer is always used with monochromatic radi-
ation and measurements may be made on either single crystals or polycrystal line
specimens (early developments are outline in [G.17 and G.18]), the detector inter-
cepts and measures only a short arc of any one cone of diffracted rays (Fig. 21).
Note that the diffractometer’s receiving slit is essential to the observation of dif-
fraction peaks of randomly-oriented, fine-grained powders. The diffraction cones
are always present; in fact, cones for all possible hkl are present simultaneously.The
receiving slit is necessary to eliminate all diffracted radiation except that passing
through this very narrow angular window.

Different powder diffraction techniques sample different portions of reciprocal
space, and a complete understanding of diffraction phenomena from a reciprocal
space perspective requires rigorous definition of the reciprocal space sampling
region for each technique. Developing such an understanding is beyond the scope
of this book, and the reader is referred to more comprehensive treatments of recip-
rocal space [5].

The Hull/Debye–Scherrer and other camera methods and the diffractometer are
very widely used. Powder diffraction is, of course, the only method that can be
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employed when a single-crystal specimen is not available, and this is the case more
often than not in materials work. The method is especially suited for determining
lattice parameters with high precision and for the identification of phases, whether
they occur alone or in mixtures such as polyphase alloys, corrosion products, refrac-
tories, and rocks.

9 EXPERIMENTAL VISUALIZATION OF THE RECIPROCAL LATTICE

The preceding section discussed how the rotating crystal method allowed imaging
of the distribution of reciprocal lattice points in space. Transmission electron
microscopy (TEM) also images the reciprocal lattice directly: planes through the
reciprocal lattice can be seen in certain TEM operating modes. In TEM there are a
series of three or more lenses following the sample and providing the high magni-
fications which make the TEM so useful for materials characterization. The wave-
like properties of electrons allow them to diffract from crystalline samples.
Typically in TEM, electrons are accelerated to 100 keV or higher and have wave-
lengths of 0.037 Å or lower. This acceleration allows the electrons to be transmitted
through samples whose thicknesses are on the order of 1000 Å. Because electrons
carry a charge, magnetic lenses are effective at focusing electrons (unlike the case
of x-rays where lenses can deflect the photons only a minescule fraction of a
degree.) It is important to note that most materials’ TEM imaging of materials
relies on diffracted electrons to provide image contrast.

The very small wavelength of the electrons means that the radius of the corre-
sponding Ewald sphere is very large compared to the spacing between reciprocal
lattice points or compared to the Ewald sphere diameter for x-rays. For 0.037 Å
radiation, the Ewald sphere radius is 25 Å-1 compared to ~1 Å-1 for x-rays and to
~0.5 Å-1 for the reciprocal lattice spacing. This means that the curvature of the
Ewald sphere is gradual compared to the reciprocal lattice spacings, and that, in the
vicinity of the origin of the reciprocal lattice, the Ewald sphere is essentially a plane
cutting through the reciprocal lattice (Fig. 22). As will be seen in Ch. 4, the sample’s
thinness produces reciprocal lattice points which are elongated along the thin axis
of the sample, i.e., rel rods or reciprocal lattice rods, and the rods intersect the
Ewald sphere over quite a large range of 1/d. This section of the reciprocal lattice

1Å�1
re

rx

Figure 22 Reciprocal lattice of the
orthorhombic crystal shown in Fig. 6 with the
Ewald spheres and radii rx for x-rays
and re for 100 keV electrons.

Cu Ka
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imaged by the TEM is termed a diffraction pattern and is normally identified by the
direction of incidence of the electrons, i.e., by the normal to the reciprocal lattice
plane.

The TEM ray diagram pictured in Fig. 23 shows how an image of the sample or
an image of the sample’s diffraction pattern is obtained. The incident electrons are
indicated by the arrows at the top of the figure, and one diffracted beam G and the
transmitted beam O originating from each of three points (A, B and C) in the sam-
ple illustrate the electron-sample interactions of interest here. The diffracted and
transmitted beams pass through the objective lens whose optic axis is BB´. Parallel
rays are brought to a focus in the diffraction plane, and rays diverging from a point
are recombined in the image plane. In other words, the three rays G from A, B and
C are combined at G in the diffraction plane, and the rays G and O from A recom-
bine at A´ in the image plane. If the other lenses of the TEM are focussed on the
diffraction plane, the essentially planar section of the reciprocal lattice is imaged. If
focussing is on the image plane, an image of the sample results. In other words, par-
allel directions are mapped onto a single point in the diffraction plane in just as all
(hkl) in direct space were mapped onto point hkl in reciprocal space.

Figure 24 shows a diffraction pattern recorded from a grain of NiAl with the
electron beam parallel to [100]. The four-fold symmetry expected along <100> in
the CsCl structure is clearly seen. Multiple orders of each diffraction vector are
seen simultaneously, an apparent contradiction of Bragg’s law: for a single wave-
length Bragg’s law predicts that first and second order diffraction (hkl and 2h 2k 2l)
occur at angles hkl and 2h2k2l given, for cubic axial systems, byuu

A B C

A�B�C�

G O

G O

OBJECT

OBJECTIVE LENS

DIFFRACTION PLANE

IMAGE PLANEFigure 23 TEM ray diagram showing the dif-
fraction plane and image plane.
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Figure 24 001 diffraction pattern from a grain of NiAl.

.

The question is how first and second order diffraction can occur simultaneously for
the same angle of incidence of S0 if small rotations from the Bragg angle destroy
constructive interference. Stated in other terms, the derivation of Bragg’s law
implicitly assumed that the diffraction peaks are delta functions, i.e., that the crys-
tal has an infinitely narrow range of reflection.

The resolution to this apparent contradiction lies in the fact that Bragg’s law
describes diffraction incompletely. Very small crystal or grain dimensions have very
wide diffraction ranges as a direct consequence of their small size. In other words,
significant diffracted intensity occurs at angles off the exact Bragg condition, but
development of an understanding of the factors governing diffracted intensity must
precede discussion of how far a crystal must rotate before diffracted intensity drops
to zero.

22sin uhkl � sin u2h2k2l

10 DIFFRACTION UNDER NONIDEAL CONDITIONS

In Sec 9, the discussion of diffraction patterns illustrated one consequence of devi-
ation for “ideality”. Before going any further, it is important to consider other
aspects of the derivation of Bragg’s law given in Sec. 2 in order to understand pre-
cisely under what conditions it is strictly valid. In the derivation certain ideal con-
ditions were assumed, namely a perfect crystal and an incident beam composed of
perfectly parallel and strictly monochromatic radiation. These conditions never
actually exist. For example, the incident x-ray beam in most powder diffractometers
is divergent and the characteristic lines from x-ray tubes have finite spectral widths.
Also implicit is that once x-ray photons are diffracted they will not be re-directed;
this assumption, the basis of kinematical diffraction theory, holds except for dif-
fraction from thick, highly perfect crystals.

Imperfections in the crystal(s) making up a sample can broaden the diffraction
peaks. Only the infinite crystal is really perfect and small size alone, of an otherwise
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perfect crystal, can be considered a crystal imperfection, and can lead to peak
broadening. The presence of large numbers of dislocations (i.e., strain) in the grains
of a sample can produce significant peak broadening. The inference of sample
strain or crystallite size from peak widths (or shapes) is an important part of dif-
fraction analysis of materials.

PROBLEMS

1 A transmission Laue pattern is made of a cubic crystal having a lattice parameter
of 4.00 Å.The x-ray beam is horizontal.The [ ] axis of the crystal points along the
beam towards the x-ray tube, the [ ] axis points vertically upward, and the [001]
axis is horizontal and parallel to the photographic film. The film is 5.00 cm from the
crystal.

a) What is the wavelength of the radiation diffracted from the ( ) planes?
b) Where will the reflection strike the film?

*2 A transmission Laue pattern is made of a cubic crystal in the orientation of Prob.
1. By means of a stereographic projection similar to Fig. 12, show that the beams dif-
fracted by the planes ( ), ( ), and (211), all of which belong to the zone [ ],
lie on the surface of a cone whose axis is the zone axis. What is the angle between
the zone axis and the transmitted beam?
3 Determine, and list in order of increasing angle, the values of and (hkl) for the
first three lines (those of lowest values) on the powder patterns of substances
with the following structures, the incident radiation being :

a) simple cubic (a = 3.00 Å),
b) simple tetragonal (a = 2.00 Å, c = 3.00 Å),
c) simple tetragonal (a = 3.00 Å, c = 2.00 Å),
d) simple rhombohedral (a = 3.00 Å, = 80°).

4 Plot the reciprocal lattice for a polycrystalline sample of a material with a simple
tetragonal structure and lattice parameters a = 4.0 Å and c = 5.0 Å. (Use a two-
dimensional section through the three-dimensional space).
5 Sketch the Ewald sphere construction for 200 diffraction with radiation
and a polycrystalline specimen of a simple cubic substance with a = 3.30 Å.
Graphically determine the angular rotation required to orient the sample for 300
diffraction if a diffractometer is being used.
6 Diffractometers typically can scan up to, but not beyond, 165° . For the sample
in Problem 4, what are the indices (i.e., hkl) of the highest angle reflection if (a)

radiation is used, (b) radiation is used and c) radiation is
used?

Cr KaCu KaAg Ka

2u
u � 2u

Mo Ka

a

Cu Ka
2u

2u

f
120213210

310
310

100
010
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(a)
a

b
c

(b)
Figure 1 (a) Base-centered and (b) body-
centered orthorhombic unit cells.

Diffraction II: Intensities

of Diffracted Beams
1 INTRODUCTION

As stated earlier, the positions of the atoms in the unit cell affect the intensities but
not the directions of the diffracted beams. That this must be so may be seen by con-
sidering the two structures shown in Fig. 1. Both are orthorhombic with two atoms
of the same kind per unit cell, but the one on the left is base-centered and the one
on the right body-centered. Either is derivable from the other by a simple shift of
one atom by the vector c.

Consider 001 diffraction with the aid of Fig. 2 which shows the (001) planes in
profile. For the base-centered lattice shown in (a), suppose that Bragg’s law is sat-
isfied for the particular values of and employed. This means that the path dif-
ference ABC between rays 1´ and 2´ is one wavelength, so that rays 1´ and 2´ are in
phase and diffraction occurs in the direction shown. Similarly, in the body-centered
lattice shown in (b), rays 1´ and 2´ are in phase, since their path difference ABC is
one wavelength. However, in this case, there is another plane of atoms midway
between the (001) planes, and the path difference DEF between rays 1´ and 3´ is
exactly half of ABC, or one-half wavelength. Thus rays 1´ and 3´ are completely out
of phase and annul each other. Similarly, ray 4´ from the next plane of scatterers
down (not shown) annuls ray 2´, and so on throughout the crystal. There is no 001
reflection from the body-centered lattice.

ul

1
2

From Chapter 4 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 2 Diffraction from the (001) planes of scatterers in (a) base-centered and (b) body-centered
orthorhombic lattices.

This example shows how a simple rearrangement of atoms within the unit cell
can eliminate a reflection completely. More generally, the intensity of a diffracted
beam is changed, not necessarily to zero, by any change in atomic positions, and,
conversely, atomic positions can be determined only by observations of diffracted
intensities. To establish an exact relation between atom position and intensity is the
main purpose of this chapter. The problem is complex because of the many vari-
ables involved, and the relationship must be developed step by step: first by con-
sidering how x-rays are scattered by a single electron, then by an atom, and finally
by all the atoms in the unit cell. These results are applied next to the powder
method of x-ray diffraction and, to obtain an expression for the intensity of a pow-
der pattern line, a number of other factors which affect the way in which a crys-
talline powder diffracts x-rays must be included.

2 SCATTERING BY AN ELECTRON

An x-ray beam can be described as an electromagnetic wave characterized by an
electric field whose strength varies sinusoidally with time at any one point in the
beam. Since an electric field exerts a force on a charged particle such as an electron,
the oscillating electric field of an x-ray beam will set any electron it encounters into
oscillatory motion about its mean position.

Now an accelerating or decelerating electron emits an electromagnetic wave. An
example of this phenomenon appeared in the discussion of the x-ray tube, where
x-rays are emitted because of the rapid deceleration of the electrons striking the
target. Similarly, an electron which has been set into oscillation by an x-ray beam is
continuously accelerating and decelerating during its motion and therefore emits
an electromagnetic wave. In this sense, an electron is said to scatter x-rays, the scat-
tered beam being simply the beam radiated by the electron under the action of the
incident beam. The scattered beam has the same wavelength and frequency as the
incident beam and is said to be coherent with it, since there is a definite relationship
between the phase of the scattered beam and that of the incident beam which pro-
duced it. (The phase change on scattering from an electron is . Because it is
exactly the same for all the electrons in a crystal, it cancels in any consideration of

p>2

Diffraction II: Intensities of Diffracted Beams
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phase differences between rays scattered by different atoms, and so does not affect
the derivation of Bragg’s law.)

Although x-rays are scattered in all directions by an electron, the intensity of the
scattered beam depends on the angle of scattering, in a way which was first demon-

a single electron of charge e coulombs (C) and mass m kg, at a distance r meters
from the electron, is given by

(1)

where Io = intensity of the incident beam, , K = constant,
and between the scattering direction and the direction of acceleration of
the electron. Suppose the incident beam is traveling in the direction Ox
(Fig. 3) and encounters an electron at O.The scattered intensity at P in the xz plane,
where OP is inclined at a scattering angle of to the incident beam, is what must
be determined. An unpolarized incident beam, such as that issuing from an x-ray
tube, has its electric vector E in a random direction in the yz plane. This beam may
be resolved into two plane-polarized components, having electric vectors Ey and Ez
where

On the average, Ey will be equal to Ex, since the direction of E is perfectly random.
Therefore

The intensity of these two components of the incident beam is proportional to the
square of their electric vectors, since E measures the amplitude of the wave and the
intensity of a wave is proportional to the square of its amplitude. Therefore

IOy � IOz � 1
2IO.

Ey
2 � Ez

2 � 1
2E

2.

E2 � Ey
2 � Ez

2.

2u

a � angle
m0 � 4p � 10�7 m kg C�2

I � IO a
mO

4p
b

2

a
e4

m2r2b sin2 a � IO 
K

r2  sin2 a,
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Figure 3 Coherent scattering of x-rays by a
single electron.

strated by J. J.Thomson [1]. He found that the intensity I of the beam scattered by
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The y component of the incident beam accelerates the electron in the direction
Oy. It therefore gives rise to a scattered beam whose intensity at P is found from
Eq. (1) to be

since . Similarly, the intensity of the scattered z component is
given by

since . The total scattered intensity at P is obtained by summing the
intensities of these two scattered components:

(2)

This is the Thomson equation for the scattering of an x-ray beam by a single elec-
tron. The intensity of the scattered beam is only a minute fraction of the intensity
of the incident beam; the value of K is , so that Ir/Io is only

in the forward direction at 1 cm from the electron. The equation also
shows that the scattered intensity decreases as the inverse square of the distance
from the scattering electron, as one would expect, and that the scattered beam is
stronger in forward or backward directions than in a direction at right angles to the
incident beam.

The Thomson equation gives the absolute intensity (in ergs/sq cm/sec) of the
scattered beam in terms of the absolute intensity of the incident beam. These
absolute intensities are both difficult to measure and difficult to calculate, so it is
fortunate that relative values are sufficient for practically all diffraction problems.
In most cases, all factors in Eq. (2) except the last are constant during the experi-
ment and can be omitted. This last factor, , is called the polarization
factor; this is a rather unfortunate term because this factor enters the equation sim-
ply because the incident beam is unpolarized. The polarization factor is common to
all intensity calculations, and it appears later in the equation for the intensity of a
beam diffracted by a crystalline powder. If a monochromator is used, for example

1
2 11 � cos2 2u2

7.94 � 10�26
7.94 � 10�30 m2

� IO 
K
r2 a

1 � cos2 2u
2

b.

�
K
r2 a

IO

2
�

IO

2
 cos2 2ub

�
K
r2 1IOy � IOzcos2 2u2

IP � IPy � IPz

a � p>2 � 2u

IPz � IOz 
K
r2 cos2 2u,

a � �yOP � p>2

IPy � IOy 
K
r2.
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with a diffractometer, the polarization factor must include an additional term
depending on , the Bragg angle for the monochromator, and it is

.
There is another and quite different way in which an electron can scatter x-rays,

and that is manifested in the Compton effect. This effect, discovered by A. H.

electrons and can be understood only by considering the incident beam not as a
wave but as a stream of x-ray quanta or photons, each of energy hv1. When such a
photon strikes a loosely bound electron, the collision is an elastic one like that of
two billiard balls (Fig. 4). The electron is knocked aside and the photon deflects
through an angle . Since some of the energy of the incident photon is used in pro-
viding kinetic energy for the electron, the energy hv2 of the photon after impact is
less than its energy hv1 before impact. The wavelength of the scattered radiation
is thus slightly greater than the wavelength of the incident beam, the magnitude
of the change being given by the equation

(3)

The increase in wavelength depends only on the scattering angle, and it varies from
zero in the forward direction to 0.05 Å in the extreme backward direction

.
Radiation so scattered is called Compton modified radiation, and, besides having

its wavelength increased, it has the important characteristic that its phase has no
fixed relation to the phase of the incident beam. For this reason it is also known as
incoherent radiation. It cannot take part in diffraction because its phase is only ran-
domly related to that of the incident beam and cannot therefore produce any inter-
ference effects. Compton modified scattering cannot be prevented, however, and it
has the undesirable effect of increasing the background in diffraction patterns.

(It should be noted that quantum theory can account for both the coherent and
the incoherent scattering, whereas the wave theory is applicable only to the former.
In terms of quantum theory, coherent scattering occurs when an incident photon
bounces off an electron which is so tightly bound that the electron receives no
momentum from the impact. The scattered photon therefore has the same energy,
and hence wavelength, as it had before.)

12u � 180°2
12u � 02

¢l1A
�

2 � l2 � l1 � 0.0486  sin2 u.
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l2

2u

1>211 � cos2 2u cos2 2uM2
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hv2

e

e

2�
Figure 4 Elastic collision of photon and electron
(Compton effect).

Compton in 1923 [2], occurs whenever x-rays encounter loosely bound or free
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3 SCATTERING BY AN ATOM

A
D

C
B

Y

Y�
X

X�

2�

Figure 5 X-ray scattering by an atom.

When an x-ray beam encounters an atom, each electron in it scatters part of the
radiation coherently in accordance with the Thomson equation. One might also
expect the nucleus to take part in the coherent scattering, since it also bears a
charge and should be capable of oscillating under the influence of the incident
beam. However, the nucleus has an extremely large mass relative to that of the elec-
tron and cannot be made to oscillate to any appreciable extent; in fact, the Thomson
equation shows that the intensity of coherent scattering is inversely proportional to
the square of the mass of the scattering particle.The net effect is that coherent scat-
tering by an atom is due only to the electrons contained in that atom.

The following question then arises: is the wave scattered by an atom simply the
sum of the waves scattered by its component electrons? More precisely, does an
atom of atomic number Z, i.e., an atom containing Z electrons, scatter a wave whose
amplitude is Z times the amplitude of the wave scattered by a single electron? The
answer is yes, if the scattering is in the forward direction , because the
waves scattered by all the electrons of the atom are then in phase and the ampli-
tudes of all the scattered waves can be added directly.

This is not true for other directions of scattering.The fact that the electrons of an
atom are situated at different points in space introduces differences in phase
between the waves scattered by different electrons. Consider Fig. 5, in which, for
simplicity, the electrons are shown as points arranged around the central nucleus.
The waves scattered in the forward direction by electrons A and B are exactly in
phase on a wave front such as XX´, because each wave has traveled the same dis-
tance before and after scattering. The other scattered waves shown in the figure,
however, have a path difference equal to (CB - AD) and are thus somewhat out of
phase along a wave front such as YY´, the path difference being less than one wave-

12u � 02
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length. Partial interference occurs between the waves scattered by A and B, with
the result that the net amplitude of the wave scattered in this direction is less than
that of the wave scattered by the same electrons in the forward direction.

A quantity f, the atomic scattering factor, is used to describe the “efficiency” of
scattering of a given atom in a given direction. It is defined as a ratio of amplitudes:

From what has been said already, it is clear that f = Z for any atom scattering in the
forward direction. As increases, however, the waves scattered by individual elec-
trons become more and more out of phase and f decreases. The atomic scattering
factor depends also on the wavelength of the incident beam: at a fixed value of , f
will be smaller the shorter the wavelength, since the path differences will be larger
relative to the wavelength, leading to greater interference between the scattered
beams. The actual calculation of f involves rather than , so that the net effect
is that f decreases as the quantity increases. The scattering factor f is some-
times called the form factor, because it depends on the way in which the electrons
are distributed around the nucleus.

Calculated values of f for various atoms and various values of are tabu-
lated in Appendix: Lorentz-Polarization Factor, and a curve showing the typical
variation of f, in this case for copper, is given in Fig. 6. Note again that the curve
begins at the atomic number of copper, 29, and decreases to very low values for
scattering in the backward direction or for very short wavelengths.
Since the intensity of a wave is proportional to the square of its amplitude, a curve
of scattered intensity from an atom can be obtained simply by squaring the ordi-
nates of a curve such as Fig. 6.

1u near 90°2

1sin u2>l

1sin u2>l
usin u

u

u

f �
amplitude of the wave scattered by an atom

amplitude of the wave scattered by one electron
.
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Figure 6 The atomic scattering factor of cop-
per.
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Strictly, the scattering factors f tabulated in Appendix: Lorentz-Polarization
Factor apply only when the scattered radiation has a wavelength much shorter than
that of an absorption edge of the scattering atom. When these two wavelengths are
nearly the same, a small correction to f must be applied in precise work. Ordinarily,
this effect, called anomalous dispersion, is neglected.

The scattering just discussed, whose amplitude is expressed in terms of the atom-
ic scattering factor, is coherent, or unmodified, scattering, which is the only kind
capable of being diffracted. On the other hand, incoherent, or Compton modified,
scattering is occurring at the same time. Since the latter is due to collisions of quan-
ta with loosely bound electrons, its intensity relative to that of the unmodified
radiation increases as the proportion of loosely bound electrons increases. The
intensity of Compton modified radiation thus increases as the atomic number Z
decreases. It is for this reason that it is sometimes difficult to obtain good diffrac-
tion patterns of organic materials, which contain light elements such as carbon,
oxygen, and hydrogen, since the strong Compton modified scattering from these
substances increases the background and makes it difficult to observe the diffrac-
tion lines formed by the unmodified radiation. It is also found that the intensity of
the modified radiation increases as the quantity increases. The intensities
of modified scattering and of unmodified scattering therefore vary in opposite ways
with Z and with .

To summarize, when a monochromatic beam of x-rays strikes an atom, two scat-
tering processes occur. Tightly bound electrons are set into oscillation and radiate
x-rays of the same wavelength as that of the incident beam. More loosely bound
electrons scatter part of the incident beam and slightly increase its wavelength in
the process, the exact amount of increase depending on the scattering angle. The
former is called coherent or unmodified scattering and the latter incoherent or
modified; both kinds occur simultaneously and in all directions. If the atom is a part
of a large group of atoms arranged in space in a regular periodic fashion as in a crys-
tal, then another phenomenon occurs. The coherently scattered radiation from all
the atoms undergoes reinforcement in certain directions and cancellation in other
directions, thus producing diffracted beams. Diffraction is, essentially, reinforced
coherent scattering.

The chief effects associated with the passage of x-rays through matter are sum-
marized schematically in Fig. 7. The incident x-rays are assumed to be of high
enough energy, i.e., of short enough wavelength, to cause the emission of photo-
electrons and characteristic fluorescent radiation. The Compton recoil electrons
shown in the diagram are the loosely bound electrons knocked out of the atom by
x-ray quanta, the interaction giving rise to Compton modified radiation.Auger elec-
trons are those ejected from an atom by characteristic x-rays produced within the
atom.

1sin u2>l

1sin u2>l
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4 SCATTERING BY A UNIT CELL

To arrive at an expression for the intensity of a diffracted beam, the coherent scat-
tering must be considered, not from an isolated atom but from all the atoms mak-
ing up the crystal. The mere fact that the atoms are arranged in a periodic fashion
in space means that the scattered radiation is now severely limited to certain defi-
nite directions and is now referred to as a set of diffracted beams. The directions of
these beams are fixed by Bragg’s law, which is, in a sense, a negative law. If Bragg’s
law is not satisfied, no diffracted beam can occur; however, Bragg’s law may be sat-
isfied for a certain set of atomic planes and yet no diffraction may occur, as in the
example given at the beginning of this chapter, because of a particular arrangement
of atoms within the unit cell [Fig. 2(b)].

Assuming that Bragg’s law is satisfied, the goal is to find the intensity of the
beam diffracted by a crystal as a function of atom position. Since the crystal is mere-
ly a repetition of the fundamental unit cell, it is enough to consider the way in which
the arrangement of atoms within a single unit cell affects the diffracted intensity.

Qualitatively, the effect is similar to the scattering from an atom, discussed in the
previous section. Phase differences are found for the waves scattered by the indi-
vidual electrons, for any direction of scattering except the extreme forward direc-
tion. Similarly, the waves scattered by the individual atoms of a unit cell are not nec-
essarily in phase except in the forward direction, and determining how the phase
difference depends on the arrangement of the atoms is the problem at hand.

This problem is most simply approached by finding the phase difference
between waves scattered by an atom at the origin and another atom whose position
is variable in the x direction only. For convenience, consider an orthogonal unit cell,
a section of which is shown in Fig. 8. Take atom A as the origin and orient the inci-
dent beam S0 so that h00 diffractions occurs. The planes through the array of scat-
terers are shown as heavy lines in the drawing. This means that Bragg’s law is satis-

Diffraction II: Intensities of Diffracted Beams

incident beam

absorbing substance

heat

transmitted beam
electrons

fluorescent x-rays

scattered x-rays

unmodified
(coherent)

Compton modified
(incoherent)

Compton recoil
electrons

photoelectrons

Auger electrons

Figure 7 Effects produced by the passage of x-rays through matter, after Henry, Lipson, and Wooster
[G.15].
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Figure 8 The effect of atom position on
the phase difference between diffracted
rays..

fied for this reflection and that the path difference between ray 2´ and ray 1´, is
given by

From the definition of Miller indices,

How is this reflection affected by x-rays scattered in the same direction by atom
B, located at a distance x from A? Note that only this direction need be considered
since only in this direction is Bragg’s law satisfied for the h00 reflection. Clearly, the
path difference between ray 3´ and ray 1´, will be less than ; by simple propor-
tion it is found to be

Phase differences may be expressed in angular measure as well as in wavelength:
two rays, differing in path length by one whole wavelength, are said to differ in
phase by , or radians. If the path difference is , then the phase difference 
in radians is given by

The use of angular measure is convenient because it makes the expression of phase
differences independent of wavelength, whereas the use of a path difference to
describe a phase difference is meaningless unless the wavelength is specified.

The phase difference, then, between the wave scattered by atom B and that scat-
tered by atom A at the origin is given by

f3¿1¿
�
d3¿1¿

l
 12p2 �

2phx
a

.

f �
d

l
 12p2.

fd2p360°

d3¿1¿
� RBS �

AB
AC

 1l2 �
x

a>h
 1l2.

ld3¿1¿

dh00 � AC �
a
h

.

d2¿1¿
� MCN � 2dh00 sin  u � l.

d2¿1¿
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If the position of atom B is specified by its fractional coordinate u = x/a, then the
phase difference becomes

This reasoning may be extended to three dimensions, as in Fig. 9, in which atom
B has actual coordinates x y z or fractional coordinates equal to u v w, respec-
tively. The following important relationship then applies between the phase differ-
ence between the wave scattered by atom B and that scattered by atom A at the ori-
gin, for the hkl reflection:

(4)

This relation is general and applicable to a unit cell of any shape. Figure 9 shows the
planes with Miller indices hkl but one should always remember that interference
between x-rays scattered from the atoms produces the diffracted beams and not
reflection from “planes.”

These two waves may differ, not only in phase, but also in amplitude if atom B
and the atom at the origin are of different kinds. In that case, the amplitudes of
these waves are given, relative to the amplitude of the wave scattered by a single
electron, by the appropriate values of f, the atomic scattering factor.

The problem of scattering from a unit cell resolves itself, therefore, into one of
adding waves of different phase and amplitude in order to find the resultant wave.
Waves scattered by all the atoms of the unit cell, including the one at the origin,
must be added. The most convenient way of carrying out this summation is by
expressing each wave as a complex exponential function.

f � 2p1hu � kv � lw2.

x
a 

y
b zc

f3¿1¿
� 2phu.
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Figure 9 The three-dimensional
analog of Fig. 8.
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Figure 10 The addition of sine waves of different phase and amplitude.
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Figure 11 Vector addition of waves.

The two waves shown as full lines in Fig. 10 represent the variations in electric
field intensity E with time t of two rays on any given wave front in a diffracted x-
ray beam. Their equations may be written

(5)

(6)

These waves are of the same frequency and therefore of the same wavelength ,
but differ in amplitude A and in phase . The dotted curve shows their sum E3,
which is also a sine wave, but of different amplitude and phase.

Waves differing in amplitude and phase may also be added by representing them
as vectors. In Fig. 11, each component wave is represented by a vector whose length
is equal to the amplitude of the wave and which is inclined to the x-axis at an angle
equal to the phase angle. The amplitude and phase of the resultant wave are then
found simply by adding the vectors by the parallelogram law.

This geometrical construction may be avoided by use of the following analytical
treatment, in which complex numbers are used to represent the vectors. A complex
number is the sum of a real and an imaginary number, such as , where a and
b are real and i is imaginary. Such numbers may be plotted in the “complex
plane,” in which real numbers are plotted as abscissae and imaginary numbers as
ordinates. Any point in this plane, or the vector drawn from the origin to this point,
then represents a particular complex number .1a � bi2

� 2�1
1a � bi2

f

ln

E2 � A2 sin 12pnt � f22.

E1 � A1 sin 12pnt � f12
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To find an analytical expression for a vector representing a wave, draw the wave
vector in the complex plane as in Fig. 12. Here again the amplitude and phase of the
wave are given by A, the length of the vector, and , the angle between the vector
and the axis of real numbers.The analytical expression for the wave is now the com-
plex number , since these two terms are the horizontal and
vertical components OM and ON of the vector. Note that multiplication of a vec-
tor by i rotates it counterclockwise by ; thus multiplication by i converts the hor-

2=–1,
rotates a vector through or reverses its sense; thus multiplication twice by
i converts the horizontal vector 2 into the horizontal vector -2 pointing in the oppo-
site direction.

Comparing the power-series expansions of , , and and yields

(7)

or

(8)

Thus the wave vector may be expressed analytically by either side of Eq. (8). The
expression on the left is called a complex exponential function.

Since the intensity of a wave is proportional to the square of its amplitude, an
expression is needed for A2, the square of the absolute value of the wave vector.
When a wave is expressed in complex form, this quantity is obtained by multiply-
ing the complex expression for the wave by its complex conjugate, which is
obtained simply by replacing i by -i. Thus, the complex conjugate of is .
Thus,

(9)

which is the quantity desired. Or, using the other form given by Eq. (8),

A1cos  f � i  sin  f2 A1cos  f � i  sin  f2 � A2 1cos2 f � sin2 f2 � A2.

0Aeif 0 2 � AeifAe�if � A2,

Ae�ifAeif

Aeif � A  cos f � Ai  sin  f.

eix � cos x � i  sin  x

sin xcos xeix

180°

90°

1A cos f �  iA sin f2

f
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Figure 12 A wave vector in the complex plane.

izontal vector 2 into the vertical vector 2i. Multiplication twice by i, that is, by     i
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Adding the scattered waves from each of the atoms in the unit cell requires addi-
tion of the complex numbers representing the amplitude and phase of each wave.
The amplitude of each wave is given by the appropriate value of f for the scatter-
ing atom considered and the value of involved in the reflection. The phase
of each wave is given by Eq. (4) in terms of the hkl reflection considered and the
uvw coordinates of the atom. Using the previous relations, any scattered wave can
be expressed in the complex exponential form:

(10)

The resultant wave scattered by all the atoms of the unit cell is called the structure
factor, because it describes how the atom arrangement, given by uvw for each atom,

obtained by simply adding together all the waves scattered by the individual atoms.
If a unit cell contains atoms , with fractional coordinates

then the structure factor for the hkl reflection is given by

This equation may be written more compactly as 

(11)

where the summation extends over all N atoms of the unit cell.
F is, in general, a complex number, and it expresses both the amplitude and

phase of the resultant wave. Its absolute value gives the amplitude of the result-
ant wave in terms of the amplitude of the wave scattered by a single electron. Like
the atomic scattering factor f, is defined as a ratio of amplitudes:

The intensity of the beam diffracted by all atoms of the unit cell in a direction pre-
dicted by Bragg’s law is proportional simply to , the square of the amplitude of
the resultant beam, and is obtained by multiplying the expression given for F
in Eq. (11) by its complex conjugate F*. Equation (11) is therefore a very important
relation in x-ray crystallography, since it permits a calculation of the intensity of any
hkl reflection from a knowledge of the atomic positions.

The result in Eg. 11 describes the wave scattered from the unit cell by adding
together waves, differing in phase, scattered by individual atoms in the unit cell.
Note that the phase difference between rays scattered by any two atoms, such as A
and B in Fig. 8, is constant for every unit cell. In the direction predicted by Bragg’s
law, the rays scattered by all the atoms A in the crystal are exactly in phase and so
are the rays scattered by all the atoms B, but between these two sets of rays there

0F 0 2
0F 0 2

0F 0 �
amplitude of the wave scattered by all the atoms of a unit cell

amplitude of the wave scattered by one electron
.

0F 0

0F 0

Fhkl �
N

1
fne2pi1hun�kvn� lwn2,

F � f1e
2pi1hu1�kv1� lw 12 � f2e

2pi1hu2�kv2� lw22 � f3e
2pi1hu3�kv3� lw32 � p

u1 v1 w1, u2 v2 w2, u3 v3 w3, p

1, 2, 3, p , N

Aeif � fe2pi1hu�kv� lw2.

1sin u2>l
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affects the scattered beam [3]. The structure factor, designated by the symbol F, is

a
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is a definite phase difference which depends on the relative positions of atoms A
and B in the unit cell and which is given by Eq. (4).

Although it is more unwieldy, the following trigonometric equation may be used
instead of Eq. (11):

(12)

One such term must be written down for each atom in the unit cell. In general, the
summation will be a complex number of the form

where

and
(13)

Substitution for a and b gives the final form of the equation:

(14)

Equation (11) is much easier to manipulate, compared to this trigonometric from,
particularly if the structure is at all complicated, since the exponential form is more
compact.

� 3 f1 sin  2p1hu1 � kv1 � lw12 � f2 sin  2p1hu2 � kv2 � lw22 � p 22.

0F 0 2 � 3 f1 cos  2p1hu1 � kv1 � lw12 � f2 cos  2p1hu2 � kv2 � lw22 � p 22

0F 0 2 � 1a � ib2 1a � ib2 � a2 � b2.

b �
N

1
fn sin  2p1hun � kvn � lwn2

a �
N

1
fn cos  2p1hun � kvn � lwn2,

F � a � ib,

F �
N

1
fn 3cos  2p1hun � kvn � lwn2 � i  sin  2p1hun � kvn � lwn2 4 .

5 SOME USEFUL RELATIONS

In calculating structure factors by complex exponential functions, many particular
relations occur often enough to be worthwhile stating here.They may be verified by
means of Eq. (7).

a)   

b)   e2pi � e4pi � e6pi � �1,

epi � e3pi � e5pi � �1,

Diffraction II: Intensities of Diffracted Beams
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c)   

d)   

e)   eip � e�ip � 2  cos  x. 

enpi � e�npi, where n is any integer,

In general, enpi � 1�12n, where n is any integer,

6 STRUCTURE-FACTOR CALCULATIONS

Facility in the use of Eq. (11) can be gained only by working actual examples, such
as those found here.

a) The simplest case is that of a unit cell containing only one atom at the origin, i.e.,
having fractional coordinates 0 0 0. Its structure factor is

and 

F2 is thus independent of h, k, and l and is the same for all reflections.

b) Consider now the base-centered cell discussed at the beginning of this chapter
and shown in Fig. 1(a). It has two atoms of the same kind per unit cell located at 0
0 0 and 0.

This expression may be evaluated without multiplication by the complex conjugate,
since (h + k) is always integral, and the expression for F is thus real and not com-
plex. If h and k are both even or both odd, i.e., “unmixed,” then their sum is always
even and has the value 1. Therefore

On the other hand, if h and k are one even and one odd, i.e., “mixed,” then their
sum is odd and has the value -1. Therefore

Note that, in either case, the value of the l index has no effect on the structure fac-
tor. For example, the reflections 111, 112, 113, and 021, 022, 023 all have the same
value of F, namely 2f. Similarly, the reflections 011, 012, 013, and 101, 102, 103 all

F2 � 0.

F � 0 for h and k mixed;

epi1h�k2

F2 � 4f2.

F � 2f  for h and k unmixed;

epi1h�k2

� f 31 � epi1h�k2 4 .

F � fe2pi102 � fe2pi1h>2�k>22

1
2

1
2

F 2 � f 2.

F � fe2pi102 � f
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have a zero structure factor and are systematically absent [4].
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c) The structure factor of the body-centered cell shown in Fig. 1(b) may also be cal-
culated. This cell has two atoms of the same kind located at 0 0 0 and .

The earlier geometrical conclusion that the base-centered cell would produce a
001 reflection but that the body-centered cell would not agrees with the structure-
factor equations for these two cells. A detailed examination of the geometry of all
possible reflections, however, would be a very laborious process compared to the
straightforward calculation of the structure factor, a calculation that yields a set of
rules governing the value of F2 for all possible values of indices h, k and l.

d)A face-centered cubic cell may now be considered.Assume it contains four atoms
of the same kind, located at 0 0 0, 0, 0 , and 0 .

If h, k, and l are unmixed, then all three sums (h + k) , (h + l), and (k + l) are even
integers, and each term in the above equation has the value 1.

If h, k, and l are mixed, then the sum of the three exponentials is -1, whether two of
the indices are odd and one even, or two even and one odd. Suppose, for example,
that h and l are even and k is odd, e.g., 012.Then and no
reflection occurs.

Thus, reflections may occur for such planes as (111), (200), and (220) but not for the
planes (100), (210), (112), etc.

F2 � 0

F � 0 for mixed indices;

F � f 11 � 1 � 1 � 12 � 0,

F2 � 16f2.

F � 4f  for unmixed indices;

� f 31 � epi1h�k2 � epi1k� l2 � epi1h� l2 4 .

F � fe2pi102 � fe2pi1h>2�k>22 � fe2pi1k>2� l>22 � fe2pi1h>2� l>22

1
2

1
2

1
2

1
2

1
2

1
2

F2 � 0.

                   F � 0                     when 1h � k � l2 is odd;

F � 4f2.

                 F � 2f                   when 1h � k � l2 is even;

� f 31 � epi1h�k� l2 4 .

F � fe2pi102 � fe2pi1h>2�k>2� l>22

1
2

1
2

1
2
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Bravais lattice Reflections possibly present Reflections necessarily absent

Simple
Base-centered
Body-centered
Face-centered

all

h and k unmixed*

(h + k + l) even
h, k, and l unmixed

* These relations apply to a cell centered on the C face. If reflections are present only when h and l ar
unmixed, or when k and l are unmixed, then the cell is centered on the B or A face, respectively.

none
h and k mixed*
(h + k + l) odd
h, k, and l mixed

1 Strictly, and if the calculation of F is to be made to the highest accuracy, scattering factors f for the ions
Na+ and Cl- must be used, rather than the f values for the neutral atoms Na and Cl, because NaCl is ion-
ized.

mation given was not used in the calculations. In (a), for example, the cell was said
to contain only one atom, but the shape of the cell was not specified; in (b) and (c),
the cells were described as orthorhombic and in (d) as cubic, but this information
did not enter into the structure-factor calculations. This illustrates the important
point that the structure factor is independent of the shape and size of the unit cell. For
example, any body-centered cell will have missing reflections for those planes
which have (h + k + l) equal to an odd number, whether the cell is cubic, tetrago-
nal, or orthorhombic. The rules derived in the above examples are therefore of
wider applicability than would at first appear and demonstrate the close connection
between the Bravais lattice of a substance and its diffraction pattern.They are sum-
marized in Table 1. These rules are subject to some qualification, since some cells
may contain more atoms than the ones given in examples (a) through (d), and these
atoms may be in such positions that reflections normally present are now missing.
For example, diamond has a face-centered cubic lattice, but it contains eight carbon
atoms per unit cell. All the reflections present have unmixed indices, but reflections
such as 200, 222, 420, etc., are missing.The fact that the only reflections present have
unmixed indices proves that the lattice is face-centered, while the extra missing
reflections are a clue to the actual atom arrangement in this crystal.

e)This point may be further illustrated by the structure of NaCl. This crystal has a
cubic lattice with 4 Na and 4 Cl atoms per unit cell, located as follows:

In this case, the proper atomic scattering factors for each atom1 must be inserted in
the structure-factor equation, which will have eight terms:

F � fNae
2pi102 � fNae

2pi1h>2�k>22 � fNae
2pi1h>2�l>22 � fNae

2pi1k>2�l>22

      Cl         12  
1
2  

1
2     0 0 12    0 12 0     12 0 0

Na         0 0 0  1
2 

1
2 0  1

2 0 12  0 12 
1
2

TABLE 1

The reader may have noticed in the previous examples that some of the infor-
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The sodium-atom positions are related by the face-centering translations and so
are the chlorine-atom positions. Whenever a lattice contains common translations,
the corresponding terms in the structure-factor equation can always be factored out,
leading to considerable simplification. In this case:

The signs of the exponents in the second bracket may be changed, by relation (d)
of Sec. 5. Therefore

Here the terms corresponding to the face-centering translations appear in the first
factor; the second factor contains the terms that describe the “basis” of the unit cell,
namely, the Na atom at 0 0 0 and the Cl atom at . The terms in the first brack-
et, describing the face-centering translations, have already appeared in example (d),
and they were found to have a total value of zero for mixed indices and 4 for
unmixed indices. This shows at once that NaCl has a face-centered lattice and that

For unmixed indices,

In this case, there are more than four atoms per unit cell, but the lattice is still face-
centered. The introduction of additional atoms has not eliminated any reflections
present in the case of the four-atom cell, but it has decreased some in intensity. For

F2 � 161fNa � fCl2
2.

F � 41fNa � fCl2   if 1h � k � l2 is odd;

F2 � 161fNa � fCl2
2.

F � 41fNa � fCl2   if 1h � k � l2 is even;

F � 4 3 fNa � fCle
pi1h�k�l2 4 .

F 2 � 0.

F � 0             for mixed indices;

1
2

1
2

1
2

F � 31 � epi1h�k2 � epi1h� l2 � epi1k� l2 4 3 fNa � fCle
pi1h�k�l2 4 .

� fCle
pi1h�k�l2 31 � epi1�h�k2 � epi1�h�l2 � epi1�k�l2 4 .

F � fNa 31 � epi1h�k2 � epi1h�l2 � epi1k�l2 4

�fCl 3e
pi1h�k�l2 � epil � epik � epih 4 .

F � fNa 31 � epi1h�k2 � epi1h�l2 � epi1k�l2 4

� fCle
2pi1h>2�k>2� l>22 � fCle

2pi1l>22 � fCle
2pi1k>22 � fCle

2pi1h>22,
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example, the 111 reflection now involves the difference, rather than the sum, of the
scattering powers of the two atoms.

The student should carefully note that a lot of algebra can be eliminated, when-
ever a lattice is known to be centered in any way, by factoring common translations
out of the structure-factor equation and inserting immediately the known values of
the terms representing these translations. This shortcut procedure is illustrated for
NaCl:

1. Write down the atom positions in abbreviated form:

2. Write down the equation for F as a product of two factors. The first is the
value of the terms representing the common translations; the second has
terms corresponding to the “basis” atoms of the cell. The equation is

3. Simplify further, as necessary. In all structure-factor calculations the aim is
to obtain a set of general equations that will give the value of F for any
value of hkl.

This shortcut procedure is illustrated again, for the ZnS structure, in Sec. 13.
Before proceeding to the final example of this section, the effect of a specific

basis on the non-systematically absent reflections will be illustrated using vector
addition in the complex plane and the diamond structure discussed in example (d).
The carbon atom positions are:

Therefore,

Three types of interference result for the non-systematically absent reflections (h,
k, l unmixed), depending on whether (i) h, k and l are odd, (ii) h + k + l is an even
multiple of two or (iii) h + k + l is an odd multiple of two, and the results for a sin-
gle basis are plotted in the complex plane for (i) - (iii) in Fig. 13 (left, middle and

unmixed indices
mixed indicies.  

F � £
4
0
§ fc 51 � epi1h�k� l2>26

4 C at 14 
1
4 

1
4     �   face—centering translations.

4 C at 0 0 0  �   face—centering translations,

unmixed indices
mixed indices.   

F � £
4
0
§ 3 fNa � fCle

pi1h�k� l2 4

4 Cl  at 12 
1
2 

1
2     �   face—centering translations.

4 Na at 0 0 0  �   face—centering translations,
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right), respectively. Multiplying the basis resultant by four (there are four bases per
unit cell) yields the structure factor. Thus the fcc-allowed reflections 200 and 222
produce no diffracted intensity for the diamond cubic structure, and the structure
factor for hkl-odd reflections differs by a factor of from those with hkl-even-
multiple of 2.

f) One other example of structure factor calculation will be given here. A close-
packed hexagonal cell has two atoms of the same kind located at and .

For convenience, put 

Since g may have fractional values, such as , etc., this expression is still complex.
Multiplication by the complex conjugate, however, will give the square of the
absolute value of the resultant wave amplitude F.

By relation (e) of Sec. 5, this becomes

� f 2 32 � 212  cos2 pg � 12 4

0F 0 2 � f 212 � 2  cos  2pg2

� f 212 � e2pig � e�2pig2.

0F 0 2 � f 211 � e2pig2 11 � e�2pig2

1
3 

2
3 

5
6

F � f11 � e2pig2.

3 1h � 2k2>3 � l>22 � g.

� f 31 � e2pl11h�2k2>3� l>22 4 .

F � fe2pi102 � fe2pi1h>3�2k>3� l>22

1
3 

2
3 

1
20 0 0

22
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2 fC

2 fC 0

Figure 13 Complex plane representation of the interference between the carbon atoms of the basis of
diamond for (left) h, k, l unmixed and odd; (middle) h, k, l unmixed and h+k+l equalling an even multi-
ple of two and (right) h, k, l unmixed and h+k+l equalling an odd multiple of two. The resulting vector
multiplied by four gives the structure factor F for each type of reflection. Note that in the right-hand
drawing the vectors are displayed slightly from the real axis for better visibility.
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It is by these missing reflections, such as 11.1, 11.3, 22.1, 22.3, that a hexagonal struc-
ture is recognized as being close-packed. Not all the reflections present have the
same structure factor. For example, if (h + 2k) is a multiple of 3 and l is even, then

When all possible values of h, k, and l are considered, the results may be summa-
rized as follows, where m is an integer:

h + 2k l

3 m odd 0
3 m even

odd
even f 23 m � 1

3f 23 m � 1
4f 2

0F 0 2

0F 0 2 � 4f 2.

cos2 pn � 1,

cos pn � ;1,

a
h � 2k

3
�

l
2
b � n, where n is an integer;

� 0  when 1h � 2k2 is a multiple of 3 and l is odd.

� 4f 2 cos2 pa
h � 2k

3
�

l

2
b

� f 214  cos2 pg2

7 APPLICATION TO POLYCRYSTAL DIFFRACTION

Any calculation of the intensity of a diffracted beam must always begin with the
structure factor. The remainder of the calculation, however, varies with the partic-
ular diffraction method involved. For the Laue method, intensity calculations are so
difficult that they are rarely made, since each diffracted beam has a different wave-
length and blackens the film by a variable amount, depending on both the intensi-
ty and the film sensitivity for that particular wavelength. The factors governing dif-
fracted intensity in the rotating-crystal and powder methods are somewhat similar,
in that monochromatic radiation is used in each, but they differ in detail. The
remainder of this chapter will be devoted to polycrystal diffraction, since it is of
most general utility in materials work.

Six factors affect the relative intensity of the diffraction lines on a powder pat-
tern:

1. polarization factor,
2. structure factor,

Diffraction II: Intensities of Diffracted Beams
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3. multiplicity factor,
4. Lorentz factor,
5. absorption factor,
6. temperature factor.

The first two of these have already been described, and the others will be discussed
in the following sections.

8 MULTIPLICITY FACTOR

Consider the 100 reflection from a cubic lattice. In the powder specimen, some of
the crystals will be so oriented that 100 diffraction occurs. Other crystals of differ-
ent orientation may be in such a position that 010 or 001 diffraction can occur. Since
d100 = d010 = d001 the diffracted beams form part of the same diffraction cone. Now
consider the 111 reflection. There are four sets of planes of the form {111} which
have the same spacing but different orientation, namely, (111), , , and

, whereas there are only three sets of the form {100}. Therefore, the probabili-
ty that {111} will be correctly oriented for diffraction is 4/3 the probability that {100}
will be correctly oriented. It follows that the intensity of the 111 reflection will be
4/3 that of the 100 reflection, other things being equal.

This relative proportion of hkl planes contributing to the same reflection enters
the intensity equation as the quantity p, the multiplicity factor, which may be
defined as the number of permutations of position and sign of , , for planes
having the same d and F2. Parallel planes with different Miller indices, such as (100)
and , are counted separately as different planes, yielding numbers which are
double those given in the preceding paragraph. Thus the multiplicity factor for the
{100} planes of a cubic crystal is 6 and for the {111} planes 8.

The value of p depends on the crystal system: in a tetragonal crystal, the (100)
and (001) planes do not have the same spacing, so that the value of p for {100}
planes is reduced to 4 and the value for {001} planes to 2. Values of the multiplicity
factor as a function of hkl and crystal system are given in “Appendix: Data for
Calculation of the Temperature Factor.”

11002

; l;k;h

11112
1111211112

9 LORENTZ FACTOR

Next consider certain trigonometrical factors which influence the intensity of the
diffracted beam. Suppose a narrow beam of parallel monochromatic rays is inci-
dent on a crystal [Fig. 14(a)], and let the crystal be rotated at a uniform angular
velocity about an axis through O and normal to the drawing, so that a particular
set of planes assumed for convenience to be parallel to the crystal surface, pass-
es through the angle , at which Bragg’s law is exactly satisfied. The diffracted
intensity is greatest at the exact Bragg angle but still appreciable at angles devi-
ating slightly from the Bragg angle, so that a curve of intensity vs. is of the
form shown in Fig. 14(b). If all the diffracted beams sent out by the crystal as it
rotates through the Bragg angle are received on a photographic film or in a
detector, the total energy of the diffracted beam can be measured. This energy

2u

uB
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Figure 14 Diffraction by a crystal rotated through the Bragg angle.

is called the integrated intensity of the reflection and is given by the area under the
curve of Fig. 14(b). The integrated intensity is of much more interest than the max-
imum intensity, since the former is characteristic of the specimen while the latter is
influenced by slight adjustments of the experimental apparatus.

The integrated intensity of a reflection depends on the particular value of 
involved, even though all other variables are held constant. Finding this depend-
ence requires separate consideration of two aspects of the diffraction curve: the
maximum intensity and the breadth. When the planes of scatterers make an angle

with the incident beam, Bragg’s law is exactly satisfied and the intensity dif-
fracted in the direction is a maximum. But some energy is still diffracted in this
direction when the angle of incidence differs slightly from , and the total energy
diffracted in the direction as the crystal is rotated through the Bragg angle is
given by the value of of the curve of Fig. 14(b). The value of therefore
depends on the angular range of crystal rotation over which the energy diffracted
in the direction is appreciable. In Fig. 15(a), the dashed lines show the position
of the crystal after rotation through a small angle from the Bragg position. The
incident beam and the diffracted beam under consideration now make unequal
angles with the planes of scatterers, the former making an angle and
the latter an angle . The situation on an atomic scale is shown in Fig.
15(b). Consider only a single plane of atoms, since the rays scattered by all other
planes are in phase with the corresponding rays scattered by the first plane. Let a

u2 � uB � ¢u

u1 � uB � ¢u

¢u

2uB

ImaxImax

2uB

uB

2uB

uB

uB

Diffraction II: Intensities of Diffracted Beams

148
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



�2

�B

�B�1

�1 �2

��

2�B

2

C

A

(a) (b)

B

D

1�

2�
1

Na

a

Figure 15 Scattering in a fixed direction during crystal rotation.

2 If the crystal is larger than the incident beam, then Na is the irradiated length of the plane; if it is small-
er, Na is the actual length of the plane.

equal the atom spacing in the plane and Na the total length2 of the plane. The dif-
ference in path length for rays and scattered by adjacent atoms is given by

By expanding the cosine terms and setting equal to , since the latter is
small:

and the path difference between the rays scattered by atoms at either end of the
plane is simply N times this quantity. When the rays scattered by the two end atoms
are one wavelength out of phase, the diffracted intensity will be zero. (The proof of

ty is therefore

or

This equation gives the maximum angular range of crystal rotation over which
appreciable energy will be diffracted in the direction . Since depends on this
range, is proportional to . Other things being equal, is therefore
large at low scattering angles and small in the back-reflection region.

The breadth of the diffraction curve varies in the opposite way, being larger at

BB2 11>cos uB

max

B

B

Imax1>sin uBImax

Imax2uB

¢u �
l

2 Na sin uB
.

2Na ¢u  sin  uB � l,

d1¿2¿
� 2a¢u  sin  uB,

¢usin ¢u

� a 3cos 1uB � ¢u2 � cos 1uB � ¢u2 4 .

� a  cos  u2 � a  cos  u1

d1¿2¿
� AD � CB

2¿1¿
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this is beyond the scope of this chapter.) The condition for zero diffracted intensi-

large values of 2u , as will be shown the half-maximum breadth B is proportional to
1>cos u . The integrated intensity of the reflection is given by the area under the
diffraction curve and is therefore proportional to the product I B, which is in
turn proportional to 11>sin u 2 or to 1>sin 2u . Thus, as a crystal is rotated
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Figure 16 The distribution of plane normals
for a particular cone of diffracted rays.

than for intermediate values, other things being equal.
The preceding remarks apply just as well to the powder diffraction as they do to

the case of a rotating crystal, since the range of orientations available among the
powder particles, some satisfying Bragg’s law exactly, some not so exactly, are the
equivalent of single-crystal rotation.

However, in polycrystal diffraction, a second geometrical factor arises because
the integrated intensity of a reflection at any particular Bragg angle depends on the
number of crystals oriented at or near that angle. This number is not constant even
though the crystals are oriented completely at random. In Fig. 16 a reference sphere
of radius r is drawn around the powder specimen located at O. For the particular
hkl reflection shown, ON is the normal to this set of planes in one crystal of the
powder. Suppose that the range of angles near the Bragg angle over which diffrac-
tion is appreciable is . Then, for this particular reflection, only those crystals will
be in a diffracting position which have the ends of their plane normals lying in a
band of width r on the surface of the sphere. Since the crystals are assumed to
be oriented at random, the ends of their plane normals will be uniformly distributed
over the surface of the sphere; the fraction favorably oriented for a reflection will
be given by the ratio of the area of the strip to that of the whole sphere. If is
the number of such crystals and N the total number, then

The number of crystals favorably oriented for diffraction is thus proportional to
and is quite small for reflections in the backward direction.

In assessing relative intensities, the total diffracted energy in one cone of rays is
not compared with that in another but rather the integrated intensity per unit
length of one diffraction line with that of another. For example, in one common
arrangement of specimen and film, the Hull/Debye–Scherrer method, shown in

cos uB

¢N
N

�
r¢u � 2pr  sin 190° � uB2

4pr2 �
¢u  cos  uB

2
.

¢N

¢u

¢u

B

through the Bragg angle, the integrated intensity of a reflection, which is the quant-
ity of most experimental interest, turns out to be greater for large and small values
of 2u
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Fig. 17, the film obviously receives a greater proportion of a diffraction cone when
the reflection is in the forward or backward direction than it does near .
The same is true of a diffractometer; in this case the height of the cylinder pictured
in Fig. 17 represents the height of the receiving slit in front of the detector. Inclusion
of this effect thus leads to a third geometrical factor affecting the intensity of a
reflection. The length of any diffraction line being , where R is the
radius of the camera, the relative intensity per unit length of line is proportional to

.
In intensity calculations, the three factors just discussed are combined into one

result is:

This in turn is combined with the polarization factor of Sec. 2 to give
the combined Lorentz-polarization factor which, with a constant factor of omit-
ted, is given by

Values of this factor are plotted in Fig. 18 as a function of . The overall effect of
these geometrical factors is to decrease the intensity of reflections at intermediate
angles compared to those in forward or backward directions.

u

Lorentz—polarization factor �
1 � cos2 2u
sin2 u 

 cos  u
.

1
8

1
2 11 � cos2 2u2

Lorentz factor � a
1

sin  2u
b1cos  u2a

1
sin  2u

b �
cos  u
sin2 2u

�
1

4  sin2 u 
 cos  u

.

1>sin 2uB

2pR  sin 2uB

2u � 90°

R sin 2�B

2�B
R

Figure 17 Intersection of cones of diffracted rays with Hull/Debye–Scherrer film.

and called the Lorentz factor [5]. Dropping the subscript on the Bragg angle, the
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Figure 18 Lorentz-polarization factor.

10 ABSORPTION FACTOR

Still another factor affecting the intensities of the diffracted rays must be consid-
ered, and that is the absorption which takes place in the specimen itself.
Introduction of the absorption factor A allows for this effect in intensity calcula-
tions; it is a number by which the calculated intensity is to be multiplied to allow for
absorption. The calculation of A depends on the geometry of the diffraction
method involved, and two geometries are considered below.

Hull/Debye–Scherrer Camera

The specimen in the Hull/Debye–Scherrer method has the form of a very thin cylin-
der of powder placed on the camera axis, and Fig. 19(a) shows the cross section of
such a specimen. For the low-angle reflection shown, a bsorption of a particular ray

B

(a) (b)

E

F

D

A
C

Figure 19 Absorption in Hull/Debye–Scherrer specimens: (a) general case, (b) highly absorbing speci-
men.
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3 The powder patterns show this effect, at least on the original films. The lowest-angle line in each pat-
tern is split in two, because the beam diffracted through the center of the specimen is so highly absorbed.
It is important to keep the possibility of this phenomenon in mind when examining
Hull/Debye–Scherrer photographs, or split low-angle lines may be incorrectly interpreted as separate
diffraction lines from two different reflections.

in the incident beam occurs along a path such as AB; at B a small fraction of the
incident energy is diffracted by a powder particle, and absorption of this diffracted
beam occurs along the path BC. Similarly, for a high-angle reflection, absorption of
both the incident and diffracted beams occurs along a path such as (DE + EF). The
net result is that the diffracted beam is of lower intensity than one would expect for
a specimen of no absorption.

A calculation of this effect shows that the relative absorption increases as 
decreases, for any given cylindrical specimen. That this must be so can be seen from
Fig. 19(b) which applies to a specimen (for example, tungsten) of very high absorp-
tion. The incident beam is very rapidly absorbed, and most of the diffracted beams
originate in the thin surface layer on the left side of the specimen; backward-dif-
fracted beams then undergo very little absorption, but forward-diffracted beams
have to pass through the whole specimen and are greatly absorbed. Actually, the
forward-diffracted beams in this case come almost entirely from the top and bot-
tom edges of the specimen.3 This difference in absorption between high- and low-

reflections decreases as the linear absorption coefficient decreases, but the
absorption is always greater for the low- reflections. The Hull/Debye–Scherrer
absorption factor is written as to emphasize the fact that it varies with .
Qualitatively, therefore, for any specimen increases as increases.

The calculation of for a cylindrical specimen proceeds as follows. In
Fig. 19(a) the path length (AB + BC), for a given value of , is expressed as a func-
tion of the position x, y of the point B relative to coordinate axes fixed relative to
the specimen. The absorption factor is then given by the function 
integrated over the entire cross-sectional area of the specimen. This integration can
only be performed numerically. The result is a table of values of as a function
of and of the product , where is the linear absorption coefficient of the spec-
imen and r is its radius. The specimen is usually a powder compact, with an absorp-
tion coefficient given by

(12)

where ρ is density.

values can also be found in [G.1, Vol C pp 520-521]
Exact calculation of the absorption factor for a cylindrical specimen is often dif-

ficult, so it is fortunate that this effect can usually be neglected in the calculation of
diffracted intensities, when the Hull/Debye–Scherrer method is used. Justification
of this omission will be found in Sec. 11.

mcompact � msolida
rcompact

rsolid
b,

mmru

A1u2

e�m1AB�BC2A1u2

u

A1u2
2uA1u2

uA1u2
u

u

u

u
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Values of A1u2 have been calculated and tabulated by Bradley [6]. Tables of
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x BFigure 20 Diffraction from a flat plate: incident
and diffracted beams have a thickness of 1 cm
in a direction normal to the plane of the draw-
ing.

4 This only true if the incident beam has a constant angular divergence; some diffractometers utilize a

variable divergence slit and A would no longer be constant and would vary with .u

Diffractometer

A diffractometer specimen usually has the form of a flat plate making equal angles
with the incident and diffracted beams. As shown below, the absorption factor A
equals , independent of . This independence of is due to the exact balancing
of two opposing effects. When is small, the specimen area irradiated by an inci-
dent beam of fixed cross section is large, but the effective depth of x-ray penetra-
tion is small; when is large, the irradiated area is small, but the penetration depth
is relatively large. The net effect is that the effective irradiated volume is constant
and independent of .4 Absorption occurs in any case, however, and the larger the
absorption coefficient of the specimen, the lower the intensity of the diffracted
beams, other things being equal. The important fact to note is that absorption
decreases the intensities of all diffracted beams by the same factor and therefore
does not enter into the calculation of relative intensities.

The calculation of A proceeds as follows, and, since this effect will come up again
in later parts of this book, the calculation will be quite general. The incident beam
in the diffractometer is actually divergent, but assume here that the beam is com-
posed of parallel rays, because the divergence angle is very small . In Fig.
20, the incident beam has intensity Io (ergs/cm2/sec), is 1cm square in cross section,
and is incident on the powder plate at an angle y. Consider the energy diffracted
from this beam by a layer of the powder of length l and thickness dx, located at a
depth x below the surface. Since the incident beam undergoes absorption by the
specimen over the path length AB, the energy incident per second on the layer con-
sidered is (ergs/sec), where is the linear absorption coefficient of the
powder compact, given by Eq. (12). Let a be the volume fraction of the specimen
containing particles having the correct orientation for diffraction of the incident
beam, and b the fraction of the incident energy which is diffracted by one unit vol-
ume. Then the energy diffracted per second by the layer considered, which has a
volume l dx, is given by abl dx. But this diffracted energy is also decreased
by absorption, by a factor of , since the diffracted rays have a path length ofe�m1BC2

I0e
�m1AB2

mI0e
�m1AB2

13°or less2

u

u

u

uu1>2m
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BC in the specimen. The energy flux per second in the diffracted beam outside the
specimen, i.e., the integrated intensity, is therefore given by

(13)

But 

Therefore,

(14)

(The reader might note that the analogous absorption effect in transmission, rather
than reflection, is given later as Eq. (14-10).

For the particular specimen arrangement used in the parafocusing diffractome-
ter, , and the above equation becomes

(15)

The total diffracted intensity is obtained by integrating over an infinitely thick spec-
imen:

(16)

Here Io, b, and are constant for all reflections (independent of , and a may also
be regarded as constant. Actually, a varies with , but this variation is already cor-
rected by the portion of the Lorentz factor (see Sec. 9) and need not be includ-
ed here. Therefore, the absorption factor is independent of for a flat speci-
men making equal angles with the incident and diffracted beams, provided the
specimen fills the incident beam at all angles and is effectively of infinite thickness.

The criterion adopted for “infinite thickness” depends on the sensitivity of the
intensity measurements or on what is regarded as negligible diffracted intensity. For
example, it is arbitrary but quite reasonable to define infinite thickness as that
thickness t which a specimen must have in order that the intensity diffracted by a
thin layer on the back side be of the intensity diffracted by a thin layer on the
front side. Then, from Eq. (15),

from which

t �
3.45 sin u

m
.

dID 1at x � 02

dID 1at x � t2
� e2m>sin u � 1000,

1
1000

u1>2m
cos u

u
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ID � �
x�q

x�0

dID �
IOab

2m
.

dID �
IOab

sin u
e�2mx>sin udx.

g � b � u

dID �
IOab

sin g
e�mx11>sin g�1>sin b2dx.

/ �
1

sin g
,     AB �

x
sin g

,     BC �
x

sin b
.

dID � ablIOe�m1AB�BC2dx1ergs>sec2.
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This expression shows that “infinite thickness,” for a metal specimen, is very small
indeed. For example, suppose a specimen of nickel powder is being examined with

radiation at values approaching . The density of the powder compact
may be taken as about 0.6 the density of bulk nickel, which is 8.9 g/cm3, leading to
a value of for the compact of 261 cm–1. The value of t is therefore

, or about five thousandths of an inch.1.32 � 10�2 cm
m

90°uCu Ka

11 TEMPERATURE FACTOR

So far a crystal has been considered as a collection of atoms located at fixed points
in the lattice. Actually, the atoms undergo thermal vibration about their mean posi-
tions even at the absolute zero of temperature, and the amplitude of this vibration
increases as the temperature increases. In aluminum at room temperature, the aver-
age displacement of an atom from its mean position is about 0.17 Å, which is by no
means negligible, being about 6 percent of the distance of closest approach of the
mean atom positions in this crystal.This average displacement is on the order of the
separation between electrons within an atom and should have the same effect on
scattering; namely, destructive interference increases with increasing scattering
angle . In fact, prior to Laue’s experiment, one of the arguments advanced against
the possibility of crystals diffracting was that thermal vibration at room tempera-
ture would destroy periodicity to the extent that peaks would never be observable
[G11, p42].

Increased thermal vibration of the atoms, as the result of an increase in temper-
ature, has three main effects:

1. The unit cell expands, causing changes in periodicity d and therefore in the
positions of the diffraction lines. If the positions of one or more lines are

measured as a function of temperature, the thermal expansion coefficient
of the specimen can be determined by x-ray diffraction.

2. The intensities of the diffraction lines decrease.
3. The intensity of the background scattering between lines increases.

The second and third effects are described below. Here the interest is primarily in
variations in intensity with at constant temperature (usually room temperature)
and not in intensity changes with temperature.

Thermal agitation decreases the intensity of a diffracted beam because it
degrades the periodicity of the lattice; at any instant there is a symmetric, random
distribution of atom displacements about their equilibrium positions. Thus the rein-
forcement of waves scattered at the Bragg angle, the reinforcement which is called
a diffracted beam, is not as perfect as it is for a crystal with fixed atoms. This rein-
forcement requires that the path difference, between waves scattered by adjacent
layers of atoms in the crystal (lying parallel to (hkl)) be an integral number of wave-
lengths. If u is the average displacement of an atom from its mean position,
reinforcement becomes more imperfect as the ratio u/d increases, i.e., as the tem-

2u

2u

2u
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perature increases since that increases u, or as increases, since reflections

as the temperature is raised, and, for a constant temperature, thermal vibration
causes a greater decrease in the diffracted intensity at high angles than at low
angles. In intensity calculations this effect is included by introducing the tempera-
ture factor , which is a number by which the calculated intensity is to be multi-

decreas-
es as increases. A method of calculating when it is needed is outlined later,
and Fig. 21 shows the result of such a calculation for iron.

The temperature effect and the previously discussed absorption effect in cylin-
drical specimens depend on angle in opposite ways and, to a first approximation,
cancel each other in the Hull/Debye–Scherrer method. In back reflection, for exam-
ple, absorption decreases the intensity of a diffracted beam very little but thermal
agitation decreases it greatly, while in the forward direction the reverse is true. The
two effects do not exactly cancel one another at all angles; however, if the compar-
ison of line intensities is restricted to lines not differing too greatly in values, the
absorption and temperature effects can be safely ignored in the
Hull/Debye–Scherrer method. This is a fortunate circumstance, since both of these
effects are rather difficult to calculate exactly.

Theoretically, thermal vibration of the atoms causes a very slight increase in the
breadth B, measured at half-maximum intensity, of the diffraction lines, but diffrac-
tion lines are observed to be sharp right up to the melting point, and their maximum
intensity gradually decreases.

It is also worth noting that the mean amplitude of atomic vibration is not a func-
tion of the temperature alone but depends also on the elastic constants of the crys-
tal. At any given temperature, the less “stiff” the crystal, the greater the vibration
amplitude u. This means that u is much greater at any one temperature for a soft,
low-melting-point metal like lead than it is for, say, tungsten. Substances with low
melting points have quite large values of u even at room temperature and therefore
yield rather poor back-reflection photographs. For example, thermal atomic vibra-
tion in lead at reduces the intensity of the highest-angle line observed with

radiation (at about ) to only 18 percent of the value for
atoms at rest.

1e�2M � 0.182161° 2uCu Ka
20°C

u

e�2M2u

�2M
e�2M

high—uu
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correspond to low d values [7]. Thus the intensity of a diffracted beam decreases

plied to allow for thermal vibration of the atoms [8]. Qualitatively, e
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In only one application described in this book will any quantitative information
be needed about the temperature factor , but it is convenient to describe the
calculation here before considering other thermal effects. Formally, this effect is
included by defining f as the atomic scattering factor of an atom undergoing ther-
mal vibration, as the same quantity for an atom at rest, and relating the two by

(The quantity is then the scattering factor as usually tabulated.) Because the
intensity of any line depends on , calculated intensities must be multiplied by 
to allow for thermal vibration. The quantity M depends on both the amplitude u of
thermal vibration and the scattering angle :

(17)

where is the mean square displacement of the atom in a direction normal to the
diffracting planes. The exact calculation of as a function of temperature is
extremely difficult, which means that M or B is hard to determine accurately. Debye

(18)

where h is Planck’s constant, T the absolute temperature, m the mass of the vibrat-
ing atom, k Boltzmann’s constant, the Debye characteristic temperature of the
substance in , and is a function tabulated, along with values of .
Because , where A = atomic weight and N = Avogadro’s number, the coef-
ficient of the bracketed terms above becomes

if is in angstroms. Equation (18) is approximate and applies only to elements with
cubic crystal structure. For thorough treatments of the effect of thermal vibration
on the diffraction pattern, see James [G.19] and Warren [G.20].

The thermal vibration of atoms has another effect on diffraction patterns.
Besides decreasing the intensity of diffraction lines, it causes some general coher-
ent scattering in all directions. This is called temperature-diffuse scattering; it con-
tributes only to the general background of the pattern and its intensity gradually
increases with . Contrast between lines and background naturally suffers, so this
effect is a very undesirable one, leading in extreme cases to diffraction lines in the
back-reflection region scarcely distinguishable from the background.
Figure 22 illustrates this effect. In (a) is shown an extremely hypothetical pattern
(only three lines, equally spaced, equally strong, with no background whatever) for
atoms at rest; in (b) the lines, decreased in intensity by the factor , are super-e�2M

2u

l
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mk™

2 �
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[8] has given the following expression:
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is very little background scattering due to thermal agitation and the diffraction lines
are relatively intense; if the specimen is now heated to a high temperature, the lines
become quite weak and temperature-diffuse scattering becomes an important part
of the pattern.

The phenomenon of temperature-diffuse scattering is another example of scat-
tering at non-Bragg angles. It is not surprising that such scattering should occur,
since the displacement of atoms from their mean positions constitutes a kind of
crystal imperfection and leads to a partial breakdown of the conditions necessary
for perfect destructive interference between rays scattered at non-Bragg angles.

12 INTENSITIES OF DIFFRACTION PEAKS FROM POLYCRYSTALLINE SAMPLES

It is now possible to gather together the factors discussed in preceding sections into
an equation for the relative intensity of powder pattern lines.

Hull/Debye–Scherrer Camera

(19)

where I = relative integrated intensity (arbitrary units), F = structure factor, p =
multiplicity factor, and . The trigonometric terms in parentheses
are the Lorentz-polarization factor. In arriving at this equation, factors are omitted
which are constant for all lines of the pattern. For example, all that is retained of the
Thomson equation (Eq. 2) is the polarization factor , with constant fac-
tors, such as the intensity of the incident beam and the charge and mass of the elec-
tron, omitted. The intensity of a diffraction line is also directly proportional to the
irradiated volume of the specimen and inversely proportional to the camera radius,
but these factors are again constant for all diffraction lines and may be neglected.
Omission of the temperature and absorption factors means that Eq. (19) is valid
only for lines fairly close together on the pattern; this latter restriction is not as seri-
ous as it may sound. Finally, it should be remembered that this equation gives the

11 � cos22u2

u � Bragg angle

I � 0F 0 2 p a
1 � cos2 2u
sin2 u cos  u

b,1Approximate2
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Figure 22 Effect of thermal vibration of the atoms on a powder pattern. Very schematic, see text.

imposed on a background of thermal diffuse scattering. At low temperatures there
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.
If an exact expression is required, the absorption factor and the temperature
factor must be inserted:

(20)

Diffractometer

Here the absorption factor is independent of and so does not enter into the cal-
culation of relative intensities. Equation (19) becomes still less precise, because
there is no longer any approximate cancellation of the absorption and temperature
factors. Equation (19) may still be used, for adjacent lines on the pattern, but the
calculated intensity of the higher-angle line, relative to that of the lower-angle line,
will always be somewhat too large because of the omission of the temperature fac-
tor. The exact equation for the diffractometer is

(21)

Qualifications

The two following effects can make the above intensity equations invalid:

1) Preferred orientation. From the way in which the portion of the
Lorentz factor was determined in Sec. 9, it follows that Eqs. (19) through
(21) are valid only when the crystals making up the specimen are randomly
oriented in space. Preferred orientation of the crystal grains causes radical
disagreement between calculated and observed intensities and, when such
disagreement exists, preferred orientation should be the first possible
cause to be suspected. It is relatively easy to prepare powder-compact spec-
imens from ground powders or metal filings so that the ideal of perfect ran-
domness of orientation is closely approached, but virtually all
polycrystalline specimens of metal wire, metal sheet, manufactured ceram-
ics, and even natural rocks or minerals will exhibit more or less preferential
orientation of the grains. The presence of large grains within the sample
can also lead to very different calculated and observed intensities. The
method by which large grain and preferred orientation effects may be dif-
ferentiated is discussed in Sec 9-8.

2) Extinction [G.19, G.20]. Equations (19) through (21) are derived on the
basis of the so-called “ideally imperfect” crystal, one consisting of quite
small mosaic blocks (of the order of in thickness) which
are so disoriented that they are all essentially nonparallel. Such a crystal

10�4cm to 10�5cm

cos u

I � 0F 0 2 p a
1 � cos2 2u
sin2 u cos  u

b e�2M.1Extract2

u

I � 0F 0 2 p a
1 � cos2 2u
sin2 u cos  u

b A1u2e�2M.1Extract2

e�2M
A 1u2
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.relative integrated intensity, i.e., the relative area under the curve of intensity vs. 2u.
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has maximum diffracting power. A crystal made up of large mosaic blocks,
some or all of which are accurately parallel to one another, is more nearly
perfect and has a lower diffracting power. This decrease in the integrated
intensity of the diffracted beam as the crystal becomes more nearly perfect
is called extinction. Extinction is absent for the ideally imperfect crystal,
and the mathematical treatment of diffraction used to derive Eqs. (19)
through (21) is termed kinematical theory. The presence of extinction
invalidates Eqs. (19) through (21) and requires use of dynamical diffraction
theory. Any treatment that will make a crystal more imperfect will reduce
extinction and, for this reason alone, powder specimens should be ground
as fine as possible. Grinding not only reduces the crystal size and populates
the diffraction cones more fully but also tends to decrease the mosaic block
size, disorient the mosaic blocks, and strain them nonuniformly.

The extinction effect can operate, not only in single-crystal specimens, but also in
the individual grains of polycrystalline specimens. Extinction may be assumed to be
absent in ground or filed powders and is usually negligible in fine-grained poly-
crystalline specimens. If its presence is suspected in the latter, the specimen can
always be reduced to powder by grinding or filing.

13 EXAMPLES OF INTENSITY CALCULATIONS

The use of Eq. (19) will be illustrated by the calculation of the position and relative
intensities of the diffraction lines on a Hull/Debye–Scherrer pattern of copper
made with radiation: The calculations are most readily done on a computer
using a spreadsheet program and the tabular form of Table 2 is convenient for com-
parison of observed and calculated peak intensities.

Remarks

Column 2: Since copper is face-centered cubic, F is equal to for lines of
unmixed indices and zero for lines of mixed indices. The plane indices, all unmixed,
are listed in this column in order of increasing values of (h2 + k2 2

In this case, Å and a = 3.615 Å (lattice parameter of copper).
Therefore, multiplication of the integers in column 3 by gives the
values of listed in column 4. In this and similar calculations, three-figure accu-
racy is ample.
Column 6: Needed to determine the Lorentz-polarization factor and .
Column 7: Obtained from Appendix: Multiplicity Factors for the Powder Method.
Needed to determine .fCu

1sin u2>l

sin2 u

l2>4a2 � 0.0455
1Cu Ka2l � 1.542

sin2u �
l2

4a2 1h
2 � k2 � l22.

2 

4fCu

Cu Ka
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Column 4: For a cubic crystal, values of sin u are given 
+ l ).
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1 2 3 4 5 6 7 8

Line hkl fCu

1
2
3
4
5
6
7
8

111
200
220
311
222
400
331
420

3
4
8

11
12
16
19
20

0.1365
0.1820
0.364
0.500
0.546
0.728
0.865
0.910

0.369
0.427
0.603
0.707
0.739
0.853
0.930
0.954

21.7
25.3
37.1
45.0
47.6
58.5
68.4
72.6

0.24
0.27
0.39
0.46
0.48
0.55
0.60
0.62

22.1
20.9
16.8
14.8
14.2
12.5
11.5
11.1

1 9 10 11 12 13 14

Line p
Relative integrated intensity

Calc. Calc. Obs.

1
2
3
4
5
6
7
8

7810
6990
4520
3500
3230
2500
2120
1970

8
6

12
24

8
6

24
24

12.03
8.50
3.70
2.83
2.74
3.18
4.81
6.15

3.56
2.01
2.38
0.71
0.48
2.45
2.91

10.0
4.7
2.7
3.2
0.9
0.6
3.3
3.9

vs
s
s
s
m
w
s
s

h
2

k
2

l
2

+ + 2 θsin θsin θ θsin
λ

----------- A
1–( )

F
2 1 2cos 2θ+

2 θ θcossin
------------------------------

7.52 10
5×

Column 8: Obtained from Appendix: Lorentz-Polarization Factor.
Column 9: Obtained from the relation .
Column 10: Obtained from "Appendix: Data for Calculation of the Temperature
Factor.
Column 11: Obtained from Appendix: Atomic Weights.
Column 12: These values are the product of the values in columns 9, 10, and 11,
according to Eq. (19).
Column 13: Values from column 12 recalculated to give the first line an arbitrary
intensity of 10, i.e., “normalized” to 10 for the first line.
Column 14: These entries give the observed intensities, visually estimated accord-
ing to the following simple scale, from the original film for copper (vs = very strong,
s = strong, m = medium, w = weak).

The agreement obtained here between observed and calculated intensities is sat-
isfactory. Note how the value of the multiplicity p exerts a strong control over the
line intensity.The values of and of the Lorentz-polarization factor vary smooth-
ly with , but the values of p, and therefore of I, vary quite irregularly.u

0F 0 2

F 2 � 16f Cu
2

Diffraction II: Intensities of Diffracted Beams
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A more complicated structure may now be considered, namely that of the zinc-
blende form of ZnS. This form of ZnS is cubic and has a lattice parameter of 5.41
Å. Here the relative intensities will be calculated for the first six lines on a
Hull/Debye–Scherrer pattern made with radiation.

As always, the first step is to work out the structure factor. ZnS has four zinc and
four sulfur atoms per unit cell, located in the following positions:

Since the structure is face-centered, the structure factor will be zero for planes of
mixed indices. From example (e) of Sec. 6, the terms in the structure-factor equa-
tion corresponding to the face-centering translations can be factored out and the
equation for unmixed indices written down at once:

is obtained by multiplication of the above by its complex conjugate:

This equation reduces to the following form:

Further simplification is possible for various special cases:

(22)

(23)

(24)

The intensity calculations are carried out in Table 3, with some columns omitted for
the sake of brevity.

Remarks

Columns 5 and 6: These values are read from scattering-factor curves plotted from
the data of Appendix: Lorentz-Polarization Factor.
Columns 7: is obtained by the use of Eq. (22), (23), or (24), depending on the
particular values of hkl involved. Thus, Eq. (22) is used for the 111 reflection and
Eq. (24) for the 220 reflection.

0F 0 2

0F 0 2 � 161fS � fZn2
2  when 1h � k � l2 is an even multiple of 2.

0F 0 2 � 161fS � fZn2
2  when 1h � k � l2 is an odd multiple of 2;

0F 0 2 � 161f S
2 � fZn

2 2   when 1h � k � l2 is odd;

0F 0 2 � 16 c f S
2 � fZn

2 � 2fsfZn cos 
x

2
 1h � k � l2 d

0F 0 2 � 16 3 fS � fZne1pi>221h�k�l2 4 3fS � fZne�1pi>21h�k�l2 4 .

0F 0 2
F � 4 3 fS �  fZne1pi>221h�k�l2 4 .

S: 0 0 0  �   face—centering translations. 

Zn: 1
4 

1
4 

1
4  �   face—centering translations,

Cu Ka
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1 2 3 4 5 6

Line hkl fs fZn

1
2
3
4
5
6

111
200
220
311
222
400

14.3
16.6
23.8
28.2
29.6
34.8

0.16
0.19
0.26
0.30
0.32
0.37

12.3
11.4
9.7
9.0
8.8
8.2

25.8
24.6
22.1
20.7
20.0
18.4

1 7 8 9 10 11

Line p
Relative intensity

Calc. Obs.

1
2
3
4
5
6

13070
2790

16180
8150
2010

11320

8
6

12
24

8
6

30.0 
21.7
9.76
6.64
5.95
4.19

10.0
1.2
6.1
4.1
0.3
0.9

vs
w
vs
vs
vw
w

θ θsin
λ

----------- A
1–( )

F
2 1

2
cos 2θ+
2θ θcossin

-------------------------------

TABLE 3

Columns 10 and 11: The agreement obtained here between calculated and observed
intensities is again satisfactory. In this case, both the values of and of p vary
irregularly with , leading to an irregular variation of I.

One further remark on intensity calculations is necessary. In the powder method,
two sets of planes with different Miller indices can diffract to the same point on the
film: for example, the planes (411) and (330) in the cubic system, since they have the
same value of (h2 + k2 + l2) and hence the same spacing and or the planes (501)
and (431) of the tetragonal system, since they have the same values of (h2 + k2) and
l2. In such a case, the intensity of each reflection must be calculated separately, since
in general the two will have different multiplicity and structure factors, and then
added to find the total intensity of the line. This conclusion holds for diffractome-
try as well.

2u

u

0F 0 2

14 RECIPROCAL SPACE AND DIFFRACTED INTENSITIES

Reciprocal lattice can be seen as equally valid representation of the crystal as
the direct space lattice; while the basis for the mapping is different, lattice vec-
tors and Miller planes can be represented in both. The reciprocal lattice and the
Ewald sphere construction can be used to determine diffracted beam directions.
In this section, the reciprocal space treatment of diffraction will be further

Diffraction II: Intensities of Diffracted Beams

164
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Diffraction II: Intensities of Diffracted Beams

developed by associating the intensity diffracted by a given hkl (i.e., reciprocal lat-
tice point) with its position in reciprocal space. Actually, each position within recip-
rocal space can be associated with a diffracted or scattered intensity, but this point
is beyond the scope of this chapter.

Each hkl reflection has an intensity proportional to the structure factor squared,
. Suppose the value of were assigned to each hkl in the reciprocal space lat-

tice for a crystal. When the crystal were oriented so that the Ewald sphere went
through point hkl the value of the intensity diffracted would be given by that 
(ignoring the terms other than in Eq. 20 and 21). Consider the 110 reciprocal
lattice plane for NaCl plotted in Fig. 2(a): it is a rectangular net with [002] along one
axis and [ ] along the second orthogonal axis in the plane. Three values of F2 are
possible:

h, k, l mixed

h, k, l unmixed, (h+k+l) is even

h, k, l unmixed, (h+k+l) is odd.

The 110 reciprocal lattice plane of NaCl contains hkl of all three types, and these
are indicated in Fig. 23(a).

161fNa � fCl2
2

161fNa � fCl2
2

F2 � 0

110

F 2
hkl

F 2
hkl

F 2
hklF 2

hkl

Figure 23 (a) Reciprocal lattice plane 110 for a
crystal of NaCl showing the three F2 values for
this structure (see the legend for the meanings of
the symbol). The dimensions of the rel points
indicate intensity and not physical extent in
reciprocal space. 000 001

110

220 222

330 331 333

h,k,l mixed
unmixed, (h�k�l) even
unmixed, (h�k�l) odd

0.25 Å�1

440

002 003 004
b3

b1 � b2

�

�

�

111 113
� �

�
224

�
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Figure 23 (b) Relshells intersecting one quadrant of reciprocal lattice plane 110 for polycrystalline, ran-
domly-oriented NaCl. The axes refer to directions in one of the grains having the same orientation as
that shown in (a). Only the rel shells for the points on the plane shown in (a), are included. The plot
below the quadrant shows how F2 would vary in a diffractometer scan (note that the horizontal axis is
not nor is the vertical axis measured intensity).2u

It is somewhat more difficult to show the reciprocal lattice shells (rel shells) for
polycrystalline NaCl. For a random powder, the one quadrant of the intersections
of different rel shells with the 110 reciprocal lattice plane are shown in Fig. 23(b).
Once again there are three types of shells, one of which is systematically absent.
Note that only the relshells corresponding with the reciprocal lattice points on the
110 reciprocal lattice plane are shown: the systematically absent 210 and 310 shells
are omitted for clarity. The diffraction pattern would have the appearance of the
curve shown below Fig. 23(b). For fcc phases such as Cu, all non-zero fcc reflections
would have equal F2, but here, due to the presence of Na and Cl ions F2 is modu-
lated for non-systematically absent reflections.

15 MEASUREMENT OF X-RAY INTENSITY

In the examples just given, the observed intensity was estimated simply by visual
comparison of one line with another. Although this simple procedure is satisfacto-
ry in a surprisingly large number of cases, there are problems in which a more pre-
cise measurement of diffracted intensity is necessary.Two methods are available for
making such measurements, one dependent on the effect of x-rays on photograph-
ic emulsions or image plates and the other on the ability of x-rays to activate an
electronic detector.

Diffraction II: Intensities of Diffracted Beams
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PROBLEMS

*1 Derive an expression for the absorption factor of a diffractometer specimen in the form
of a flat plate of finite thickness t. (Note that the absorption factor now depends on ).
Index these lines (i.e., determine the Miller indices of each reflection) and calculate their rel-
ative integrated intensities.
*2 Consider the highest-angle on the diffraction pattern of Cu and of Pb, measured at     
C with Cu K radiation. By what percentage is the intensity of each of these lines reduced
by thermal vibration of the atoms?
3 Consider a hypothetical element whose structure can be based on either of the following:

a) Cell A, base-centered tetragonal containing two atoms per cell, at and , for
which a = 2Å and c = 3Å;

b) Cell B; simple tetragonal with one atom per cell at .
Determine simplified structure-factor equations for each cell and the positions (2 values)
of the first four lines that would be observed ( ) on a powder pattern made with

radiation. Plot the values of these lines in the manner of Fig 10-2, and label each
line with its indices relative to Cell A and Cell B. Draw the two cells in the proper relation
to one another, and show that the indices of any one observed line, other than obvious ones
of the form , refer to the same plane of atoms.

[This problem illustrates several points: (1) we can choose any unit cell we wish, (2) the
Miller indices of any given plane of atoms depend on the choice of cell, and (3) the diffrac-
tion pattern of the material is independent of the choice of cell.]
*4 Derive simplified expressions for for diamond, including the rules governing observed
reflections. This crystal is cubic and contains 8 carbon atoms per unit cell, located in the fol-
lowing positions:

5 A certain tetragonal crystal has four atoms of the same kind per unit cell, located at    
, , . (Do not change axes.)

a) Derive simplified expressions for .
b) What is the Bravais lattice of this crystals?
c) What are the values of for the 100, 002, 111, and 011 reflections?

*6 Derive simplified expressions for for the wurtzite form of ZnS, including the rules gov-
erning observed reflections. This crystal is hexagonal and contains 2 ZnS per unit cell, locat-
ed in the following positions:

Note that these positions involve a common translation, which may be factored out of the
structure-factor equation.

Ignore the absorption and temperature factors in all of the following problems.
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Diffraction II: Intensities of Diffracted Beams

four lines on this pattern were observed to have the following values:
Line

1 20.3
2 29.2
3 36.7
4 43.6

8 A Hull/Debye–Scherrer pattern is made of silicon, which has the same structure as dia-
mond, with radiation. What are the indices of the first two lines on the pattern, and
what is the ratio of the integrated intensity of the first to that of the second?
*9 A Hull/Debye–Scherrer pattern is made of the intermediate phase InSb with radi-
ation. This phase has the zinc-blende structure and a lattice parameter of 6.46 Å. What are
the indices of the first two lines on the pattern, and what is the ratio of the integrated inten-
sity of the first to the second?
10 Calculate the relative integrated intensities of the first six lines of the
Hull/Debye–Scherrer pattern of zinc, made with radiation. The indices and observed

values of these lines are:

Line hkl

1 00.2 18.8
2 10.0 20.2
3 10.1 22.3
4 10.2 27.9
5 11.0, 10.3 36.0
6 00.4 39.4

(Line 5 is made up of two unresolved lines from planes of very nearly the same spacing.)

°

 u 

u
Cu Ka

Cu Ka

Cu Ka

°

 u 
u
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tered in the text

G.1 International Tables for Crystallography, Ed. A.J.C Wilson, Vol. A-C
(Dordrecht Kluwer Academic Pub. for International Union of
Crystallography, 1995). The reference ‘’book” for crystallography and dif-
fraction.

G.15 N. F. M. Henry, H. Lipson, and W. A. Wooster. The Interpretation of X-Ray
Diffraction Photographs (London: Macmillan, 1951). Rotating and oscillat-
ing crystal methods, as well as powder methods, are described. Good sec-
tion on analytical methods of indexing powder photographs.

Compare your results with the intensities observed in the pattern.

*7 A Debye–Scherrer pattern of tungsten (BCC) is made with radiation. The firstCu Ka
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G.19 R. W. James. The Optical Principles of the Diffraction of X-Rays
(Woodbridge; CT: Ox Bow Press, 1982). Excellent book on advanced the-
ory of x-ray diffraction. Includes thorough treatments of diffuse scattering
(due to thermal agitation, small particle size, crystal imperfections, etc.),
the use of Fourier series in structure analysis, and scattering by gases, liq-
uids, and amorphous solids.

G.20 B. E. Warren. X-Ray Diffraction (Reading, MA: Addison-Wesley, 1969).
Excellent advanced treatment, in which the author takes pains to connect
theoretically derived results with experimentally observable quantities.
Stresses diffraction effects due to thermal vibration, order-disorder, imper-
fect crystals, and amorphous materials. Includes a treatment of the dynami-
cal theory of diffraction by a perfect crystal.

ANSWERS TO SELECTED PROBLEMS

1.

2. 34 percent reduction for copper, 82 percent for lead

4. = 0 for mixed indices; = 0 for (h + k + l) an odd multiple of 2; = 64 
for (h + k + l) an even multiple of 2; = 32 for (h + k + l) odd.f C

2F 2
f C

2F 2F 2F 2

A � A1u2 � 11>2m2 31 � exp1�2mt>sin u2 4

Diffraction II: Intensities of Diffracted Beams

6.

n and p are any integers, including zero.

 h + 2k l F2

3n 2p + 1 (as 1, 3, 5, 7 …) 0

3n 8p (as 8, 16, 24 …) 4(fZn + fs)
2

3n 4(2p + 1) (as 4, 12, 20, 28 …) 4(fZn – fs)
2

3n 2(2p + 1) (as 2, 6, 10, 14 …) 4(fZn
2  + fs

2)

3n ± 1 8p ± 1 (as 1, 7, 9, 15, 17 …) 3(fZn
2  + fs

2 – fZnfs)

3n ± 1 4(2p + 1) ± 1 (as 3, 5, 11, 13, 19, 21 …) 3(fZn
2  + fs

2 + fZnfs)

3n ± 1 8p (fZn + fs)
2

3n ± 1 4(2p + 1) (fZn – fs)
2

3n ± 1 2(2p + 1) (fZn
2  + fs

2)

2

2
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Diffraction II: Intensities of Diffracted Beams

Line hkl Calc. Int.

1  110  10.0

2  200  1.7

3  211  3.5

4  220  1.1

7.

9. 111 and 200. The ratio is 2400 to 1.
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Section 00 Section Title 167

Diffraction III: Real

Samples
1 INTRODUCTION

Before turning to the practical aspects of diffraction from materials, it is valuable to
consider how diffraction peaks are altered by the presence of various types of
defects. Indeed, knowledge of how diffraction peaks are changed by defects under-
lies many of the analyses described in the third section of the book. Defects can be
small numbers of dislocations in crystals with dimensions of millimeters. At the
other extreme, the dislocation density may be so high that it is difficult to imagine
the existence of discrete dislocations. Small crystal or grain size can be thought of
as another kind of defect and can alter diffraction peak widths. In the limit of ‘grain’
size approaching that of an atom, as in gases, liquids and amorphous solids such as
glasses and many polymers, sharp diffraction peaks no longer exist, and important
information about these materials can be gleaned from how they scatter x-rays. At
the other limit, that of defect-free crystals with millimeter or greater dimensions,
diffracted intensity must be treated in a fashion quite different from the approach
you may already know.

2 CRYSTALLITE SIZE

Consider that destructive interference is just as much a consequence of the perio-
dicity of atom arrangement as is constructive interference. If the path difference
between x-rays photons scattered by the first two planes of atoms differs only
slightly from an integral number of wavelengths, then the plane of atoms scat-
tering x-rays exactly out of phase with the photons from the first plane will lie
deep within the crystal. If the crystal is so small that this plane of atoms does not
exist, then complete cancellation of all the scattered x-rays will not result. It fol-
lows that there is a connection between the amount of “out-of-phaseness” that
can be tolerated and the size of the crystal. The result is that very small crystals
cause broadening (a small angular divergence) of the diffracted beam, i.e., dif-

From Chapter 5 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 1 Effect of crystal size on diffraction.

fraction (scattering) at angles near to but not equal to, the exact Bragg angle.
Therefore consider the scattering of x-rays incident on the crystal at angles deviat-
ing slightly from the exact Bragg angle.

Suppose, for example, that the crystal has a thickness t measured in a direction
perpendicular to a particular set of Bragg plane (Fig. 1). Let there be 
planes in this set. Define the Bragg angle as a variable and let B be the angle
which exactly satisfies Bragg’s law for the particular values of and d involved, or

.

In Fig. 1, rays A, D,..., M make exactly this angle with the diffraction planes. Ray
D´, scattered by the atoms of the first lattice plane below the surface, is therefore
one wavelength out of phase with A´; and ray M´, scattered by the mth plane of
atoms below the surface, is m wavelengths out of phase with A´. Thus, at a diffrac-
tion angle , rays A´, D´,..., M´ are completely in phase and unite to form a dif-
fracted beam of maximum amplitude, i.e., a beam of maximum intensity, since the
intensity is proportional to the square of the amplitude.

Incident x-rays that make angles only slightly different from , produce incom-
plete destructive interference. Ray B, for example, makes a slightly larger angle ,
such that ray L´ from the mth plane below the surface is wavelengths out
of phase with B´, the ray from the surface plane.This means that midway in the crys-
tal there is a plane populated by atoms scattering x-rays which are one-half (actu-
ally, an integer plus one-half) wavelength out of phase with ray B´ from the atoms
of the surface plane. These rays cancel one another, and so do the other rays from
similar pairs of planes throughout the crystal, the net effect being that rays scat-
tered by the top half of the crystal annul those scattered by the bottom half. The
intensity of the beam diffracted at an angle is therefore zero. It is also zero at an
angle where is such that ray N´ from the mth plane below the surface isu22u2

2u1

1m � 12
u1

uB

2uB

uB

l � 2d  sin  uB

l

uu

1m � 12
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wavelengths out of phase with ray C´ from the surface plane. This defines,
therefore, the two limiting angles, and , at which the diffracted intensity must
drop to zero. It follows that the diffracted intensities at angles near , but not
greater than or less than , are not zero but have values intermediate between
zero and the maximum intensity of the beam diffracted at an angle . The curve
of diffracted intensity vs. will thus have the form of Fig. 2(a) in contrast to Fig.
2(b), which illustrates the hypothetical case of diffraction occurring only at the
exact Bragg angle.

The width of the diffraction curve of Fig. 2(a) increases as the thickness of the
crystal decreases, because the angular range increases as m decreases.
The width B is usually measured, in radians, at an intensity equal to half the maxi-
mum intensity, and this measure of width is termed the full-width at half maximum
of FWHM. [Note that B is an angular width, in terms of (not ), and not a linear
width.] A rough measure of B, is one-half the difference between the two extreme
angles at which the intensity is zero, which amounts to assuming that the diffraction
line is triangular in shape. Therefore,

.B �
1
2
12u1 � 2u22 � u1 � u2

u2u

12u1 � 2u22

2u
2uB

2u22u1

2uB

2u22u1

1m � 12

�2  2
�2

�2  B
�2

�2  B�2  1

BImax

Imax

1
2

IN
T

E
N

SI
T

Y

IN
T

E
N

SI
T

Y

(a) (b)

Figure 2 Effect of fine crystallite size on diffraction curves (schematic).

Diffraction III: Real Samples

The path-difference equations for these two angles are similar but related to the
entire thickness of the crystal rather than to the distance between adjacent planes:

2t  sin  u2 � 1m � 12l.

2t  sin  u1 � 1m � 12l,
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By subtraction,

But and are both very nearly equal to , so that

and

Therefore

(1)

A more exact treatment of the problem gives

, (2)

which is known as Scherrer’s formula [5.1]. It is used to estimate the size of very
small crystals from the measured width of their diffraction curves. Note that
whether a value of 0.9 or 1 is used depends on the shape(s) of the crystallites
assumed to be in the sample. A detailed discussion appears elsewhere [G.17]. What
is the order of magnitude of this effect? Suppose Å, d = 1.0 Å, and

. Then for a crystal 1 mm in diameter the breadth B, due to the small crys-
tal effect alone, would be about radian (10-5 degree), or too small to be
observable. Such a crystal would contain some 107 parallel lattice planes of the
spacing assumed above. However, if the crystal were only 500 Å thick, it would con-
tain only 500 planes, and the diffraction curve would be relatively broad, namely
about radian (0.2°), which is easily measurable.

Neither is any real beam ever strictly monochromatic. The usual “monochro-
matic” beam is simply one containing the strong component superimposed on
the continuous spectrum. But the line itself has a width of about 0.001 Å andKa

Ka

4 � 10�3

2 � 10�7
u � 49o

l � 1.5

t �
0.9l

  cos  uB

t �
l

  cos  uB
.

2t a
u1 � u2

2
b cos  uB � l,

sin a
u1 � u2

2
b � a

u1 � u2

2
b 1approx.2.

u1 � u2 � 2uB 1approx.2

uBu2u1

2t  cos a
u1 � u2

2
b sin a

u1 � u2

2
b � l.

t 1sin  u1 � sin  u22 � l,
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Nonparallel incident rays, such as B and C in Fig. 1, actually exist in any real dif-
fraction experiment, since the “perfectly parallel beam” assumed an idealization.
Any actual beam of x-rays contains divergent and convergent rays as well as paral-
lel rays, so that the phenomenon of diffraction at angles not exactly satisfying
Bragg’s law actually takes place.

B

B
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this narrow range of wavelengths in the nominally monochromatic beam is a fur-
ther cause of line broadening, i.e., of measurable diffraction at angles close, but not
equal, to , since for each value of there is a corresponding value of .
(Translated into terms of diffraction line width, a range of wavelengths extending
over 0.001 Å leads to an increase in line width, for Å  and  , of about

over the width one would expect if the incident beam were strictly mono-
chromatic.) Line broadening due to this natural “spectral width” is proportional to

and becomes quite noticeable as approaches .90outan u

0.08o
u � 45ol � 1.5

ul2uB

3 INTERFERENCE FUNCTION

The calculation of the intensity of diffraction peaks in Ch. 4 was for diffraction at
the exact Bragg angle . At this angle, and in the absence of any defects producing
displacement of the unit cells of the crystal, the total amplitude diffracted by the N
unit cells of the crystal is the sum of the amplitude scattered by each unit cell:

. (3)

At deviations from the exact Bragg angle, the individual unit cells will scatter slight-
ly out of phase. Also, the vector no longer extends from the origin of the
reciprocal lattice to a reciprocal lattice point. As was shown in the preceding sec-
tion, x-rays scattered from an effectively infinite crystal at will be out of
phase and the diffracted intensity will equal zero. If the crystal is small enough,
however, the intensity will not go to zero off the exact Bragg condition, and the cal-
culation which follows shows how diffracted intensity varies with angle as a func-
tion of the number of unit cells along the direction of the diffraction vector

, i.e., along the direction normal to the Bragg planes.
Figure 3 shows the direct space and reciprocal space diagrams, respectively, for

diffraction from a crystal at for 001 and at for 002, where
“1” and “2” in parenthesis indicate the angle for the first and second order diffrac-
tion. If a diffractmeter is used, the portion of the reciprocal lattice sampled
during a scan is indicated by the horizontal line from the origin in Fig. 3b (i.e., along
b3 in this example). If Hhkl (or H for short) is the reciprocal lattice vector from the
origin of the reciprocal lattice to the reciprocal lattice point hhe, the diffraction off
the exact Bragg condition means that . The difference between
these two vectors along the direction of (S – S0)/ will be written as SS is often
termed the deviation parameter and is shown in Fig. 3. In order to calculate the
intensity diffracted from the crystal at , the phase differences for scattering
from different unit cells must be included. For the three unit vectors of the crystal
a1, a2, and a3:

(4)ATOTAL � a
N1�1

n1�0
 a
N2�1

n2�0
 a
N3�1

n3�0
F exp  

2pi

l
3 1S � S02 � 1n1a1 � n2a2 � n3a32 4 ,

u � uB

l

1S � S02>l � H

u–2u

u122 7 uB122u112 7 uB112

1S � S02

u � uB

1S � S02>l

ATOTAL � NFn

Fn

uB
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Figure 3 (a) Incident and diffracted beam directions for 001 and for 002 diffraction in direct space. (b)
Ewald sphere construction for incident beam directions shown in (a). (c) Deviation parameter SS for the
geometries in (a) and (b). (d) Diffracted intensity verses orientation given by the intereference function
as a function of deviation parameter, i.e., of Ewald sphere orientation. “E” denotes the Ewald sphere,
and the number in parentheses (“1” or “2”) indicates whether the quantities apply to 001 or 002 dif-
fraction, respectively.

the integers ni define the particular unit cells for which the phase difference is being
calculated, and Ni are the total number of unit cells along ai. From the definition for
the reciprocal lattice vector expressing the deviation from the exact Bragg condi-
tion (Fig. 3), i.e.,

SS SS

SS      

SS      (5)

Applying the orthonormality conditions for reciprocal and direct space vectors

2 � 1n1a1 � n2a2 � n3a32 4� Fa
n1

a
n2

a
n3

exp 32pi1hb1 � kb2 � lb3 �

2 � 1n1a1 � n2a2 � n3a32 4ATOTAL � Fa
n1

a
n2

a
n3

exp 32pi1H �

� 1hb1 � kb2 � lb32 �1S � S02>l � H �
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, where is Kronecker’s delta produces

SS SS SS (6)

Each sum is independent and may be evaluated separately. Converting from exp
form to sines, yields

(7)

where II denotes the product of three terms shown in Eq. 6. Note that the last term
is the phase factor relating to , and this term is eliminated when the inten-
sity is calculated:

(8)

Equation 8 is known as the interference function.
By use of L’Hopital’s rule, the maximum intensity at the Bragg peak can be

shown to equal F2N2 and, to a reasonable approximation, the width of the Bragg
peak can be calculated to be proportional to 1/N, where N is the number of unit
cells along . Thus, the integrated intensity increases linearly with N.

Intensity, therefore, is a periodic function around each Bragg peak, a function
which depends on the number of unit cells. The vector SS  is a three-dimensional vec-
tor so that the intensity for a certain deviation along a specific direction in recipro-
cal space depends on the number of unit cells lying along that direction. Another
way of thinking about this is to think of the reciprocal lattice points lengthening
into reciprocal lattice rods, i.e., rel rods, along the direction with the small number
of unit cells. A simple way of showing this is to plot a constant contour of intensity,
in reciprocal space, say one-half of the maximum. Figure 4(c) and (d) show such
plots for the thin crystallite dimensions shown in a) and b). Vectors

are shown for . In the case where the rel rod is elon-
gated parallel to the reciprocal space sampling region for the diffractometer,
i.e., where the thin dimension of the crystal is parallel to the sample normal, a wider
diffraction peak is observed. When the rel rod is perpendicular to the reciprocal
space sampling region, the effective of the small crystal dimension is not seen in the
scan.

This result, obtained from a reciprocal space perspective, is the same as that of
Scherrer’s equation. Both results highlight an important property of direct and
reciprocal spaces. If a feature’s dimension along a certain direct space direction is
large, the feature’s size along the corresponding direction in reciprocal space is
small. The converse is true as well.

u–2u
u 6 uBS0, S, and  1S0 � S2>l

1S � S02

AT0AT 0

� n3a32� n2a22a
n2

exp12pi� n1a12a
n3

exp12p iATOTAL � Fa
n1

exp12pi

bj � ai � dij

ATOTAL = F Π
3

i = 1

sin           ·  Niai

sin           ·   ai
exp{   [(N1 − 1)a1 + (N2 − 1)a2 + (N3 − 1)a3]},









	

	

ATOTAL = F2 I = ATOTAL Π
i

sin2        · Niai
sin2        · ai
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Figure 4 Illustration of detectability of diffraction peak broadening for a diffractometer for two
crystallite orientations. (a) and (c) show direct space and reciprocal space, respectively, for one crystal-
lite orientation relative to and (b) and (d) show the two spaces for a second crystallite orienta-
tion. The ellipses surrounding the reciprocal lattice points show the eleongation of the rel points into rel
rods (due to small crystallite dimensions) and represent contours of constant diffracted intensity. The
horizontal, solid bar represents the reciprocal space sampling region (RSSR).

S � S0

u–2u

4 STRAIN

A crystal with mosaic structure does not have its atoms arranged on a perfectly
regular lattice extending from one side of the crystal to the other; instead, the lat-
tice is broken up into a number of tiny blocks, each slightly disoriented one from
another.The size of these blocks is of the order of 1000 Å, while the maximum angle
of disorientation between them may vary from a very small value to as much as one
degree, depending on the crystal. If this angle is , then diffraction of a parallel
monochromatic beam from a “single” crystal will occur not only at an angle of inci-
dence but at all angles between and . Another effect of mosaic struc-uB � euBuB

e

Diffraction III: Real Samples

In the preceeding sections crystal size was seen as a type of defect, i.e., a deviation
from the crystal of infinite extent and perfect atomic periodicty assumed in the der-
ivation 21. Dislocations and subgrains are another type of defect which have impor-
tant consequences in diffraction. Before the existence of dislocations was estab-
lished experimentally, considerable indirect evidence had been gathered showing
that all real crystals possess, to  a greater or lesser degree, a mosaic structure such
as is illustrated in a greatly exaggerated fashion in Fig. 5.
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(a)

Strained

Unstrained

(b) (c)

Figure 5 Mosaic structure of a real crystal. (a) Rotations between adjacent domains (left), (b) disloca-
tions walls separating different mosaic blocks (middle) and (c) regions corresponding to high dislocation
densities in (b) where microstrain is significant. In (b) the symbol shows the positions of dislocation
lines running through the plane of the drawing.

�

ture is to increase the integrated intensity of the diffracted beam relative to that
theoretically calculated for an ideally perfect crystal (Sec. 5).

In the 1960s the TEM provided direct evidence of mosaic structure. It showed
that real crystals, whether single crystals or individual grains in a polycrystalline
aggregate, had a substructure defined by the dislocations present. The density of
these dislocations is not uniform; they tend to group themselves into walls (sub-
grain boundaries) surrounding small volumes having a low dislocation density (sub-
grains or cells). Today the term “mosaic structure” is seldom used, but the little

Diffraction III: Real Samples
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blocks of Fig. 5 are identical with sub-grains and the regions between the blocks are
the dislocation walls. It is the strains and strain gradients associated with the groups
of dislocations that is responsible for the increase in integrated intensity of diffrac-
tion not the fact that there are rotated domains.

It is useful at this juncture to consider the effects of strain on diffraction peaks.
Two types of stresses can be identified, microstresses and macrostresses.
Microstresses and the corresponding microstrains vary from one grain to another,
or from one part of a grain to another part, on a microscopic scale. On the other
hand, the stress may be quite uniform over large distances; it is then referred to as
macrostress.

The effect of strain, both uniform and nonuniform, on the direction of x-ray
reflection is illustrated in Fig. 6. A portion of an unstrained grain appears in (a) on
the left, and the set of transverse diffraction planes shown has everywhere its equi-
librium spacing d0. The diffraction line from these planes appears on the right. If
the grain is then given a uniform tensile strain at right angles to the diffraction
planes, their spacing becomes larger than d0, and the corresponding diffraction line
shifts to lower angles but does  not otherwise change, as shown in (b).This line shift

NO STRAIN

UNIFORM STRAIN

(a)

(b)

(c) 2�NON-UNIFORM STRAIN

CRYSTAL LATTICE DIFFRACTION
LINE

S0

d0

S

Figure 6 Effect of uniform and non-uniform strains (left side of the figure) on diffraction peak position

Diffraction III: Real Samples

and width (right side of the figure). (a) shows the unstrained sample, (b) shows uniform strain and 
(c) shows non-uniform strain within the volume sampled by the x-ray beam.
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is the basis of the x-ray method for the measurement of macrostress. In (c) the
grain is bent and the strain is nonuniform; on the top (tension) side the Bragg
plane spacing exceeds d0, on the bottom (compression) side it is less than d0, and
somewhere in between it equals d0. Thus, a single grain can be thought of as com-
posed of a number of small regions in each of which the plane spacing is substan-
tially constant but different from the spacing in adjoining regions. These regions
cause the various sharp diffraction lines indicated on the right of (c) by the dotted
curves. The sum of these sharp lines, each slightly displaced from the other, is the
broadened diffraction line shown by the full curve and, of course, the broadened
line would normally be the only one experimentally observable. Differentiating
Bragg’s law yields the relation between the broadening produced and the nonuni-
formity of the strain:

(9)

where b is the extra broadening, over and above the instrumental breadth of the
line, due to a fractional variation in Bragg plane spacing .This equation allows
the variation in strain, , to be calculated from the observed broadening. This
value of however, includes both tensile and compressive microstrain and must
be divided by two to obtain the maximum tensile strain alone, or maximum com-
pressive strain alone, if these two are assumed equal. The maximum strain so found
can then be multiplied by the elastic modulus E to give the maximum microstress
present.

¢d>d
¢d>d

¢d>d

b � ¢2u � �2
¢d
d

 tan  u,

5 PERFECT CRYSTALS

Within a few years of the discovery of the diffraction of x-rays by crystals, it was
apparent that the approach used to calculate diffracted intensities was inadequate

from perfect crystals were substantially less than those from deformed crystals, i.e.,
ideally imperfect crystals, and the variation of diffracted intensity with increasing

exhibited diffraction peak widths which were smaller than those of less perfect
crystals, but there appeared to be a minimum width of a diffraction peak which
depended on the material, the wavelength of x-rays, the reflection and other fac-
tors. The assumptions behind the derivation of the kinematical diffraction equa-
tions did not apply to the case of highly perfect crystals with dimensions greater
than ~ .

Explaining the effects described above requires development of dynamical dif-
fraction theory, but the origin of the decreased diffracting power of perfect crystals
is easy to illustrate (Fig. 7). In the discussion which follows it is important to remem-
ber that every time a ray is diffracted it undergoes a phase shift of relative to
the incident beam. If the incident beam with wave vector K0 enters a crystal at the
correct angle for hkl diffraction, diffracted rays K1 are produced at angle 2uu

p>2

1–5 mm
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levels of deformation was demonstrated [4]. Crystals with greater perfection

to describe diffraction from highly perfect crystals [2, 3]. Diffracted intensities
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Figure 7 Illustration of the origin of primary extinction during hkl diffraction. N is the normal to (hkl),
is the Bragg angle, and Ki, i = 0, 1 and 2 are the wavevectors for the incident beam, the beam through

from the incident beam and the beam diffracted through from the diffracted beam K1, respec-
tively.

�2u2u
u

from K0. The probability of diffraction occurring at any particular plane of atoms is,
of course, quite low, but in highly perfect crystals (with thicknesses greater than

) much of the incident intensity is eventually transferred to the diffracted
beam.

Suppose diffraction occurs at A, producing an x-ray beam with wave vector K1
and a phase shift of  with respect to K0. The beam K1 is incident, however, on
another array of scatterers (atoms) at angle . At point B, therefore, there is a finite
probability that K1 will be re-diffracted through angle , so that the diffracted
ray has wave vector K2 parallel to but shifted in phase by with
respect to K0. Thus K2 will interfere destructively with K0, and because intensity is
being removed from the incident beam before it has a chance to diffract from
depths below A-A´, the diffracted intensity will be lower than for an ideally imper-
fect crystal. This process is known as primary extinction.

In ideally imperfect crystals consisting of small coherent domains, primary
extinction is not present but there is another type of extinction effect. When the
crystal is oriented for diffraction the outermost domains remove a considerable
portion of the primary beam’s intensity by diffraction. This is in addition to the

p>2 � p>2 � p
�2u

u

p>2

1 mm
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usual beam attenuation. Domains deeper in the sample with the same orientation
of diffraction planes as those in the outer layer will, therefore, receive greatly
reduced intensity, and secondary extinction is said to have occurred.

Dynamical diffraction theory describes the transfer of energy from the incident

partition the forward beam energy between the forward and diffracted beam
directions and one to partition the diffracted beam energy between the diffracted
and forward beam directions. The essential physical result is that two x-ray wave-
fields (termed Bloch waves) are excited in the forward direction and two wave-
fields are excited in the diffracted beam direction. These wavefields have wave
vectors which are slightly different from K0 and K1, respectively, and the interac-
tion of these wavefields produces interesting diffraction effects. Note that these

method for obtaining a solution to this pair of coupled differential equations for
the reflection geometry can be found in numerous works [e.g., G.7, G.19-G.24].The
integrated intensity for Bragg reflection from a thick crystal with negligible
absorption is given by

(10)

where N is the number of unit cells per unit volume.
The shape of the diffraction peak, i.e., intensity as a function of rotation of the

sample crystal, is termed the crystal’s rocking curve. For an incident plane wave and
the reflection setting, dynamical theory predicts a flat-topped rocking curve; the
simulation shown in Fig. 8 includes the effect of absorption which slightly changes
the shape of the top of the curve. The flat-topped curve is known as the Darwin
curve, and the width of the flat-top portion of the curve is termed the Darwin curve
width 2s. It is interesting to note that the peak reflectivity (Idiffracted/Iincident at

) is 100% for the Darwin curve over the angular range 2s where

(11)

Allowing for the tails of the Darwin curve, the FWHM equals 2.12s. For first
order reflections, 5 arc sec arc sec. Higher order reflections have con-
siderably narrower rocking curves, and inclination of the diffraction planes relative
to the sample surface, i.e., asymmetrically oriented diffraction planes, can also alter
the Darwin curve width substantially. As noted in Fig. 8, absorption changes the
shape of the Darwin curve, but discussion of this topic is beyond the scope of
this book.

To illustrate the width of a perfect reflection, consider 211 (in terms of the rhom-
bohedral axes) diffraction from calcite , i.e., from the cleavage face.
Following Warren [pp. 329-330 of G.20], Å and F211 = fca + fc + fo perd211 � 3.035

1CaCO32

6 �u0 6 20
¢u0

s � a
e2

mc2b 
Nl2 0F 0

p sin  2u
 a

1 � 0  cos  2u 0

2
b.

u � uB

I �
8

3p
 a

e2

mc2b 
Nl2 0F 0

sin 2u
 a

1 � 0  cos 2u 0

2
b
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beam or forward direction to the diffracted beam direction and back again [5,
6]. Two differential equations are required to describe the energy transfer: one to

wavefields actually exist [7] and are not merely a mathematical artifice. The
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Figure 8 Simulated rocking curve for 004 silicon with radiation and x-ray absorption. If x-ray
absorption were absent, the top of the curve would be flat and the curve would be symmetrical.
(Simulation with RADS Software, Bede Scientific.) 

Mo Ka1

CaCO3 molecule. For radiation, , F211 = 26.2 per CaCO3, and the
number of CaCO3 per cm3 is N = 1.64 1022. For an unpolarized beam

Therefore one expects arc sec.
Peak reflectivities (ratio of diffracted and incident monochromatic intensities)

important to realize that reflectivity drops precipitously if defects are present in the
crystal. The FWHM of the Darwin curve represents a limit for a given geometry
which can be approached but never exceeded. Just as the presence of linear and pla-
nar lattice faults decreases reflectivity, these defects increase the width of the crys-

¢u0 � 2.12  s � 7.6

� 17.4 � 10�6rad � 3.6 arc sec

S �
12.82 � 10�132 11.64 � 10222 11.54 � 10�822126.220.936

p10.4912

�
l � 1.542Cu Ka
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approaching 100% have been measured for incident plane waves [8], but it is
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tal’s rocking curve. Measurement of rocking curves is, therefore, an important
method for assessing the perfection of crystals and epilayers, particularly those for
micro electronic and optical applications.

The x-ray wavefield interactions described by dynamical theory occur within the
Borrmann triangle ABC (Fig. 9). In the transmission setting the shape of the rock-
ing curve is different from that of the reflection geometry and is a complex function
of the thickness of the sample, even in the absence of significant absorption. All
positions D on the exit surface of the crystal receive a greater or lesser intensity of
x-rays due to the interference of the wavefields within the Borrmann triangle (the
Pendell sung effect), and both the diffracted and transmitted beams project from

mission or Laue geometry these wavefield interactions can be visualized through a

Perhaps the most surprising dynamical diffraction effect is that of anomalous

If or a similar large value, no intensity would be expected to be transmit-
ted through a crystal since the intensity transmitted is given normally by I = I0 exp
(- t).This result also holds for a perfect crystal (when it is thick), except at the exact
Bragg angle. At the Bragg angle, however, significant intensity is observed in both
the transmitted and diffracted beams. Dynamical diffraction theory demonstrates
that one of the two wavefields is localized on the Bragg planes, i.e., on the rows of
atoms comprising these planes, and the other is localized midway between the
Bragg planes. Attenuation of the latter wavefield is quite low since the x-ray pho-
tons encounter relatively few electrons while the converse is true for the wavefield
concentrated on the Bragg planes. Thus, attenuation of one of the wavefields is
extremely low, but only at the exact Bragg angle, and intensity is transmitted for

m

mt � 10

ö

S0

S0

A

C D B

S

entrance surface

exit
surface

(h
kl

)

Figure 9 Borrmann triangle ABC in which x-ray wavefields interact.
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technique called section topography.

the entire base of the triangle BC in their respective directions [9]. In the trans-

transmission in thick, perfect crystals (first observed by Borrmann in 1943 [10]).
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. The same effect is seen in electron diffraction in the TEM, where, due to
the effect on images, it is termed anomalous absorption.
mt 7 10

6 AMORPHOUS AND PARTIALLY CRYSTALLINE SAMPLES

In Sec. 2 through 4 examples were discussed of diffraction under nonideal condi-
tions. In Sec. 5 diffraction from highly perfect crystals was discussed. These results
are not deviations from Bragg’s law because it was derived for certain ideal condi-
tions and diffraction is only a special kind of scattering. This latter point cannot be
too strongly emphasized. A single atom scatters an incident beam of x-rays in all
directions in space, but a large number of atoms arranged in a perfectly periodic
array in three dimensions to form a crystal scatters (diffracts) x-rays in relatively
few directions. It does so precisely because the periodic arrangement of atoms caus-
es destructive interference of the scattered rays in all directions except those pre-
dicted by Bragg’s law, and in these directions constructive interference (reinforce-
ment) occurs. It is not surprising, therefore, that measurable diffraction (scattering)
occurs at non-Bragg angles whenever any crystal imperfection results in the partial
absence of one or more of the necessary conditions for perfect destructive interfer-
ence at these angles.These imperfections are generally slight compared to the over-
all regularity of the lattice, with the result that diffracted beams are confined to very
narrow angular ranges centered on the angles predicted by Bragg’s law for ideal
conditions.

This relation between destructive interference and structural periodicity can be
further illustrated by a comparison of x-ray scattering by solids, liquids, and gases
(Fig. 10). The curve of scattered intensity vs. for a crystalline solid is almost zero
everywhere except at certain angles where high sharp maxima occur: these are the
diffracted beams. Both amorphous solids and liquids have structures characterized
by an almost complete lack of periodicity and a tendency to “order” only in the
sense that the atoms are fairly tightly packed together and show a statistical pref-
erence for a particular interatomic distance; the result is an x-ray scattering curve
showing nothing more than one or two broad maxima. Finally, there are the
monatomic gases, which have no structural periodicity whatever; in such gases, the
atoms are arranged perfectly at random and their relative positions change con-
stantly with time. The corresponding scattering curve shows no maxima, merely a
regular decrease of intensity with increase in scattering angle. This curve would be
entirely featureless, i.e., horizontal, if it were not for the fact that isolated atoms
scatter x-rays more intensely at low angles than at high.

Information from the data such as that in the lower two curves of Fig. 10 can pro-
vide important clues to the structure of amorphous and semicrystalline samples.

2u

2u
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Figure 10 Comparative x-ray scattering by
crystalline solids, amorphous solids, liquids, and
monatomic gases (schematic). The three verti-
cal scales are not equal.
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PROBLEMS

1 In Fig. 1, put m = 10. (a) Write down a complete list of the path differences, in
wavelengths , between the ray scattered by each plane below the surface and the
ray scattered by the surface plane, for a scattering angle of . What plane scatters
a ray exactly out of phase with the ray scattered by the third plane below the sur-
face? What is the path difference for these two rays? (b) Write down a similar list
of path differences for rays scattered at an angle halfway between and in
order to convince yourself that these rays do not cancel one another.

vergent, and incident at the angle . Does broadening of the diffracted beam still
occur? If so, derive the relation between t and B.

of the powder pattern lines of particles of diameter 1000, 750, 500, and 250 Å.
Assume and Å. For particles 250 Å in diameter, calculate the
breadth B for and .80ou � 10, 45,

l � 1.5u � 45o

uB

2u12uB

2u1

l
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*2 In Fig. 1, assume that the incident beam is perfectly parallel, instead of con-

*3 Calculate the breadth B (in degrees of 2u), due to the small crystal effect alone,
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4 Check the value given in Sec. 2 for the increase in breadth of a diffraction line due
to the natural width of the emission line. [Hint: Differentiate Bragg’s law and
find an expression for the rate of change of with .]
5 What strain is required to produce the same broadening as a crystallite size of 50
Å?
6 Show that the interference function’s main maximum equals F2N2. What is the
ratio of the heights of the main and first subsidary maxima of the interference func-
tion?
7 Calculate the Darwin curve width for Si 004 with (a) radiation and (b)

radiation.
8 For calcite and for a parallel incident x-ray beam, at what number of unit cells
does the FWHM of the interference function equal the Darwin curve width?
(See Sec. 5.)
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ANSWERS TO SELECTED PROBLEMS

2

3.

� � 2l> 1B cos u2
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t B θ B

  1000 Å   0.11°   10°   0.31°

750 0.14 45 0.43

500 0.22 80 1.76

250 0.43  
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Diffractometer

Measurements
1 INTRODUCTION

The method of x-ray powder diffraction was devised independently in 1915 by
Debye and Scherrer in Germany, and in 1916 by Hull  in the United States, and ini-
tially relied on photographic film to record the angles and intensities of the dif-
fracted beams. After the early work of W. H. and W. L. Bragg on x-ray spectra and
crystal structure, diffractometry passed into a long period of relative disuse during
which photographic recording in cameras was the most popular method of observ-
ing diffraction effects. The few diffractometers in use were all homemade and con-
fined largely to the laboratories of research physicists. In the late 1940s, however,
commercially made instruments became available; they rapidly became popular
because they offered certain particular advantages over film techniques.

When properly employed, powder diffraction can yield a great deal of structur-
al information about the material under investigation. Basically, this method
involves the diffraction of monochromatic x-rays by a powder specimen. In this
connection, “monochromatic” usually means the strong characteristic compo-
nent of the radiation from an x-ray tube operated above the K excitation poten-
tial of the target materials. In the case of diffractometry, a crystal monochromator
is normally used to eliminate all wavelengths but the while in the photograph-
ic methods a filter is frequently used to enhance the ratio of the to other radia-
tion.“Powder” can mean either an actual, physical powder held together with a suit-
able binder or any specimen in polycrystalline form. The method is thus eminently
suited for materials work, since single crystals are not always available and such
materials as polycrystalline wire, sheet, rod, polymeric fibers, etc., may be examined
nondestructively without any special preparation.

Ka
Ka

a

Ka

From Chapter 6 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Depending solely on the way it is used, the basic x-ray diffractometer/spectrom-
eter is really two instruments:

1. An instrument for measuring x-ray spectra by means of a crystal of known
structure.

2. An instrument for studying crystalline (and noncrystalline) materials by
measurements of the way in which they diffract (scatter) x-rays of known
wavelength.

The term spectrometer was originally used to describe both instruments, but,
properly, it should be applied only to the first. The second instrument is aptly called
a diffractometer: this name serves well to emphasize the particular use to which the
instrument is being put, namely, diffraction analysis rather than spectrometry.

In this chapter, the design and operation of diffractometers will be described
with particular, emphasis on the configurations most often encountered in materi-
als work. Detailed information on diffractometer techniques appears in the books
by Klug and Alexander [G.17] and by Jenkins and Snyder [G.25], and on the geom-
etry of diffractometers appears in the monograph by Wilson [G.26].

Just as the emphasis in the present book is on diffraction rather than spec-
troscopy, the emphasis in this chapter is on the diffractometer. However, some
experimental techniques used only, or mainly, in spectrometry are also described
here, because they merge quite naturally with diffractometer techniques.

2 GENERAL FEATURES

In a diffraction camera, the intensity of a diffracted beam is measured through the
amount of blackening it produces on a photographic film, a microphotometer
measurement of the film being required to convert “amount of blackening” into x-
ray intensity. In the diffractometer, the intensity of a diffracted beam is measured
directly by an electronic x-ray detector.There are many types of x-ray detectors, but
they all convert incoming x-rays into surges or pulses of electric current which are
fed into various electronic components, including computers, for processing. The
electronics counts the number of current pulses per unit of time, and this number is
directly proportional to the intensity of the x-ray beam entering the detector.

Basically, a diffractometer is designed somewhat like the Hull/Debye–Scherrer
camera except that a movable detector replaces the strip of film. In both instru-
ments, essentially monochromatic radiation is used and the x-ray detector or film
is placed on the circumference of a circle centered on the powder specimen. The
essential features of a diffractometer are shown in Fig. 1. A powder specimen C,
in the form of a flat plate, is supported on a table H, which can be rotated about
an axis O perpendicular to the plane of the drawing. The x-ray source is S, the
line focal spot on the target T of the x-ray tube; S is also normal to the plane of
the drawing and therefore parallel to the diffractometer axis O. X-rays diverge
from this source and are diffracted by the specimen to form a convergent diffract-

Diffractometer Measurement
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Figure 1 X-ray diffractometer (schematic).

ed beam which comes to a focus at the slit F and then enters the detector G. A and
B are special slits which define and collimate the incident and diffracted beams.The
monochromator or filter is usually placed in a special holder (not shown) in the dif-
fracted, rather than the incident, beam; a monochromator or filter in the diffracted
beam not only serves its primary function (suppression of radiation) but also
decreases background radiation originating in the specimen.

The receiving slits and detector are supported on the carriage E, which may be
rotated about the axis O and whose angular position may be read on the gradu-
ated scale K. The supports E and H are mechanically coupled so that a rotation of
the detector through 2x degrees is automatically accompanied by rotation of the
specimen through x degrees. This coupling ensures that the angle of incidence on
the flat specimen always equal the angle another, and both equal to half the total
angle of diffraction, an arrangement necessary to preserve focusing conditions. In
older instruments the detector may be power-driven at a constant angular velocity
about the diffractometer axis or moved by hand to any desired angular position.
Modern automated diffractometers generally collect data with the detector and
sample set at a large number of fixed angles spaced by an angular increment on the
order of 0.01°; the length of time counted and the size of the angular increment are
controlled through software.

Figures 2 and 3 show two quite different configurations of a commercial instru-
ment. Both configurations adhere to the design principles described above, but
the positioning and details differ. The image in the lower right of Fig. 2 shows the
diffractometer’s radiation enclosure, and the PC next to the enclosure gives a
sense of scale. In Fig. 2 the diffractometer axis is horizontal, and the detector
moves in a vertical plane. In Fig. 3 the diffractometer axis is vertical, and the

2u

Kb
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Figure 2 Rigaku diffractometer. The x-ray tube is at the left, and the inset phtograph shows the radia-
tion enclosure and PC controlling the diffractometer motions (Courtesy Rigaku).

Figure 3 A second configuration of the Rigaku diffractometer shown in Fig. 2. Here additional sample
rotations are possible. (Courtesy Rigaku... .)

detector moves in the horizontal plane. The configuration in Fig. 3 provides more
sample rotation axes than in Fig. 2.

The way in which a diffractometer is used to mesure a diffraction pattern
depends on the kind of circuit used to measure the rate of production of pulses  in
the detector. The pulse rate may be measured in two different ways:

1. The succession of current pulses is converted into a steady current, which is
measured on a meter called rate meter, calibrated in such units as counts
(pulses) per second (c/s or cps). Such a circuit gives a continuous indication
of x-ray intensity.

2. The pulses of current are counted electronically in a circuit called scaler,
and the average counting rate is obtained simply by dividing the number of
pulses counted by the time spent in counting. This operation is essentially
discontinuous because of the time spent in counting, and a scaling circuit is
often quite inconvenient for following continuous changes in x-ray inten-
sity.

Diffractometer Measurement
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Figure 4 Block diagram of detector circuits for a diffractometer. The ratemeter circuit actuates a meter,
for a visual indication of the counting rate, and a chart recorder. The scaler and timer operate together.

Corresponding to these two kinds of measuring circuits, there are two ways in
which the diffraction pattern of an unknown substance may be obtained with a dif-
fractometer (Fig. 4):

1. Continuous Scan. The detector is set near and connected to a rate
meter. The output of this circuit is fed to a strip-chart recorder. The detec-
tor is then driven at a constant angular velocity through increasing values
of until the whole angular range is “scanned.” At the same time, the
paper chart on the recorder moves at a constant speed, so that distances
along the length of the chart are proportional to . The result is a chart,
such as Fig. 5, which gives a record of counts per second (proportional to
diffracted intensity) vs. diffraction angle .A “high” scanning speed is typ-
ically of per minute; at this rate a complete scan extending from, say,

to , requires 150/2 = 75 minutes. (The upper limit of detector
motion, determined by contact between detector and x-ray tube, is about

.) This mode of operation has been superceded by computerized
methods.

2. Step Scan. The detector is connected to a scaler and set at a fixed value of
for a time sufficient to make an accurate count of the pulses obtained

from the detector. The detector is then moved to a new angular position
and the operation repeated. The range of of interest is covered in this
fashion, and the curve of intensity vs. consists of the series of discrete
measurements. With current computer-controlled diffractometers this is

2u
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2u160°

2u160°10°
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Figure 5 Diffraction pattern of NaCl powder. Copper K radiation, monochromator, variable diver-
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the normal mode of operation and is no slower than continuous scanning.
The digital diffraction pattern resulting from step scanning or computer-
ized continuous scanning offers much greater convenience/power com-
pared to strip chart recording since the data is ready for analysis with
standard commercial or custom-written software. The time savings in
measuring peak positions and intensities automatically is enormous.
Accompanying this convenience is the very real danger that the incautious
will no longer carefully examine the diffraction pattern itself, i.e., the shape
of the different peaks, the changing background levels, etc., and thereby
ignore potentially useful information, or worse, interpret artefacts such as
electonic noise as diffraction peaks. Using software packages without
understanding the algorithms employed can lead to serious errors.

There is a fundamental difference between the operation of a powder camera
and a diffractometer. In a camera, all diffraction lines are recorded simultaneously,
and variations in the intensity of the incident x-ray beam during the exposure can
have no effect on relative line intensities. On the other hand, with a diffractometer,
diffraction lines are recorded one after the other, and it is therefore imperative to
keep the incident-beam intensity constant when relative line intensities must be
measured accurately. Since the usual variations in line voltage are quite apprecia-
ble, the x-ray tube circuit of a diffractometer must include a voltage stabilizer and
a tube-current stabilizer.

The kind of specimen used depends on the kind of material available. Flat metal
sheet or plate may be examined directly; however, such materials almost always

Diffractometer Measurement
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exhibit preferred orientation and this fact must be kept in mind in assessing rela-
tive intensities. This is also true of wires, which are best examined by cementing a
number of lengths side by side on a glass plate. This plate is then inserted in the
specimen holder so that the wire axes are at right angles to the diffractometer axis.
Powder specimens are best prepared by lightly brushing the powder through a suit-
ably-sized sieve into a recess in a glass, metal or plastic plate set on a slightly rough
surface (the frosted end of a glass microscope slide or a matte cardboard surface)
and compacting it from the back under just enough pressure to cause cohesion
without use of a binder (Fig. 6 illustrates one successful method). Too much pres-
sure causes preferred orientation of the powder particles. It is important to avoid
motions which shear the assembly of particles, otherwise preferred orientation and
unexpected peak intensities can result.A number of other successful powder “pack-
ing” have been compared [3] and discussed in detail [G.28,G.29]. In one important
alternative to using a holder to contain the powder, the powder may be mixed with
a binder and smeared on the surface of a glass slide.

Sieve

Pressure

A

A

A

B

Powder

Figure 6 Steps in one method of diffractometer sample preparation: place holder face down on a slight-
ly rough surface (frosted end of a glass microscope slide, matte cardboard, etc.) pour powder into sam-
ple holder from behind, press until powder is self-supporting in the holder, lift holder from surface and
flip so that face B (the front of the sample holder) is exposed.
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1 Epilayers are thin layers grown on single crystal substrates which generally have the same or closely
matched lattice parameters. Superlattices, in the sense used here, are periodically alternating layers with,
for example, different lattice parameters. The layer periodicity which is many times that of the crystal
lattice gives rise to the term “superlattice.” While a layer consisting of one-hundred periods of a super-
lattice might be considered very thick by a crystal grower, this number of periods in a crystal lattice
would be considered quite small by a diffractionist and the term “superlattice” is a bit of a misnomer.

Any powder should be ground extremely fine, to a size of or less, if rela-
tive line intensities are to be accurately reproducible; since the flat specimen is not
rotated as a Hull/Debye–Scherrer, specimen is, the only way of obtaining an ade-
quate number of particles having the correct orientation for diffraction is to reduce
their average size. (Specimen “spinners” are available to rotate the specimen con-
tinuously in its own plane. But this kind of rotation is not nearly as effective in
bringing new orientations into the beam as the kind that takes place in a
Hull/Debye–Scherrer camera. Sample “rockers” which oscillate the sample about
the diffractometer axis by an adjustable amount, on the order of 5°, are more effec-
tive than sample spinners.) Surface roughness also has a marked effect on relative
line intensities. If the surface is rough, as in the case of a coarse powder compact,
and the linear absorption coefficient high, the intensities of low-angle reflections
will be abnormally low because of the absorption of the diffracted rays in each pro-
jecting portion of the surface. The only way to avoid this effect is to use a flat-sur-
faced compact of very fine powders or a specimen with a polished surface.

Single-crystal specimens may also be examined in a diffractometer by mounting
the crystal on a goniometer allowing independent sample rotations about three
orthogonal axes through the center of the volume irradiated by the x-ray beam.
(Incidentally, independent rotation of the specimen about the diffractometer axis is
often called an , rather than a , rotation.) In fact, special single-crystal diffrac-
tometers are available, designed solely for the determination of complex crystal
structures. (Fig. 7(a) or for extremely high resolution measurement of diffraction
peak widths of nearly perfect crystals, epilayers or superlattices (Fig. 7(b)).1

A diffractometer may be used for measurements at high or low temperatures by
surrounding the specimen with the appropriate heating or cooling unit. Such an
adaptation of the instrument is much easier with the diffractometer than with a
camera because of the generally larger amount of free working space around the
specimen in the former. An additional advantage is that dynamic measurements
may be made. For example, the detector may be set to receive a prominent line of
a phase stable only at room temperature; as the temperature is continuously
increased, the ratemeter will continuously indicate and record the disappearance of
that phase, in the form of a curve of line intensity vs. temperature.

Automated sample changers are available. Coupled with computer data acquisi-
tion and control, this kind of automation can result in continuous, unattended, day-
and-night operation of a diffractometer. In the 1990’s, diffractometers appeared
whose modular optics could be changed very easily; the robust components allow
rapid reconfiguration, sometimes within fifteen minutes. High resolution, parallel

u�
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Figure 7 High resolution difractometers for single crystal samples, (a) schematic of a double axis dif-
fractometer used for recording rocking curves and (b) diagram of a Bede Scientific triple axis diffrac-
tometer for recording rocking curves and for high resolution reciprocal space mapping.
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2 Photographic emulsions have a much smaller dynamic range and require longer data collection times
than do electronic detectors. Image storage plates, however, a newly developed re-usable x-ray “film”,
have a range comparable to that of electronic detectors and require very short exposure times; provid-
ed that an image plate reader is available, the ability to see entire diffraction cones can be preserved
without the drawbacks of photographic emulsions.

beam or parafocusing beam conditioners can be interchanged, for example.
Limited resources inevitably constrain the number of diffractometers available in
one laboratory, and such modern instruments greatly improve the quality of data
which it is practical to obtain.

In the succeeding sections, the various parts of the diffractometer will be
described in greater detail. This summary of the general features of the instrument
is enough to show its principal advantage over the powder camera: the quantitative
measurement of line position and intensity is made in one operation  with a dif-
fractometer, whereas the same measurement with film technique requires at least
two steps (recording the pattern on film and making a microphotometer record of
the film) and leads to an over-all result which is generally of lower accuracy, and
which includes a much smaller range of intensity values.2

This superiority of the diffractometer is reflected in the much higher cost of the
instrument, a cost due not only to the precision machining necessary in its mechan-
ical parts but also to the circuits needed to measure the intensity of diffracted
beams and to the data acquisition and analysis software.

The diffractometer is a superb instrument for dealing with many problems. But
it is not without its faults.A detector “sees” only the radiation to which it is exposed
and is blind to all diffracted and scattered rays not lying in the plane of the diffrac-
tometer circle. A photographic film, with an area of several square inches, will
intercept and record a great many rays, disclosing at a glance such conditions as
coarse grains and preferred orientation; a diffractometer does not immediately
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see these things. As Guinier [G.30] puts it, “The photographic method is admirably
suited to the qualitative exploration of an unknown pattern, since one can then find
totally unexpected phenomena: The counter [i.e., the detector] is necessary for
quantitative measurements on a pattern which is already known qualitatively.”

3 X-RAY OPTICS

The chief reason for using a flat specimen is to take advantage of the focusing
action described below and so increase the intensity of weak diffracted beams to a
point where they can be accurately measured. The basis for this focusing is the geo-
metrical theorem (Fig. 8): all angles inscribed in a circle and based on the same arc
SF are equal to one another and equal to half the angle subtended at the center by
the same arc. Suppose that x-rays proceeding in the directions SA and SB
encounter a powder specimen located on the arc AB. Then the rays diffracted by
the same (hkl) planes at points A and B will deviated through the same angle .
But these deviation angles are each equal to , which means that the
diffracted rays must proceed along AF and BF, and come to a focus at F.

Figure 9 shows how the geometry of Fig. 8 applies to the flat specimens used
in , also termed Bragg–Brentano, diffractometers. For any position of the
detector, the receiving slit F and the x-ray source S are always located on the dif-
fractometer circle, which means that the face of the specimen, because of its
mechanical coupling with the detector, is always tangent to a focusing circle cen-
tered on the normal to the specimen and passing through F and S. The focusing
circle is not of constant size but increases in radius as the angle decreases, as2u

u–2u

1180° � a22u
2u
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Figure 8 Focusing–geometry.
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Figure 9 Focusing geometry for flat specimens in (a) forward reflection and (b) back reflection.

indicated in Fig. 9. Perfect focusing at F requires that the specimen be curved to fit
the focusing circle. Use of a flat specimen causes some broadening of the diffract-
ed beam at F and a small shift in line position toward smaller angles, particularly at

angles less than about ; both effects can be lessened by decreasing the diver-
gence of the incident beam, at the expense of decreased intensity. (Neither focusing
nor intensity has to be sacrificed if the specimen surface always conforms to the
focusing circle. A device to do this has been produced [4]. The powder specimen is
mounted on a thin flexible strip, which is automatically bent to the proper curva-
ture at each angle .)

The line source S extends considerably above and below the plane of the draw-
ing of Fig. 9 and emits radiation in all directions, but the focusing described above
requires that all rays in the incident beam be parallel to the plane of the drawing.
This condition is realized as closely as possible experimentally by passing the inci-
dent beam through a Soller slit (Fig. 10), slit A in Fig. 1, which contains a set of close-
ly spaced, thin metal plates parallel to the plane of the diffractometer circle. These
plates remove a large proportion of rays inclined to the plane of the diffractometer
circle and still allow the use of a line source of considerable length. Typical dimen-
sions of a Soller slit are: length of plates 32 mm, thickness of plates 0.05 mm, clear
distance between plates 0.43 mm. At either end of the slit assembly are rectangular
slits a and b, the entrance slit a next to the source being narrower than the exit slit
b. The combination of slits and plates splits the incident beam into a set of triangu-
lar wedges of radiation, whose apices are small sections of the line source as indi-
cated in Fig. 10. There are, of course, some rays, not shown in the drawing, which
diverge in planes perpendicular to the plane of the plates, and these rays cause the
wedges of radiation to merge into one another a short distance away from the
exit slit. However, the long, closely spaced plates do restrict this unwanted diver-
gence to an angle of about 1.5°. Slits a and b define the divergence of the inci-
dent beam in the plane of the diffractometer circle. The slits commonly available
have divergence angles ranging from very small values up to about 4°. In the for-
ward-reflection region, a divergence angle of 1° is sufficient because of the low

2u

60°2u
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line source

slit a

slit b

Figure 10 Soller slit (schematic). For simplicity, only three metal plates are shown; actual Soller slits con-
tain about a dozen.

3A number of things besides slit width (e.g., x-ray tube current) will change the integrated intensity of a
single diffraction line. The important thing to note, however, is that a change in any one of the operating
variables changes the integrated intensities of all diffraction lines in the same ratio but can produce very
unequal effects on maximum intensities. Thus, if I1/I2 is the ratio of the integrated intensities of two lines
measured with a certain slit width and M1/M2 the ratio of their maximum intensities, then another meas-
urement with a different slit width will result in the same ratio I1/I2 for the integrated intensities, but the
ratio of the maximum intensities will now, in general, differ from M1/M2.

inclination of the specimen surface to the incident beam, but in back reflection an
increase in divergence angle to 3 or 4° will increase the area irradiated and the dif-
fracted intensity. But if line intensities are to be compared over the whole range of

, the same divergence must be used throughout and the specimen must be wider
than the beam at all angles. Some diffractometers, however, are equipped with auto-
matically varying divergence slits which allow a constant area of the sample to be
irradiated regardless of ; this increases the intensity of higher peaks relative to
those at lower and compensates for the rapidly falling diffracted peak intensities
with increasing . Before results from this type of diffractometer can be compared
to those of a conventional fixed-slit-width system, the intensities must be convert-
ed analytically to compensate for the larger volumes irradiated with variable slits.

The beam diffracted by the specimen passes through another Soller slit and the
receiving slit F before entering the detector (Fig. 11). Since the receiving slit defines
the width of the beam admitted to the detector, an increase in its width will increase
the maximum intensity of any diffraction line being measured but at the expense of
some loss of resolution. On the other hand, the relative integrated intensity of a dif-
fraction line is independent of slit width, which is one reason for its greater funda-
mental importance.3

2u
2u

2u2u

2u
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Figure 11 Arrangement of slits in diffractometer.

Because of the focusing of the diffracted rays and the relatively large radius of
the diffractometer circle, about 15 cm in commercial instruments, a diffractometer
can resolve very closely spaced diffraction lines. Indicative of this is the fact that
resolution of the doublet can be obtained at angles as low as about 40°.
Such resolution can only be achieved with a correctly adjusted instrument, and it is
necessary to so align the component parts that the following conditions are satisfied
for all diffraction angles:

1. line source, specimen surface, and receiving-slit axis are all parallel,
2. the specimen surface coincides with the diffractometer axis, and
3. the line source and receiving slit both lie on the diffractometer circle.

At this point it is worth briefly mentioning capillary optics which condense the
x-ray beam using perfect external reflection from the smooth, tapered surface of
the inside of glass capillary tubes. Arrays of tubes have been fabricated so that sig-
nificant sample areas can be covered, and the reader is referred to recent volumes
of [G] where details of this evolving technology can be found.

The diffractometer is not the only type of powder diffractometer that may
be encountered. One Bragg-Brentano variant is the diffractometer where the
sample remains stationary and the detector and x-ray source rotate. The focussing
optics used in the diffractometer are also applied in the Seeman-Bohlin dif-
fractometer whose geometry is similar to that of the Seemann–Bohlin camera the
chief difference is that the detector slit traces the path NM in Fig. 7. The angle of
incidence of the x-ray beam in the Seeman-Bohlin diffractometer can be very low,
and this makes the instrument valuable for thin film studies.

u–2u

u–u
u–2u

2uCu Ka
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4 DETECTORS (GENERAL)

Without exception all electronic detectors were developed by nuclear physicists for
studies of radioactivity. They can detect not only x- and -radiation, but also
charged particles such as electrons and -particles, and the design of the detectors
and associated circuits depends to some extent on what is to be detected. Here dis-
cussion is limited to x-rays of the wavelengths commonly encountered in diffrac-
tion.

Four types of detectors are currently in use: proportional, Geiger, scintillation,
and semiconductor. All depend on the power of x-rays to ionize atoms, whether
they are atoms of a gas (proportional and Geiger counters) or atoms of a solid
(scintillation and semiconductor detectors). A general treatment of the first three
types has been given by Parrish [5] and of all four by Knoll [6]. Often detectors are
called “counters” even through this usage is not strictly correct. It persists, howev-
er, in usages such as “Geiger counter” which will undoubtedly continue because
they are embedded in popular culture. Patterns of usage are similar for “propor-
tional counters” (Sec. 5) and this nomenclature will be continued.

Three aspects of detector behavior are of concern here: losses, efficiency, and
energy resolution.These are defined below and made more specific in later sections
on particular detectors.

Counting Losses

The absorption of a quantum (photon) of x-rays in the active volume of a detector
causes a voltage pulse in the detector output. Pulses from the detector then enter
some very complex electronic circuitry, consisting of one or more pulse amplifiers,
pulse shapers, etc. and, at the end, a scaler or ratemeter and, possibly, a pulse-height
analyzer (Sec. 9). For the purposes of this section, all the circuitry beyond the detec-
tor will be termed the “electronics,” and the behavior of the whole system namely,
the detector-electronics combination is of interest.

If the x-ray beam to be measured is strong, the rate of pulse production in the
detector will be high, and the counting rate given by the ratemeter will be high.
(Roughly speaking, several thousand counts per second is a “high” rate in powder
diffractometry, and less than a hundred cps a “low” rate.) As the counting rate
increases, the time interval between pulses decreases and may become so small that
adjacent pulses merge with one another and are no longer resolved or counted, as
separate pulses. At this point counting loss has begun. The quantity that determines
this point is the resolving time ts of the detector electronics system, defined as the
minimum time between two resolvable pulses.

The arrival of x-ray quanta at the detector is random in time. Therefore pulse
production in the detector is random in time, and a curve showing the change in
voltage of the detector output would look like Fig. 12. If the arrival and absorp-

a
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Figure 12 Randomly spaced voltage pulses produced by a detector.

tion of entering quanta were absolutely periodic in time, the maximum counting
rate without losses would be given simply by 1/ts. But even if their average rate of
arrival is no greater than 1/ts, some successive quanta may be spaced less than 1/ts
apart because of their randomness in time. It follows that counting losses will occur
at rates less than ts and that losses will increase as the rate increases, as shown in
Fig. 13. Here quanta absorbed per second are directly proportional to the x-ray
intensity, so that this curve has an important bearing on diffractometer measure-
ments, because it shows the point at which the observed counting rate is no longer
proportional to the x-ray intensity. The straight line shows the ideal response that
can be obtained with a proportional counter at the rates shown. This linear, no-loss
behavior is fortunately typical of most detectors used today in diffractometry; oth-
erwise one would have the tedious task of correcting some observed counting rates
for losses.

If the resolving time ts of the detector-electronics is known, the point at which
losses begin can be calculated by an easily remembered rule; a loss of one percent
occurs at a rate of about one percent of 1/ts.Thus, if ts is one microsecond, the count-
ing rate should be linear to within one percent up to a rate of about 10,000 cps.

Ordinarily, the resolving time is unknown. But if nonlinear counting behavior is
suspected, the counting rate at which losses begin can be determined experimen-
tally by the following procedure. Position the detector to receive a strong diffract-
ed beam, and insert in this beam a sufficient number of metal foils of uniform thick-
ness to reduce the counting rate almost to the cosmic background. (Cosmic rays,
because of their high penerating power, pass right through the walls of the detector

Figure 13 The effect of counting rate on counting
losses for three kinds of detectors (schematic). 0 500040003000
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Figure 14 Calibration curve of a multi-
chamber Geiger counter. radia-
tion. Nickel foils, each 0.01 mm thick, used
as absorbers.

Cu Ka

and continually produce a few counts per second.) Measure the counting rate,
remove one foil, measure the counting rate, and continue in this manner until all the
foils have been removed. Because each foil produces the same fractional absorp-
tion of the energy incident on it, a plot of observed counting rate (on a logarithmic
scale) vs. number of foils removed from the beam (on a linear scale) will be linear
up to the point where losses begin and will in fact resemble Fig. 13. A curve of this
kind is shown in Fig. 14.

Counting Efficiency

The overall efficiency E of the detector-electronics system in detecing incident
x-ray quanta as resolved pulses is the product of the absorption efficiency Eabs and
the detection efficency Edel.

All detectors have a thin “window,” usually of mica or beryllium, through which
the x-rays must pass before reaching the active volume of the detector.The fraction
of the incident radiation absorbed by the window should be as small as possi-
ble, and the fraction absorbed by the detector itself as large as possible. The
absorption efficiency Eabs expressed as a fraction, is given by . The
detection efficiency Edet is simply , where represents the fractional
counting losses described above. The overall efficiency is then

(1)

As previously mentioned Edet is essentially 100 percent for most detectors used in
diffractometry. Therefore E is determined by Eabs which can be calculated from the
dimensions and absorption coefficients of the window and detector, and Fig. 15

E � EabsEdet � 3 11 � fabs, w2 1fabs, d2 4 31 � flosses 4 .

flosses11 � flosses2
11 � fabs, w2 1fabs, d2

fabs, d

fabs, w
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Figure 15 Calculated values of absorption efficiency Eabs (in percent) of various kinds of detectors, pho-
tographic x-ray film (black dots). After Parrish [5] and pp. 538-555 of Vol. C, of [G.1].

shows the result. Note particularly the dependence of Eabs on wavelength, due to
the dependence of absorption coefficients on wavelength. Efficiency as a function
of wavelength is also shown for film and for image storage plates. The efficiency of
any detector is low for very short wavelengths, because most of these hard x-rays
pass right through window and detector and are absorbed by neither; at long wave-
lengths Eabs decreases because of increasing absorption of soft x-rays by the 
window.

Energy Resolution

In most detectors the sizes of the voltage pulses produced by the detectors are pro-
portional to the energy of the x-ray quantum absorbed. Thus, if absorption of a

quantum  produces a pulse of V volts, then absorption of a quantum
will produce a pulse of (20/9)V = 2.2 V.

Mo KaCu Ka
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However, the size of a pulse is not sharply defined, even when the incident radi-
ation is strictly monochromatic or, in energy terms, “monoenergetic.” Instead of all
pulses having exactly the same size V as suggested, for example, by Fig. 12, they
have sizes distributed around V roughly as indicated in Fig. 16. Here the ordinate,
“counting rate,” is equivalent to the number of pulses having a particular size, so
that this curve is a pulse-size distribution curve. If the width of the curve at half its
maximum height is W and if V is the mean pulse size, then the resolution R of the
detector is

(2)

The smaller R, the better the resolution.
Next consider the operation and performance of various detectors.

R �
W

V
.

5 PROPORTIONAL COUNTERS

Consider the device shown in Fig. 17, consisting of a cylindrical metal shell (the
cathode), about 10 cm long and 2 cm in diameter, filled with a gas and containing a
fine metal wire (the anode) running along its axis. Note that the wire is electrically
isolated from the shell, and suppose there is a constant potential difference of about
200 volts between anode and cathode. One end of the cylinder is covered with a
window of high transparency to x-rays. Of the x-rays which enter the cylinder, a
small fraction passes right through, but the larger part is absorbed by the gas; and
this absorption is accompanied by the ejection of photoelectrons and Compton
recoil electrons from the atoms of the gas. The net result is ionization of the gas,
producing electrons, which move under the influence of the electric field toward the
wire anode, and positive gas ions, which move toward the cathode shell. At a poten-
tial difference of about 200 volts, all these electrons and ions will be collected on the
electrodes, and, if the x-ray intensity is constant, there will be a small constant cur-
rent of the order of 10-12 amp or less through the resistance R1. This current is a
measure of the x-ray intensity. When operated in this manner, this device is called
an ionization chamber. It was used in the original Bragg spectrometer but is now
used mainly to measure the intensity of incident beams at synchrotron radiation
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sources. In this case the low sensitivity of ionization chambers is an advantage.
Ionization chambers are also still used in some radiation survey meters.

The same instrument, however, can be made to act as a proportional counter if
the voltage is raised to the neighborhood of 1000 volts. A new phenomenon now
occurs, namely, multiple ionization or “gas amplification.” The electric-field intensi-
ty is now so high that the electrons produced by the primary ionization are rapidly
accelerated toward the wire anode and at an ever-increasing rate of acceleration,
since the field intensity increases as the wire is approached. The electrons thus
acquire enough energy to knock electrons out of other gas atoms, and these in turn
cause further ionization and so on, until the number of atoms ionized by the absorp-
tion of a single x-ray quantum is some 103 to 105 times as large as the number ion-
ized in an ionization chamber.As a result of this amplification a veritable avalanche
of electrons hits the wire and causes an easily detectable pulse of current in the
external circuit.This pulse leaks away through the large resistance R1 but not before
the charge momentarily added to the capacitor C1 has been detected by the rateme-
ter or scaling circuit connected to C1. At the same time the positive gas ions move
to the cathode but at a much lower rate because of their larger mass. This whole
process, which is extremely fast, is triggered by the absorption of one x-ray
quantum.

A gas amplification factor A can be defined as follows: if n is the number of
atoms ionized by one x-ray quantum, then An is the total number ionized by the
cumulative process described above. (For example, if the gas in the counter is argon,
energy of about 26 eV is required to produce an ion pair, i.e., a positive ion and an
electron. If the incident radiation is of energy 8040 eV, then the number n
of ion pairs formed is 8040/26 or 310.) Figure 18 shows schematically how the gas
amplification factor varies with the applied voltage. At the voltages used in ioniza-
tion chambers, A = 1; i.e., there is no gas amplification, since the electrons produced
by the primary ionization do not acquire enough energy to ionize other atoms. But
when the voltage is raised into the proportional counter region, A becomes of the
order of 103 to 105, and a pulse of the order of a few millivolts is produced.
Moreover, the size of this pulse is proportional to the energy of the x-ray quantum
absorbed, which accounts for the name of this counter. This proportionality is
important, because it allows x-ray quanta of different energies (wavelengths) to be
distinguished. (Sec. 9) (Historically, this counter was the first kind to exhibit such
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Figure 17 Gas counter (proportional or Geiger) and basic
circuit connections.
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Figure 18 Effect of voltage on the gas amplifica-
tion factor. Friedman [7].

proportionality. There are now others.) Pulses from the counter go to a preamplifi-
er, mounted immediately adjacent to the counter; here they are amplified enough
to be transmitted, without too much attenuation, along several feet of cable to the
main amplifier and the rest of the electronics.

The correct voltage at which to operate the counter is found as follows. Position
the counter to receive an x-ray beam of constant intensity. Measure the counting
rate with a ratemeter or scaler while slowly increasing the voltage applied to the
counter from a low value. Figure 19 shows how the counting rate will vary with volt-
age. Below the starting voltage the pulse size is less than the input sensitivity of the
counting circuit and no counts are observed. The pulse size and observed counting
rate then increase rapidly with voltage up to the threshold of the plateau, where the
counting rate is almost independent of voltage. The voltage is then fixed at about
100 volts above threshold. (Note that x-rays of longer wavelength require a higher
counter voltage.This means that the counter voltage should be reset when the x-ray
tube in the diffractometer is changed for one with a different target.)

The proportional counter is essentially a very fast detector and has a linear
counting curve up to about 10,000 cps. This ability to separate closely spaced puls-
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Figure 19 Effect of voltage applied to proportional counter
on observed counting rate at constant x-ray intensity
(schematic).
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es is due to the fact that the avalanche triggered by the absorption of an x-ray quan-
tum is confined to an extremely narrow region of the counter, 0.1 mm or less, and
does not spread along the counter tube (Fig. 20). The rest of the counter volume is
still sensitive to incoming x-rays.

The electric field near the end of the anode wire is not uniform. Proportional
counters made with a side window, rather than the end window shown in Fig. 20
allow x-ray absorption to take place in a region of uniform field.

The gas in the counter is usually xenon, argon, or krypton at a pressure some-
what less than atmospheric. Figure 15 shows that a krypton counter has about the
same sensitivity for all the characteristic radiations normally used in diffraction.
But an argon or xenon counter is much less sensitive to short wavelengths, an
advantage in most cases.Thus, if a diffraction pattern is made with filtered radiation
from a copper target, use of an argon counter will produce semi-monochromatic
conditions, in that the counter will be highly sensitive to radiation and rela-
tively insensitive to the short wavelength radiation that forms the most intense part
of the continuous spectrum. The diffraction background will therefore be lower
than if a krypton counter had been used. (The student may wish to record the spec-
trum of the copper-target x-ray tube in a diffractometer. This can be done by oper-
ating it as a spectrometer, with a single crystal, such as quartz or rock salt, in the
specimen holder and recording the intensity diffracted from the crystal as a func-
tion of angle. With an argon-filled counter, the resulting spectrum will not look at
all like what is expected. Instead, only the and lines will be visible on
a linear scale plot of intensity as a function of diffraction angle because the count-
er is insensitive to short wavelengths. The continuous spectrum can be observed
only by effecting an opposite distortion: put several thicknesses of aluminum foil in
the diffracted beam so as to absorb the Cu K lines more than the short wavelengths;
at the same time, expand the ratemeter scale to allow for the decreased intensity of
all wavelengths.With sufficiently heavy filtration by aluminum, the spectrum can be
so distorted that the maximum in the continuous spectrum will be more intense, as
recorded, than the characteristic lines. It is an instructive experiment.)

In x-ray spectroscopy but not in diffraction, there is a need to measure soft x-rays
of wavelength about 5-20 Å. Because ordinary windows would almost totally
absorb such radiation, thin sheet plastic is used as a window, so thin that it leaks. To
allow for this, a stream of counter gas is continuously passed through the counter,
which is then called a gas-flow proportional counter.

Another special type, the position-sensitive proportional counter has become
important for certain applications. The diffracted x-ray beam enters the counter
through a side window, striking the anode wire, which lies in the plane of the dif-
fractometer circle, approximately at right angles. Because the electron avalanche is
sharply localized (Fig. 20), the point where the electrons hit the wire can be deter-
mined by one of two methods, (Sec 10). Thus the angular position of a diffract-
ed beam is found, not in the usual way by moving a detector with a narrow entrance
slit to the position of the beam (Fig. 1), but by finding where the beam 

2u

Cu KbCu Ka

Cu Ka
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strikes the wire of a fixed wide-window counter. The counting circuit must include 
a multichannel analyzer (Sec. 9) in order to determine the profile of the diffraction
line.
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6 GEIGER COUNTERS

If the voltage on a proportional counter is increased to the neighborhood of 1500
volts, it will act as a Geiger counter. Historically, this was the first electronic count-
er; it is also called a Geiger-Müller or G-M counter.

The applied voltage is now so high that not only are some atoms ionized but oth-
ers are raised to excited states and caused to emit ultraviolet radiation. These ultra-
violet photons travel throughout the counter at high speed (light travels 10 cm in a
third of a nanosecond), knocking electrons out of other gas atoms and out of the
cathode shell. All the electrons so produced trigger other avalanches, and the net
result is that one tremendous avalanche of electrons hits the whole length of the
anode wire whenever an x-ray quantum is absorbed anywhere in the tube
(Fig. 20). As a result the gas amplification factor A is now much larger, about 108 to
109, than in a proportional counter, and so is the size of the pulse produced, now
some 1 to 10 volts. This means that no preamplifier is needed at the counter. On the
debit side, all pulses have the same size, whatever the energy of the x-ray quanta.

The Geiger counter is also slow. Any one avalanche of electrons hits the anode
wire in less than a microsecond, but the slowly moving positive ions require about
200 microseconds to reach the cathode. Thus the electron avalanche leaves behind
it a cylindrical sheath of positive ions around the anode wire. The presence of this
ion sheath reduces the electric field between it and the wire below the threshold
value necessary to produce a Geiger pulse. Until this ion sheath has moved far
enough away from the wire, the counter is insensitive to entering x-ray quanta. If
these quanta are arriving at a very rapid rate, it follows that not every one will cause
a separate pulse and the counter will become “choked.” The resolving time is only
about 10-4 sec, so that counting losses begin at a few hundred cps. Even the multi-
chamber counter is not much better (Fig. 13); this counter has a number of cham-
bers side by side, each with its own anode wire, and one chamber can therefore reg-
ister a count while another one is in its insensitive period.

Because it cannot count at high rates without losses, the Geiger counter is now
obsolete in diffractometry. It is still used in some radiation survey meters.

x-ray quantum
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x-ray quantum
absorbed here
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Figure 20 Differences in the extent of ionization between proportional and Geiger counters. Each plus
(or minus) symbol represents a large number of positive ions (or electrons).

212
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Diffractometer MeasurementDiffractometer Measurement

7 SCINTILLATION DETECTORS

This type of detector exploits the ability of x-rays to cause certain substances to
fluoresce visible light, as in fluorescent screens.. The amount of light emitted is
proportional to the x-ray intensity and can be measured by means of a photo-
tube. Since the amount of light emitted is small, a special kind of phototube
called a photomultiplier has to be used in order to obtain a measurable current
output.

The substance generally used to detect x-rays is a sodium iodide crystal activat-
ed with a small amount of thallium. It emits violet light under x-ray bombardment.
(The details of this emission are roughly as follows. Absorbed x-rays ionize some
atoms, i.e., raise some electrons from the valence to the conduction band of NaI.
These electrons then transfer some of their energy to the Tl+ ion. When the excited
ion returns to its ground state, light is emitted.) The light-emitting crystal is cement-
ed to the face of a photomultiplier tube, as indicated in Fig. 21, and shielded from
external light by means of aluminum foil. A flash of light (scintillation) is produced
in the crystal for every x-ray quantum absorbed, and this light passes into the pho-
tomultiplier tube and ejects a number of electrons from the photocathode, which is
a photosensitive material generally made of a cesium-antimony intermetallic com-
pound. (For simplicity, only one of these electrons is shown in Fig. 21.) The emitted
electrons are then drawn to the first of several metal dynodes, each maintained at
a potential about 100 volts more positive than the preceding one, the last one being
connected to the measuring circuit. On reaching the first dynode, each electron
from the photocathode knocks two electrons, say, out of the metal surface, as indi-
cated in the drawing.These are drawn to the second dynode where each knocks out
two more electrons and so on. Actually, the gain at each dynode may be 4 or 5 and
there are usually at least 10 dynodes. If the gain per dynode is 5 and there are 10
dynodes, then the multiplication factor is 510 = 107. Thus the absorption of one x-
ray quantum in the crystal results in the collection of a very large number of elec-

glass photocathode dynodes vacuum

photomultiplier tubecrystal

electron
light

x-rays

Figure 21 Scintillation detector (schematic). Electrical connections not shown.
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trons at the final dynode, producing a pulse about as large as a Geiger pulse, i.e., of
the order of volts. Furthermore, the whole process requires less than a microsecond,
so that a scintillation detector can operate at rates as high as 105 counts per second
without losses. The correct detector voltage is found by the method used for the
proportional counter, by plotting counting rate vs. voltage  (Fig. 19).

As in the proportional counter, the pulses produced in a scintillation detector
have sizes proportional to the energy of the x-ray quanta absorbed. But the pulse
size corresponding to a certain quantum energy is much less sharply defined, as
shown in Fig. 22 for typical proportional counters and scintillation (NaI·Tl) detec-
tors. As a result, it is more difficult to discriminate, with a scintillation detector,
between x-ray quanta of different wavelengths (energies) on the basis of pulse size.

The efficiency of a scintillation detector approaches 100 percent over the usual
range of wavelengths (Fig. 15), because virtually all incident quanta are absorbed,
even in a relatively thin crystal.

8 SEMICONDUCTOR DETECTORS

Developed in the 1960s, semiconductor detectors produce pulses proportional to
the absorbed x-ray energy with better energy resolution than any other detector;
this characteristic has made them of great importance in spectroscopy. For a variety
of reasons, including expense and convenience of use, semiconductor detectors
have not been used as widely in diffraction, as proportional or scintillation detec-
tors.

Both silicon and germanium are used, germanium as a detector for gamma rays,
and “harder” x-rays because it is heavier and therefore a better absorber, and sili-
con for x-rays. Originally both contained a small amount of lithium and were des-
ignated Si(Li) and Ge(Li), inevitably referred to as “silly” and “jelly.” Their prop-
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Figure 22 Pulse-height distribution curves for three kinds of detector. Incident radiation is
from a radiative 55Fe source. Data from Frankel and Adams [G.8]

and [p. 540, Vol. C of G.1].
Mn Ka 1l �  2.10 Å, hn � 5.90 keV2
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erties have been reviewed elsewhere [G.1, 9-12]. The Ge(Li) detectors have now
been superceded by high purity germanium detectors (HPGe) which do not require
Li drifting nor storage at low temperatures (even at ambient temperatures the
mobility of lithium is high enough in germanium to degrade the lithium gradient).

Pure silicon is an intrinsic semiconductor. It has very high electrical resistivity,
especially at low temperatures, because few electrons are thermally excited across
the energy gap into the conduction band. However, incident x-rays can cause exci-
tation and thereby create a free electron in the conduction band and a free hole in
the valence band. As shown later, the absorption of one x-ray quantum creates
about a thousand electron-hole pairs. If a high voltage is maintained across oppo-
site faces of the silicon crystal, the electrons and holes will be swept to these faces,
creating a small pulse in the external circuit.

It is essential that the silicon be intrinsic (i). It must neither be n-type, contain-
ing free electrons from donor impurities, nor p-type, containing free holes from
acceptor impurities; in either type, the free charge carriers, at their usual concen-
trations, would overwhelm the few carriers produced by x-rays. Production of a rea-
sonably large intrinsic crystal, which is not easy, requires two operations.

1. The starting material is a cylindrical crystal, some 3-5 mm thick and 5-15
mm in diameter. It is p-type, having been lightly doped with boron. Lithium
is applied to one face and diffused into the crystal at an elevated tempera-
ture, producing a gradient of lithium concentration from high to low
through the thickness. The lithium exists as Li+ ions, and the free electrons
it provides convert the crystal into n-type on one side, where the lithium
concentration is high, leaving the other side p-type.

2. A voltage is then applied, also at an elevated temperature, to opposite
faces, positive on the n side and negative on the p side (called “reverse
bias”). This causes the Li+ ions to “drift” toward the p side, resulting in a
wide central region of constant lithium concentration; this region is now
intrinsic because it has equal lithium and boron concentrations.

The result is the lithium-drifted silicon detector sketched in Fig. 23. The crystal is
virtually all intrinsic, with the p and n portions confined to thin surface layers, which
are exaggerated in the drawing. The very small pulses from the detector are ampli-
fied to the millivolt level by a field-effect transistor, abbreviated FET. (There is no
charge amplification, such as occurs in a gas counter. The pulse from the detector
contains only the charge liberated by the absorbed x-rays.)

Putting aside all of the above details of semiconductor physics, a Si(Li) detector
simply is a solid-state ionization chamber, with one difference. X-rays incident on a
gas ionization chamber produce a constant current (Sec. 5). In a Si(Li) detector the
current flows in discrete pulses, because the voltage is high enough to sweep the
detector free of charge carriers (the electrons and holes are highly mobile) before
the next incident photon creates new carriers.
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Figure 23 Si(Li) detector and FET preamplifier, very schematic. Both are in a cooled evacuated space,
and x-rays enter through a beryllium window. The detector is operated at about 1000 volts.
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A major disadvantage of the Si(Li) detector is that it must be operated at the
temperature of liquid nitrogen (77 K = -196ºC) in order to minimize a constant cur-
rent through the detector, even in the absence of x-rays, due to thermal excitation
of electrons in the intrinsic region. Electronic “noise” in the FET increases with
temperature and degrades the resolution.Thus both the detector and the FET have
to be cooled, necessitating a bulky cryostat to hold several liters of liquid nitrogen
or a Peltier solid state cooling circuit.

The efficiency of a Si(Li) detector resembles that of the other solid-state detec-
tor (scintillation), very high for intermediate wavelengths (Fig. 15).Very long wave-
lengths are partially absorbed by the detector window before they can reach the
sensitive intrinsic layer. Very short wavelengths are partially transmitted by the
entire detector.

The counting rate varies linearly with x-ray intensity up to rates of about 5,000-
10,000 cps. Counting losses in the electronics system occur in the electronics rather
than the detector. The electronics are more complex than usual and include,
besides the usual pulse amplifiers and shapers, a multichannel pulse-height ana-
lyzer (Sec. 10).

The excellent energy resolution of a Si(Li) detector is shown in Fig. 22.The width
W of the pulse distribution is so small that the Si(Li) detector can resolve the 
and lines of manganese, which the other two detectors cannot do. Put another
way, the resolution R = W/V of the Si(Li) detector is 2.7 percent or some six times
better than that of the proportional counter. For any kind of detector both W and
W/V vary with V, i.e., with the energy hv of the incident x-rays. Therefore any
description of detector performance must specify the x-ray energy at which it is
measured; the 5.90 keV energy of the line is the usual standard reference.
The width W, incidentally, is often written as FWHM (full width at half maximum)
in the literature of this subject.

To create an electron-hole pair in silicon at 77 K requires an average energy of
3.8 eV. The absorption of a quantum should therefore create 5900/3.8 =Mn Ka

Mn Ka

Kb
Ka
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1550 pairs. However, the actual number created by successive quanta might be
leading to a corresponding variation in the size of the output

pulse. This statistical variation in the number of charge carriers created by x-ray
absorption is the basic reason for the finite width W of the pulse distribution, and
the same is true of proportional counters and scintillation detectors. In the Si(Li)-
FET detector, there is an even larger contribution to W, namely, electronic noise in
the FET preamplifier. At the energy of , more than half of the observed
value of W is due to noise in the FET. Beyond a certain counting rate, the resolu-
tion of the system worsens (W becomes larger) as the count rate increases.

In any detector except the Geiger counter the average number n of ion pairs or
electron-hole pairs produced is proportional to the energy E of the absorbed quan-
tum. The actual number has a Gaussian (normal) distribution about the mean, and
the width at half maximum of this distribution is proportional to the standard devi-
ation , which is equal to . Therefore the resolution R is

(3)

where ki are constants. The superior resolution of a Si(Li) detector is simply due to
the large value of n, which is 1550 for . By comparison, n is only 5600/26 =
230 for an argon proportional counter and the same radiation, because 26 eV are
needed to create an ion pair in argon. Actually, the inherent resolution of a Si(Li)
detector (the resolution in the absence of preamplifier noise) is even better, for
complex reasons, than the above statistical argument suggests.

Because n is proportional to E, Eq. (3) leads to the following energy or wave-
length dependence of the resolution:

(4)

Although Eqs. (3) and (4) are useful for rough qualitative arguments, they do not
include the substantial effect of electronic noise in Si(Li)-FET detectors. A better
estimate of resolution in such detectors, is given by

(5)

where E is the x-ray energy in eV and the term 100 eV in the numerator is the pres-
ent level of the electronic noise. This relation is important in spectroscopy.
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9 PULSE-HEIGHT ANALYSIS

All the electronic detectors in use today (proportional, scintillation, and semicon-
ductor) are “proportional” in the sense that they produce pulses having a size
(amplitude) that is proportional to the energy of the incident x-rays. Electrical cir-
cuits that can distinguish between pulses of different size can therefore distinguish
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between x-rays of different energies (wavelengths), and this ability is of great value
in many experimental techniques. These circuits, in order of increasing complexity,
are:

1. Pulse-height discriminator.
2. Single-channel pulse-height analyzer.
3. Multichannel pulse-height analyzer.

Circuits (1) and (2) are invariably used with modern diffractometers to increase the
peak/background ratio of diffraction line, and they are by no means necessary; quite
adequate diffraction patterns can be obtained from a wide variety of specimens
with no other “discriminator” than a filter. Circuit (3) is required only in x-ray
spectroscopy, in a very special kind of diffractometry (Sec. 10), and with a position-
sensitive detector. Any one of these circuits is more effective, the better the resolu-
tion of the detector with which it operates.

Pulse-Height Discriminator

Suppose that x-rays of three wavelengths a b c are incident on a detector.
Then the detector will produce pulses A, B, C of different size, C being the largest
(Fig. 24). If a circuit is inserted, just ahead of the scaler or ratemeter, that will allow
only pulses larger than a certain selected size (V1 volts) to pass and discriminate
against smaller ones, then the A pulses will not be counted and the system will be
blind to wavelength a. Such a circuit is called a pulse-height discriminator. It may
be of some value in decreasing diffractometer background due to the specimen’s
fluorescent radiation, when that radiation has a wavelength much longer than that

77
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TIME
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Figure 24 Pulse-height discrimination and analysis. The statistical spread in pulse size, measured by the
width W of Fig. 16, is suggested above by the variable heights of each pulse.
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which forms the diffraction lines, but it cannot weaken the short-wavelength com-
ponents of the continuous spectrum.

Single-Channel Pulse-Height Analyzer

This instrument discriminates against any pulses smaller than V1 volts (Fig. 24). In
addition, it contains an anti-coincidence circuit that rejects any pulse larger than V2,
because such a pulse will simultaneously trigger both the V1 and V2 levels. The net
result is that only pulses having sizes between V1 and V2 volts are passed. Out of the
mixture of A, B, and C pulses entering the analyzer, only B pulses are passed to the
counting circuit. The level V1 is called the baseline, and the range from V1 to V2 is
the window or channel. (Here, then, is another sense of the word “window.” It is not
a physical window, as at the entrance to a detector, but a voltage window.)

Both V1 and V2 are adjustable. If the window (V2 - V1) is made quite small, say
0.5 volt, and the baseline V1 continuously varied from low values to high values,
with (V2 - V1) constant, then a narrow window can be traversed across the voltage
range of pulse heights; if the counting rate is measured at each setting of V1, the
result is an analysis of the distribution of pulse heights. It is in this way that curves
like that of Fig. 16 are measured.

An analyzer can markedly reduce the background of a diffraction pattern,
chiefly by excluding short-wavelength white radiation. For example, examining the
111 line from silicon powder with copper radiation and a xenon-filled proportional
counter, Parrish [5] found the peak/background ratio to be 57 without an analyzer
and 146 with one. To achieve this almost three-fold improvement, the analyzer win-
dow was centered on the center V (Fig. 16) of the distribution and made
wide enough to accept about 90 percent of it.

This method works best when the wavelength to be passed and the wavelength
to be rejected are far apart. If they are close together, or if the detector has poor
resolution, it will be hard to pass one and reject the other. There will then be two
pulse distributions like that of Fig. 16 side by side and partially overlapping. A win-
dow set to pass a reasonable proportion of one set of pulses will also pass some of
the other set.

Problems of window settings can arise even when the incident x-rays are mono-
chromatic, because pulses of two different sizes can be produced. This can occur
when the incident radiation is energetic enough to cause x-ray fluorescence in the
detector. The fluorescent radiation may escape from the detector without causing
any ionization, carrying with it some of the energy that would normally be
absorbed. An escape peak of smaller-than-normal pulses is then formed, corre-
sponding to this less-than-normal energy absorption.

As a specific example, consider the absorption of radiation ( ,
energy E1 = 17.4 keV) in a krypton-filled proportional counter. The K absorption
edge of krypton is at 0.87 Å (WK = 14.3 keV), so that radiation can cause the
emission of radiation ( , energy E2 = 12.6 keV). Some of the

quanta are absorbed with a total loss of energy, causing normal pulses ofMo Ka
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Figure 25 Pulse-height distribution
curves showing escape peaks (ep)
in proportional counters for (a)

radiation incident on a
krypton counter and (b) 
radiation incident on a xenon
counter, Parrish [5].
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average size Va = kE1 = 17.4 k volts, where k is a constant. Absorption of other
quanta will involve an energy loss in the counter of only (E1 - E2), because

of the escaping , causing escape-peak pulses of average size Vep = k(E1 - E2)
= k(17.4 - 12.6) = 4.8 k volts.These two processes are illustrated in Fig. 25(a), where
k is evidently about 1.9. (The term escape peak may be misleading to some. Note
that the size of escape-peak pulses corresponds not to the escaping energy, but to
the difference between the normal and escaping energies.) Shown in (b) are the
normal and escape peaks for radiation incident on a xenon counter; here the
fluorescent radiation is the line.

The situation shown in Fig. 25(a) is unusual, in that there are more pulses in the
escape peak than in the normal peak. If the window of a pulse-height analyzer is set
to pass only the normal pulses, then the observed counting rate (=observed
x-ray intensity) would be less than half the value observed with no analyzer at all
because without an analyzer all pulses would be counted. The number of pulses in
the escape peak will be larger, relative to that in the normal peak, the greater the
fluorescence yield of the counter material and the lower the absorption coefficient
of the counter material for its own fluorescent radiation.

Escape pulses can occur in any “proportional” counter. In a NaI(Tl) scintillation
detector they are caused by fluorescent iodine K radiation; in a Si(Li) detector by
fluorescent silicon K radiation.

Escape peaks can be troublesome in x-ray spectroscopy. When several wave-
lengths are incident on the detector, the escape peak for wavelength may fall on
or near the normal peak for wavelength , causing uncertainty in the identification
of .l2

l2

l1

Mo Ka

La1

Cu Ka

Kr Ka
Mo Ka
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Multichannel Pulse-Height Analyzer

This remarkable instrument, called MCA for short, usually has not one but upward
of a thousand channels. It is designed to separate pulses from a detector that is
receiving incident radiation of many wavelengths, by sorting pulses according to
their size (amplitude).

An MCA is actually a special-purpose microprocessor with three functions [12]:

1. Digitizing. An analog-to-digital converter (ADC) converts the analog
information contained in each pulse (amplitude in volts) into digital form,
suitable for computer processing.

2. Sorting and storage. These operations are performed in the memory of the
MCA. If the x-ray energy range to be examined extends from, say, 0 to 20
keV and the MCA has 1000 channels, then each channel spans an energy
range of 20 eV. Channel number 295 would receive from the ADC infor-
mation about any pulse activity in the range 5880-5900 eV. This channel
would therefore get information (number of counts) about a vertical slice
near the center of the pulse distribution shown in Fig. 22. For the
Si(Li) detector shown in Fig. 22, the base of the pulse distribution appears
to be about 300 eV wide; information about pulses would therefore
be spread over 15 channels of the MCA.

3. Display. The contents of the MCA memory (total counts in each channel)
may be displayed visually as counts vs. channel number (= counts vs. x-ray
energy) on a CRT, plotted in hardcopy or stored digitally.

The operation of multichannel and single-channel instruments in performing
pulse-height analysis may be contrasted as follows. In a single-channel instrument
the entire energy range is scanned serially in time by one moving channel, as sug-
gested by Fig. 15. In the MCA, a large number of fixed channels covers the energy
range and all channels simultaneously receive the count-rate information appro-
priate to each channel.

Applications of the MCA to specific diffraction problems appear in the next sec-
tion.

Mn Ka

Mn Ka

10 SPECIAL KINDS OF DIFFRACTOMETRY

The ability of the MCA to sort signals of various magnitudes has permitted the
development of new kinds of diffractometers, radically different from the conven-
tional, moving detector instrument to which this chapter is mainly devoted.
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Energy-Dispersive Diffractometry

In the standard diffractometer, the various periodicities d of the arrays of atoms in
a polycrystalline specimen diffract a single wavelength in various directions ; the
diffraction pattern is observed by moving a detector to the position of each dif-
fracted beam in turn. On the other hand, if the incident beam consists of white radi-
ation and the angle is fixed for all planes, the different sets of planes will diffract
a set of different wavelengths into a detector set at a fixed position . If the detec-
tor is “proportional” and connected to a multichannel analyzer, the diffracted wave-
lengths can be sorted on the basis of their energies. This procedure, called energy-
dispersive diffractometry, was first developed by Giessen, and Gordon and Buras et
al. [13-15].

It is now appropriate to write Bragg’s law in terms of photon energy E rather
than wavelength :

(6)

For E in keV and d in Å, this becomes

(7)

At constant , measurement of E will give the spacing d of each set of planes, and
their indices (hkl) are found by methods that are beyond the scope of this chapter.
The experimental arrangement and an example of the results obtained, from a plot
of the contents of the various channels of the MCA, are shown in Fig. 26. The spec-
imen was a sheet of polycrystalline platinum.

The fluorescent L lines of platinum appear at the left of Fig. 26(b). The energies
of these lines are independent of The diffraction lines, on the other hand, have
energies that depend on according to Eq. (7). Therefore the whole diffraction
pattern can be shifted to higher or lower energies by changing , if it is necessary
to prevent an overlap of fluorescent and diffraction lines. (If the nature of the spec-
imen is entirely unknown, the presence of the fluorescence lines can be advanta-
geous. The fluorescence lines disclose the chemical elements present in the speci-
men, while the diffraction lines disclose its crystal structure.

Compared to the conventional method (single wavelength, moving detector),
energy-dispersive diffractometry is much faster, because the diffraction pattern is
acquired simultaneously rather than serially. Typically, the entire pattern can be
recorded in 1 to 5 minutes, whereas the conventional technique requires over an
hour. However, the resolution of closely spaced diffraction lines is inferior to that
of the conventional technique.Also on the debit side are the added cost of an MCA
and the inconvenience of cooling the Si (Li) detector.

Some specimens, notably steels, give diffraction patterns composed of rather
widely separated lines. For such materials high resolution is not needed. Voskamp

2u
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2u
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E �
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Figure 26 Energy-dispersive diffractometry. (a) Experimental arrangement. The x-ray tube is seen end
on. Diffracted beam collimator not shown. (b) Diffraction pattern of polycrystalline platinum at

obtained with a Si(Li) detector and an iron-target x-ray tube operated at 45 kV and 8 mA.
SWC = short wave cutoff = short-wavelength limit of incident beam. Giessen and Gordon [14].
2u � 21.4°

[16] has described the use of energy-dispersive diffractometry for the examination
of steels and gives references to other applications. Energy dispersive diffractome-
try has found increasing application at synchrotron radiation sources.

Position-Sensitive Diffractometry

A variety of one- and two-dimensional detectors can be used for diffractometry,
detectors which allow the angular positions of many diffraction lines or even entire
diffraction cones to be measured simultaneously. Some types of one- and two-
dimensional detectors involved a side-window position-sensitive proportional
counter (Sec. 5), a multichannel analyzer, and the measurement of the angular
positions of many diffraction lines simultaneously. The anode wire of the counter,
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which is long and curved, coincides with a segment of the diffractometer circle and
is connected, through appropriate circuits, to an MCA. The powder specimen is in
the form of a thin rod centered on the diffractometer axis. The geometry of the
apparatus therefore resembles that of a Hull/Debye–Scherrer camera, except that
the curved film strip is replaced by a curved counter.

When “monochromatic” radiation is incident on the specimen, it sends out dif-
fracted beams at particular angles. These beams enter the side window of the
counter at particular points, causing pulse formation at those points. The pulse then
travels to the two ends of the wire, and the position at which the pulse originates
may be determined by digitally comparing the amplitude or the arrival time of the
pulses at the ends of the anode. The pulse arrival times or the amplitudes are sort-
ed by the MCA. The contents of the MCA memory are therefore number of
pulses (counts) as a function of the position on the anode wire where the pulses
originated (angle ). A display of the contents of the MCA resembles the pattern
recorded by a conventional diffractometer (Fig. 5).

This method is fast, because all diffracted beams incident on the detector are
measured simultaneously. Commercially available position sensitive detectors sub-
tend angles up to 120°, and in many cases this angular range is enough to record
the entire portion of the diffraction pattern of interest. If the whole pattern is to be
examined from near 0° to near 180°, the measurements is made in two overlapping
steps. One manufacturer’s detector spans  and is divided into 4096 channels
corresponding to a step size of approximately . Before using such a sys-
tem the detector characteristics should be carefully characterized: variation of
detector channel angular width of has been reported [17].

Two-dimensional detectors, also called area detectors, are widely used in crystal-
lography and more recently in materials diffraction. Multi-wire proportional cham-
bers and charge-coupled device (CCD) plus fluorescent screen detectors are popu-
lar as are image plates. The operation of multi-wire proportional chambers is basi-
cally the same as that of linear position sensitive detectors described above, and
additional details may be found elsewhere [18]. Strong opinions exist, however, on
the part of users concerning the relative merits of different commercial area detec-
tors; a comparison of four such systems indicated that all four detectors produced
acceptable data [19].

;1.5%

0.03° 2u2u
120° 2u

2u

2u

2u

11 SCALERS

A scaler is an electronic device which counts each pulse produced by the detector.
Once the number of pulses over a measured period of time is known, the average
counting rate is obtained by simple division.

A scaler consists of a number of identical stages connected in series. Each stage
is a circuit that divides, or scales down, the entering pulses by a constant factor
before transmitting them to the next stage. This factor is 10 in a decade scaler and 2
in a binary scaler.
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The first stage of a decade scaler transmits one pulse to the second stage for
every ten pulses that enter the first stage. In a five-stage scaler the fifth stage will
have transmitted one pulse when 105 pulses have entered the scaler, and the scaling
factor is said to be 105. If, say, 12,327 pulses have entered the scaler when it is turned
off, that count will be displayed as a decimal number on the front of the scaler, an
LED (light emitting diode) or liquid crystal display. More often the count is shipped
directly to a memory buffer in the computer controlling data acquisition.

A binary scaler operates in a similar way, but now the scaling factor is 2n, where
n is the number of stages. Some binary scalers do not appear to be binary to the
user, because the contents of the individual stages are not displayed; only the total
count, in decimal form, appears at the front of the scaler.

A scaler can be operated in two ways to obtain the average counting rate:

1. Counting for a fixed time. The desired time t is selected and the timer auto-
matically stops the scaler after t seconds. The average counting rate is then
N/t, where N is the displayed number of pulses (counts).

2. Counting a fixed number of pulses. The desired number of counts N is
selected. If N is to be, say, 10,000 counts, the switch will connect the timer to
the output of the fourth stage of a decade scaler. When 10,000 pulses have
entered the scaler, the fourth stage will transmit its first pulse and that
pulse will stop the timer and cause the time required to accumulate the N
counts to be recorded.

In the fixed time counting mode, either counts per unit time or total counts can
be plotted as a a function of . In the fixed counts mode, counts per unit time is
plotted as a function of . Software in many commercial diffraction systems will
allow operation in fixed time or fixed counts mode.

Because the arrival of x-ray quanta in the detector is random in time, the accu-
racy of a counting rate measurement is governed by the laws of probability. Two
counts of the same x-ray beam for identical periods of time will not be precisely the
same because of the random spacing between pulses, even though the detector and
scaler are functioning perfectly. Clearly, the accuracy of a rate measurement of this
kind improves as the time of counting is prolonged, and it is therefore important to
know how long to count in order to attain a specified degree of accuracy. The num-
ber of pulses N counted for a fixed time in repeated measurements of a constant x-
ray intensity will have a Gaussian (normal) distribution about the true value Nt

obtained by averaging many measurements, with a standard deviation of .
The relative standard deviation to be expected in a single count of N pulses is then

(8)Re lative s �
2N

N
 11002 �

100

2N
 percent.

2Ns

2u
2u
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4 The probable error is that which is just as likely to be exceeded as not. Three times the probable error
is a somewhat more useful figure, as the probability that this will be exceeded is only 0.04. Thus, if a sin-
gle measurement gives 1000 counts, then the probable error is percent or 21 counts.
Then the probability is 0.5 that this count lies in the range , where Nt is the true number of
counts, while the probability is 0.96 that the measured value lies in the range .
5 The probable error is that which is just as likely to be exceeded as not. Three times the probable error
is a somewhat more useful figure, as the probability that this will be exceeded is only 0.04. Thus, if a sin-
gle measurement gives 1000 counts, then the probable error is percent or 21 counts.
Then the probability is 0.5 that this count lies in the range , where Nt is the true number of
counts, while the probability is 0.96 that the measured value lies in the range .Nt � 63

Nt � 21
67>21000 � 2.1

Nt � 63
N t � 21

67>21000 � 2.1

The probable error4 in a single count is

(9)

These expressions give the following errors:

Number of Relative standard Probable error
pulses counted deviation (percent) (percent)

1,000 3.2 2.1
10,000 1.0 0.7

100,000 0.3 0.2

Note that the error depends only on the number of pulses counted and not on their
rate, which means that high rates and low rates can be measured with the same
accuracy, if the counting times are chosen to produce the same total number of
counts in each measurement. In principle, when highest precision is required, the
second scaling method outlined above, in which the time is measured for a fixed
number of counts, is preferable to the first, since it permits intensity measurements
of the same accuracy of both high- and low-intensity beams. In most cases, howev-
er, fixed time counting provides adequate accuracy.

The probable error5 in the measured intensity of a diffraction line above back-
ground increases as the background intensity increases. If NP and NB are the num-
bers of counts obtained in the same time at the peak of the diffraction line and in
the background adjacent to the line, respectively, then the error in (NP – NB) is of
more interest than in the error in NP. Assuming that NP and NB are normally dis-
tributed and combining the two quantities yields a variance equal to the sum of the
variances of the quantities involved. ( , where standard devia-
tion.) In this case,

(10)Relative    sP�B �
1NP � NB2

1>2

1NP � NB2
.

        sP�B � 1NP � NB2
1>2,

       sP�B
2 � sP

2 � sB
2 � NP � NB;

s �Variance � s2

Pr obable error � 0.67 1relative s2 �
67

2N
 percent.
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As indicated in Sec. 2, the integrated intensity of a diffraction line is typically
determined by measuring the counts at a number of angular positions of the sam-
ple and detector. The line profile is then integrated numerically (many manufac-
turers’ powder diffraction software include this feature; otherwise the data can be
exported to a personal computer or workstation). To obtain the same relative accu-
racy of both the line profile and the adjacent background, all measurements should
be made by counting a fixed number of pulses.

A largely superseded method of measuring integrated intensity (from the peri-
od before digital data acquisition was common) exploits the integrating property of
the scaler. In Fig. 27 the shaded area P is the integrated intensity of the diffraction
line shown. Select two detector positions and , well into the background on
either side of the line. Scan from to , the scaler being started at the beginning
of the scan and stopped at the end. Let the time required for this scan be t and the
number of counts accumulated be NPB; this number is proportional to the sum of
the areas P and B. Then count for a time t/2 at and for a time t/2 at . Let the
total count accumulated in these two fixed-position measurements be NB. This
number is proportional to the area B, because it is the count that would have been
obtained in a scan for time t from  to if the diffraction peak were absent.The
integrated intensity of the peak is then

(11)

When the integrated intensities of two diffraction lines are to be compared, both
lines must be scanned with the same detector slit (receiving slit) at the same speed.
Because this method involves counting for a fixed time, the background and low-
intensity portions of the diffraction time are measured with less accuracy than the
high-intensity portions. The counting time should be chosen so that the low intensi-
ties are measured to the accuracy required by the particular problem involved; it
will then follow that the high intensities are measured with unnecessarily high accu-
racy, but that is unavoidable in a fixed-time method.

NP � NPB � NB.
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Figure 27 Determination of integrated intensity by scan-
ning and measuring counts with a scaler. The encircled
symbols are the times spent in counting.
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The rate meter, as its name implies, is a device which indicates the average count-
ing rate directly without requiring, as in the scaler-timer combination separate
measurements of the number of counts and the time. It does this by a circuit which,
in effect, smooths out the succession of randomly spaced pulses from the detector
into a steady current, whose magnitude is proportional to the average rate of pulse
production in the detector.

The heart of a ratemeter circuit is a series arrangement of a capacitor and resis-
tor. To understand the action of a ratemeter, some of the properties of such a cir-
cuit must be reviewed, notably the way in which the current and voltage vary with
time. Consider the circuit shown in Fig. 28(a), in which the switch S can be used
either to connect a to c and thus apply a voltage to the capacitor, or to connect b to
c and thus short-circuit the capacitor and resistor. When a is suddenly connected to
c, the voltage across the capacitor reaches its final value V not instantaneously but
only over a period of time, and at a rate which depends on the resistance R and the
capacitance C, as shown in Fig. 28(b). The product of R and C has the dimensions
of time (seconds, in fact, if R is in megohms and C in microfarads), and it may be
shown that the voltage across the capacitor reaches 63 percent of its final value in
a time given by RC, known as the time constant of the circuit. The time required to
reach 99 percent of its final value is 4.6RC. Conversely, if the fully charged capaci-
tor, bearing a charge Q = CV, is suddenly shorted through the resistor by connect-
ing b to c, the charge does not immediately disappear but leaks away at a rate
dependent on the time constant. The charge drops to 37 percent of its initial value
in a time equal to RC and to 1 percent in a time equal to 4.6RC.

A complete ratemeter circuit consists of two parts. The first is a pulse-amplifying
and pulse-shaping portion which electronically converts the detector pulses, which
vary in amplitude and shape from detector to detector, into rectangular pulses of
fixed dimensions in voltage and time.These pulses are then fed into the second por-
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Figure 28 The capacitor-resistor circuit.

12 RATEMETERS
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Figure 29 Measuring portion of ratemeter circuit.

tion, which is the measuring circuit shown in Fig. 29, a circuit basically similar to that
of Fig. 28(a) and having a time constant R2C2. S1, shown as a simple switch, is actu-
ally an electronic circuit which connects a to c each time a pulse arrives and then
connects b to c immediately afterwards. A constant charge is thus added to the
capacitor for each pulse received and this charge leaks away through the resistor
until, at equilibrium, the rate of addition of charge is just balanced by the rate of
leakage. The rate of charge leakage is simply the current through the microamme-
ter M, which therefore indicates the rate of pulse production in the detector and, in
turn, the x-ray intensity. In the past, diffractometer systems would include in addi-
tion to the indicating meter, a chart recorder which produce a continuous record of
the intensity. With the advent of inexpensive computers, chart recorders have been
supplanted by software data acquisition; it is still possible to find chart recorders in
operation with diffractometers.

Even when the x-ray intensity is constant (constant average counting rate), the
spacing of the detector pulses is random in time, which means that the counting rate
actually varies with time over short periods. The ratemeter responds to these statis-
tical fluctuations in the counting rate, and its response speed is greater the smaller
the time constant. This follows from the discussion of the capacitor-resistor circuit:
any change in the pulse rate causes a change in the current through the circuit, but
the latter change always lags behind the former; the amount of lag is less for a small
time constant than for a large one. Random fluctuations in the counting rate are
therefore more evident with a small time constant, because the current in the cir-
cuit then follows the changes in counting rate more closely. This feature is illustrat-
ed in Fig. 30, which shows the automatically recorded output of a ratemeter when
the detector is receiving a constant-intensity x-ray beam. The large fluctuations at
the left have been reduced in magnitude by successive increases in the time con-
stant, effected by changing the value of C2. Evidently, a single reading of the posi-
tion of the indicating meter needle or the recorder pen of a ratemeter may be seri-
ously in error, and more so at low time constants than at high. In Sec. 11, the error
in a counting-rate measurement was demonstrated to decrease as the number of
counts increased. Now it may be shown that a ratemeter acts as if in counted for a
time 2R2C2, in the sense that the accuracy of any single reading is equivalent to a
count made with a scaler for a time 2R2C2. Therefore, the relative probable error in
any single ratemeter reading is given by the counterpart of Eq. (9), namely by

229
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Diffractometer MeasurementDiffractometer Measurement

(12)

where n is the average counting rate. This equation also shows that the probable
error is less for high counting rates than for low, when the time constant remains
the same; this effect is evident in plots (fixed time) of any diffraction line, where the
fluctuations are smaller at the top of the line than in the background.

The most useful feature of a ratemeter is its ability to follow changes in the aver-
age counting rate, a function for which the scaler unsuited since a change in the
average counting rate occurring during the time a count is being made with a scaler
will go entirely undetected. It is this feature of a ratemeter which is so useful in dif-
fractometry. A diffraction pattern can be scanned over the angular range expected
to contain a diffraction peak, and the moving detector automatically transmits,
through the ratemeter, a continuous record of the intensity it observes as the dif-
fraction angle is changed. This allows very quick positioning of the detector at the
of the peak’s maxima. On the other hand, the ratemeter is less accurate than the
scaler, both because of the unavoidable statistical fluctuations in its output and
because of the errors inherent in its indicating or recording instruments.

As mentioned earlier, a large time constant smooths out fluctuations in the aver-
age counting rate by increasing the response time to changes in rate. But when a
sharp diffraction line is being scanned, the average counting rate is changing rapid-
ly, and the ratemeter ought to indicate this change as accurately as possible. From
this point of view, a short response time, produced by a small time constant, is
required.A ratemeter must therefore be designed with these two conflicting factors
in mind, and the time constant should be chosen large enough to smooth out most
of the statistical fluctuations and yet small enough to give a reasonably short
response time.

Most commercial ratemeters have several scales available to cover various
ranges of x-ray intensity (100, 1000, and 10,000 cps for full-scale deflection of the
ratemeter’s needle and linear or logarithmic scales, for example). A logarithmic
scale is useful when looking for weak lines or when exploring an unknown pattern:
weak lines will be emphasized and the strong lines will not go off-scale. Smaller
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Figure 30 Effect of time constant (T.C.) on recorded fluctuations in counting rate at constant x-ray inten-
sity (schematic). Time constants changed abruptly at times shown. (T.C.)1 (T.C.)2 (T.C.)3.66
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time constants are used with the higher scales, just as short counting times are used
with a scaler when the counting rate is high. In some instruments, the time constant
appropriate to each scale is fixed by the manufacturer, and in others the operator
can select any one of several time constants, ranging from about 0.5 to 15 sec, man-
ually by switches or electronically under software control, which insert the proper
capacitance in the circuit. The proper time constant to use is, of course, not unre-
lated to the scanning speed, for a fast scan demands a fast response from the
ratemeter and therefore a short time constant. A time constant which is too large
for the scanning speed used will slightly shift the peaks of diffraction lines in the
direction of the scan and lower their maximum intensity and, because of its exces-
sive smoothing action, may actually obliterate weak diffraction lines and cause
them to go unnoticed. In choosing a time constant, it is therefore better to err on
the short side. A good rule to follow is to make the time constant less than half the
time width of the receiving slit, where the time width is defined as the time required
for the slit to travel its own width. For example, if a 0.2° slit is used at a scanning
speed of 2°/min, then the time width of the slit is (0.2/2)(60) = 6 sec, and the time
constant should therefore be less than 3 sec. The same rule can be used to find the
proper slit width for a given scanning speed when the time constant is fixed.

13 MONOCHROMATIC OPERATION

6 This statement requires some qualification. When a crystal monochromator is set to diffract radiation
of wavelength from a particular set of planes, then these same planes will also diffract radiation of
wavelength and in the second and third order, respectively, and at exactly the same angle .
These components of submultiple wavelength are of relatively low intensity when the main component
is characteristic radiation but, even so, their presence is undesirable whenever precise calculations of
the intensity diffracted by the specimen must be made. The submultiple components may be eliminated
from the beam from the monochromator by reducing the tube voltage to the point where these wave-
lengths are not produced. If the main component is radiation, this procedure is usually impracti-
cal because of the decrease in intensity attendant on a reduction in tube voltage to 16 kV (necessary to
eliminate the and components). Usually, a compromise is made by operating at a voltage just
insufficient to generate the component (24 kV for copper radiation) and by using a crystal which
has, for a certain set of planes, a negligible diffracting power for the component. Fluorite (CaF2) is
such a crystal, the structure factor for the 222 reflection being much less than for the 111. The diamond
cubic crystals, silicon and germanium, are even better, since their structure factors for the 222 reflection
are actually zero.

l>2
l>3

l>3l>2

Cu Ka

Ka

2ul>3l>2
l

The background of a diffraction pattern obtained with a diffractometer may be
reduced by means of a single-channel pulse-height analyzer, as mentioned in Sec. 9.
An even better method is to use a crystal monochromator in the diffracted beam.
Balanced filters present still another option.

Monochromating Crystal

The purest kind of radiation to use in a diffraction experiment is radiation which
has itself been diffracted, since it is entirely monochromatic.6 With a diffractometer
one has the option, which does not exist with a powder camera, of placing a crystal
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specimen

diffractometer
circle

T

S1

S2

M
D

Figure 31 Diffractometer with monochro-
mating crystal M in diffracted beam. detec-
tor T = x-ray tube.

monochromator in the diffracted, rather than the incident, beam. Figure 31 shows
such an arrangement. The diffracted beam from the specimen comes to a focus at
the receiving slit S1, diverges to the focusing monochromator M, and comes to a
focus again at the detector slit S2. Detector, crystal, and slits are mounted on one
support and rotate as a unit about the diffractometer axis.

Even though intensity is decreased during diffraction by a monochromator, a 
filter is not needed because the monochromator is set to diffract only radiation.
As a result, and because of the focusing action of the monochromator, the intensi-
ty of a diffraction line at the detector can actually be higher with a monochromator
than without, particularly if the monochromating crystal is graphite.

Placement of the monochromator in the diffracted beam has the advantage of
suppressing background radiation originating in the specimen, such as fluorescent
radiation and incoherent (Compton modified) scattered radiation. For example, if
a steel specimen or any iron-rich material is examined with copper radiation in an
ordinary diffractometer, the background due to fluorescent Fe K radiation will be
unacceptably high. But if a monochromator is added and oriented to diffract only

, the background is reduced practically to zero, because the fluoresced
and do not enter the detector.A monochromator may therefore elim-

inate the need for an extra tube, such as a Cr-target tube, for the examination of
steel specimens.

The diffractometer in Fig. 2 is equipped with a diffracted beam monochromator.
There are two kinds of monochromators in use, depending on whether the crystal
is unbent or bent and cut.

An unbent crystal is not a very efficient reflector, as can be seen from Fig. 32.
This is because the beam from an x-ray tube is never composed only of parallel rays,
even when defined by a slit or collimator, but contains a large proportion of con-
vergent and divergent radiation. When the crystal is set at the correct Bragg angle
for the parallel component of the incident beam, it can diffract only that component
and none of the other rays, with the result that the diffracted beam is of very low
intensity although it is itself perfectly parallel, at least in the plane of the drawing.
In a plane at right angles, the diffracted beam may contain both convergent and
divergent radiation.

Fe KbFe Ka
Cu Ka

Ka
Kb
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7 The symbol is used in place of in order to keep the diffraction angles from sample and monochro-
mator distinct.

ua

A large gain in intensity may be obtained by using a bent and cut crystal, which
operates on the focusing principle illustrated in Fig. 33. A line source of x-rays, the
focal line on the tube target or the focused diffracted beam from the sample, is
located at S perpendicular to the plane of the drawing.The crystal AB is in the form
of a rectangular plate and has a set of diffracting planes parallel to its surface. It is
elastically bent into a circular form so that the radius of curvature of the plane
through C is 2R = CM; in this way, all the plane normals are made to pass through
M, which is located on the same circle, of radius R, as the source S. If the face of the
crystal is then cut away behind the dotted line to a radius of R, then all rays diverg-
ing from the source S will encounter the lattice planes at the same Bragg angle ,
since the angles SDM, SCM, and SEM are all equal to one another, being inscribed
on the same arc SM, and have the value .71p>2 � a 2

a

Figure 32 Monochromatic reflection when the incident
beam is nonparallel.
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circleFigure 33 Focusing monochromator (cut

and bent).
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When the Bragg angle is adjusted to that required for diffraction of the com-
ponent of the incident beam, then a strong monochromatic beam will be diffracted
by the crystal. Moreover, since the diffracted rays all originate on a circle passing
through the source S, they will converge to a focus at F, located on the same circle
as S and at the same distance from C, in much the same way as previously discussed
for parafocusing diffractometers. This kind of monochromator is called the
Johansson type.

In practice the crystal is not bent and then cut as described above, but the unbent
crystal, usually of quartz, is first cut to a radius of 2R and then bent against a circu-
lar form of radius R. This procedure will produce the same net result. The value of

required for the diffraction of a particular wavelength from planes of spacing d
is given by Bragg’s law:

(13)

The source-to-crystal distance SC, which equals the crystal-to-focus distance CF, is
given by

(14)

Combining Eqs. (13) and (14) results in

(15)

For diffraction of radiation from the planes of quartz, the distance SC is 14.2
cm for a value of R of 30 cm.

The chief value of the focusing monochromator lies in the fact that all the mono-
chromatic rays in the incident beam are utilized and the diffracted rays from a con-
siderable area of the crystal surface are all brought to a focus. This leads to a large
concentration of energy and a considerable reduction in counting time (required to
obtain a set number of counts) compared to the unbent-crystal monochromator
first described. However, the latter does produce a semiparallel beam of radiation,
and, even though it is of very low intensity, such a beam is required in some exper-
iments. If the monochromating crystal is bent but not cut, some concentration of
energy will be achieved inasmuch as the diffracted beam will be convergent, but it
will not converge to a perfect focus.

Many crystals have been used as monochromators: NaCl, LiF, SiO2 (quartz), Al,
Si, Ge, graphite, InSb, etc. For discussion of their relative merits and details of
design and use, see Guinier [G.13, G.30], chap. 2 of Vol. C of [G.1], Klug and
Alexander [G.17] or Jekins and Snyder [G.25]. Graphite gives the strongest dif-
fracted beam.

Cu Ka

SC � R 
l

d
.

SC � 2R  cos a
p

2
� a b .

l � 2d  sin  a.

la

Ka
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New types of monochromators are under development for diffractometry; exam-
ples include crystals of an in situ composite TaSi2-Si [20, 21], Si-Ge gradient crystals
[22] and metallic multilayers.The TaSi2-Si composite consists of 106 cm-2 single-crys-
tal rods of Ta2Si in a single crystal Si matrix; the spacing of the parallel, diam-
eter rods is quite uniform as is the distribution of strain in the Si matrix and the
crystals have very large peak and integrated reflectivities over the energy range
from 4 to 160 keV. Multilayers also have a larger angular acceptance range than
crystals such as Si; this is the result of their periodic structure alternating high and
low atomic number layers. A typical, commercially-available multilayer for powder
diffractometry using radiation consists of 50 periods of W/Si linearly grad-
ed between 15 and 100 Å [23].

The use of a monochromator between the x-ray tube and the sample produces a
change in the relative intensities of the beams diffracted by the specimen. Equation
(4-2), for example, was derived for the completely unpolarized incident beam
obtained  from the x-ray tube. Any beam diffracted by a crystal, however, becomes
partially polarized by the diffraction process itself, which means that the beam from
a crystal monochromator is partially polarized before it reaches the specimen.
Under these circumstances the usual polarization factor , which is
included must be replaced by the factor , where

is the diffraction angle in the monochromator (Fig. 33) and is the diffraction
angle of the sample. Since the denominator in this expression is independent of ,
it may be omitted; the combined Lorentz-polarization factor for crystal-monochro-
mated radiation is therefore . This factor should be
substituted when a monochromator is used with a diffractometer.

Balanced Filters

Another method of operating under essentially monochromatic conditions, a
method peculiar to the diffractometer, employs Ross filters, also called balanced fil-
ters [G.17, G.25]. This method depends on the fact that the absorption coefficients
of all substances vary in the same way with wavelength; i.e., they are proportional
to . If filters are made of two substances differing in atomic number by one, and
their thicknesses adjusted so that they produce the same absorption for a particu-
lar wavelength, then they will have the same absorption for all wavelengths except
those lying in the narrow wavelength region between the K absorption edges of the
two substances. This region defines the pass band of the filter combination. If these
filters are placed alternately in a heterochromatic x-ray beam. i.e., a beam contain-
ing rays of different wavelengths, then the difference between the intensities trans-
mitted in each case is due only to wavelengths lying in the pass band.When the pass
band is chosen to include a strong characteristic component of the spectrum, then
the net effect is that of a strong monochromatic beam.

l3

11 � cos2 2a  cos2 2u 2 >sin2 u 
 cos  u

u

2u2a
11 � cos2 2a  cos2 2u 2 > 11 � cos2 2a 2

11 � cos2 2u 2 >2

Cu Ka

1 mm
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The isolation of radiation may be taken as an example. Its wavelength is
1.542 Å, which means that cobalt and nickel can be used as filter materials since
their K absorption edges (1,608 and 1.488 Å, respectively) effectively bracket the

line.Their linear absorption coefficients are plotted in Fig. 34, which shows
that balancing can be obtained by making the nickel filter somewhat thinner than
the cobalt one. When their thicknesses x are adjusted to the correct ratio, then

except in the pass band, and a plot of versus has the appear-
ance of Fig. 34(b). Since , the transmission factors Ix/Io (ratio of
transmitted to incident intensity) of the two filters are now equal for all wave-
lengths except those in the pass band, which is only 0.12 Å wide. At each angle 
at which the intensity is to be measured with the diffractometer, first one filter and
then the other is placed in the diffracted beam before it enters the detector. The
intensity of the diffracted beam passing through each filter is measured, and the dif-
ference in the measurements gives the diffracted intensity of only the line
and the relatively weak wavelengths immediately adjacent to it in the pass band.

It should be emphasized that the beam entering the detector is never physically
monochromatic, as it is when a crystal monochromator is used. Radiation with a
great many wavelengths enters the detector when either filter is in place, but every
wavelength transmitted by one filter has the same intensity as that transmitted by
the other filter, except those wavelengths lying in the pass band and these are trans-
mitted quite unequally by the two filters. Therefore, when the intensity measured

Cu Ka
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Figure 34 Ross filters for radiation: (a) absorption coefficients of filter materials; (b) values
after balancing.
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with one filter is subtracted from that measured with the other filter, the difference
is zero for every wavelength except those in the pass band.

In practice, balancing of the filters is carried out by inserting two foils of approx-
imately the same thickness into suitable holders which can be slipped into place in
the beam entering the detector. One foil is always perpendicular to the x-ray beam,
while the other may be rotated about an axis at right angles to the beam; in this way
the second foil may be inclined to the beam at such an angle that its effective thick-
ness x equals the thickness required for balancing. Perfect balancing at all wave-
lengths outside the pass band is not possible, although it may be approached quite
closely, because does not vary exactly as and because the magnitude of the K
absorption jump (ratio of absorption coefficients for wavelengths just shorter and
just longer than the K edge) is not exactly the same for all elements.

Note also that balanced filters will not exclude Compton scattering, which differs
in wavelength by only 0.05 Å or less from the wavelength of the diffracted beam
and which will therefore generally fall inside the pass band. And if the radiation
forming the diffracted beam is, for example, , then neither a monochromat-
ing crystal nor balanced filters will exclude diffusely scattered caused, for
example, by thermal vibration of the atoms.

Cu Ka
Cu Ka

l3m

14 Determination of Diffraction Peak Positions

There are many ways of systematically assigning positions to the peaks in a dif-
fraction pattern, and Fig. 35 illustrates the methods described below. The particular
method used depends on the application and on the computing power available. It
is useful to distinguish two situations: the first when many peaks are to be record-
ed and the second when only a few points spanning a specific part of a single peak
are to be measured. In general, peaks will be smoothed by modern diffractometer

2u

Figure 35 Different methods of defining peak position. a) peak maximum , b) mid-point of half-
maximum intensities , c) average of the points of inflection , d) peak median and (not
shown graphically) peak centroid . Equations for a) - c) are shown below the plots; note that

and background stripping is assumed in all calculations except where it is indicated explicitly.2umaxKa2
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software prior to stripping the peaks from the data via the Rachinger alogrithm
[24, 25], and details can be found elsewhere [G.17, G.25].

In diffraction patterns spanning many peaks, the intuitively simplest definition is
the position of the peak maximum (mathematically termed the mode of the
peak). This can provide sufficient precision for routine scans whose purpose is to
confirm the identity of a phase or mixture of phases. For numerical data, this posi-
tion is obtained when . In analysis of chart recordings or other analog
output such as figures in published reports, there may be little practical alternative
to selecting this angle by inspection. Another alternative is to use the midpoint of
the two half-maximum intensities of each peak or the midpoint of the points
of inflection of the peak . An alternative is to calculate the median angle

of the peak, i.e., the angular position where the area under the peak AL to
the left of equals the area AR to the right. The position of the centroid or
center of gravity of a peak corresponds to the mathematical mean of the
peak: it is calculated from the equation given at the bottom of Fig. 35. Of the meth-
ods mentioned above, the centroid method provides the most robust measure of
peak position. Because the computation required is transparent to the user of mod-
ern software, the centroid method should be used in all work but that requiring the
highest precision, and most users of x-ray diffraction, except those measuring resid-
ual stresses, should find this adequate.

Yet another approach is to fit the peaks with Gaussian, Lorentizian, combined
Gaussian-Lorentzian or other functions and to use the function’s maximum as the
peak position. This has proved to be very valuable in a variety of applications such
as structure determination from polycrystalline samples. Using the whole pattern,
including background, can be very valuable, and this approach minimizes the prin-
cipal drawback of the centroid method, the sensitivity of to the level of
background chosen. Fitting the top 15% of the intensity of a diffraction peak to a
parabola, for example, is used routinely in residual stress analysis and has been
demonstrated to be more robust than the centroid method [26]. In the following
paragraphs the parabolic-fit, top 15% method is described as an example of the
peak fitting approach. The axis of the parabola is assumed to be the peak center
(Fig. 36), and this method [27] is widely used in macrostress measurements.

6 2u 7
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Figure 36 Three-point method for fitting a
parabola. , y = I.x � 2u
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The equation of a parabola with its axis parallel to the y axis and vertex at (h, k)
is

(16)

If and y = I, this equation represents the shape of the diffraction line near
its peak. Substitute several pairs of , I values into the equation and solve for h by
the method of least squares. Then the value of h equals the position of the line
center. Only two or three points on either side of the peak near its maximum are
sufficient to locate the parabola with surprising accuracy. The positions of diffrac-
tion lines as broad as 8° at half-maximum intensity can be reproducibly deter-
mined to within 0.02° by this method.

A simpler method, much used, for locating the parabola axis was suggested by
Koistinen and Marburger [28]. Only three points on the line profile need be meas-
ured but they must be separated by the same angular interval c, as shown in
Fig. 36. The central point should be near the maximum and the other two have
intensities of about 85 percent of the maximum. Once the intensity differences a =
y2 - y1 and b = y2 - y3 are found, the center of the line is given by

(17)

The y coordinate may be intensity I in counts/sec, counts n for a fixed time, or recip-
rocal times 1/t for a fixed count.

When the lines are broad, certain corrections should be applied to the intensity
data before finding the line center, as pointed out by Koistinen and Marburger. In
calculating the relative intensities of the various lines on a powder pattern, it can be
demonstrated that one factor controlling these intensities was the Lorentz-polar-
ization (L-P) factor . This factor can vary considerably
over the width of a single line, when the line is broad and in the high-angle region.
However, the L-P factor applies to integrated intensities. To obtain an expression
governing intensities at particular values of within a single line, drop the

term, which relates to line breadth in order to obtain the modified L-P fac-
tor .The variation of this factor with makes a high-angle line
asymmetrical about its center.Absorption in the specimen has a similar effect when

, the angle of the diffraction plane normal relative to the sample normal, is not
zero, because the absorption factor is then . Combining these two
factors into one and calling it the LPA factor, yields

(18)� a
1 � cos2 2u

sin2 u
b 11 � tan  c   cot   u 2 .

LPA �  1modified L � P factor 2 1absorption factor 2

11 � tan  c cot u 2
c

2u11 �  cos2 2u 2 >sin2 u
11>cos u 2

2u

11 �  cos2 2u 2 > 1sin2 u cos u 2

h � x1 �
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Measured intensities are to be divided by LPA in order to make the lines more
nearly symmetrical, before determining the line center by the least-squares or
three-point method. Finally, if the background is high, because of fluorescence by
the specimen, better accuracy is attainable by subtracting the background, assumed
linear across the line, before applying the LPA correction and finding the line
center.

PROBLEMS

1 A powder specimen in the form of a rectangular plate has a width of 0.5 in., meas-
ured in the plane of the diffractometer circle, which has a radius of 5.73 in. If it is
required that the specimen entirely fill the incident beam at all angles and that
measurements must be made to angles as low as , what is the maximum
divergence angle (measured in the plane of the diffractometer circle) that the inci-
dent beam may have?
*2 Even the weather can affect the long-term stability of the measured intensity of
x-rays from a well-stabilized tube, because a change in barometric pressure or
humidity changes the absorption of x-rays by air. What is the percent change in the
measured intensity of resulting from a 3-percent drop in pressure over a
12-hour period, a not uncommon event? (Assume a path length in air of 27 cm and
take of air for .)
3 radiation is incident on a xenon-filled proportional counter. Calculate the
ratio of the average pulse size in the escape peak to that in the normal peak.
Compare your result with that of Fig. 25(b).
*4 If a count NP of 30,000 is obtained at the peak of a diffraction line and, in the
same time, a count NB of 10,000 in the background adjacent to the line, calculate the
percent probable error in (a) NP and (b) (NP – NB).
5 A diffraction pattern of polycrystalline platinum is obtained by energy-dispersive
diffractometry at : Calculate the energy (in keV) at which the 220 line will
appear and compare your result with Fig. 26(b).
*6 a) Calculate the ratio of the effective thicknesses of cobalt and nickel filters
when they are balanced for all wavelengths except . (Obtain an average
value applicable to a wavelength range extending from about 0.5 Å to about 2 Å.)
b) When the filters are balanced, calculate the ratio of the intensity of radi-
ation transmitted by the nickel filter to that transmitted by the cobalt filter, assum-
ing the same incident intensity in each case. The effective thickness of the nickel fil-

Cu Ka

Cu Ka

u � 10.7°

Cu Ka
Cr Ka � 3.48 � 10�2 cm�1m

Cr Ka

2u � 10°

ter is 0.00035 in. 
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ANSWERS TO SELECTED PROBLEMS

1. 0.44 2. 2.8 percent

4. a) 0.39 percent; b) 0.67 percent 

6. a) 1.14 (Co) to 1 (Ni); b) 10.5

°
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Powder Photographs
1 INTRODUCTION

Any device designed to hold a specimen and photographic film to record diffract-
ed beams is called an x-ray camera, but most such cameras bear little resemblance
to cameras used for photography by visible light. In many cases, photographic film
has been replaced by image storage plates of by electronic area detectors, but the
apparatus are still termed cameras and the methods are still known, collectively, as
photographic methods.

There are three main photographic powder methods in use, differentiated by the
relative position of the specimen and film:

1. Hull/Debye–Scherrer method. The film is placed on the surface of a cylin-
der and the specimen on the axis of the cylinder.

2. Focusing method.The film, specimen, and x-ray source are all placed on the
surface of a cylinder.

3. Pinhole method. The film is flat, perpendicular to the incident x-ray beam,
and located at any convenient distance from the specimen.

In all these methods, the diffracted beams lie on the surfaces of cones whose axes
lie along the incident beam or its extension; each cone of rays consists of diffracted
beams from particular hkl. In the Hull/Debye–Scherrer and focusing methods, only
a narrow strip of film is used and the recorded diffraction pattern consists of short
arcs, normally termed lines, formed by the intersections of the cones of radiation
with the film. In the pinhole method, the whole cone intersects the film to form a
circular diffraction ring.

The various powder cameras are in many respects complementary with the dif-
fractometer. The diffractometer has the great advantage of being able to measure
the positions and intensities of diffraction lines simultaneously and quickly.
Cameras are very much cheaper than a diffractometer, but photographic methods
are generally slow (except for Polaroid film and image plates for flat plate cam-
eras and for specially built curved image plate systems, (e.g., [1]), and the 

From Chapter 7 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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measurement of line intensities requires an additional operation. However, exact
line intensities are by no means needed in many investigations, and there are at
least three circumstances when a powder camera is definitely superior to a diffrac-
tometer:

1. When only a very small amount of specimen is available. (Specimens
weighing as little as one milligram, or even less, can be successfully exam-
ined in a powder camera; the diffractometer ordinarily requires a specimen
of the order of half a gram or more.)

2. When an entire diffraction ring must be recorded, as in the rapid estima-
tion of grain size and preferred orientation.

3. When the specimen is so large, heavy, or immovable that the diffraction-
recording equipment must be brought to the specimen rather than vice
versa.

Powder photographic methods are described in great and useful detail by Klug
and Alexander [G.17].

2 HULL/DEBYE–SCHERRER METHOD

Figure 1 Hull/Debye–Scherrer camera, with cover plate removed. (Courtesy of Philips Electronic
Instruments, Inc.)

A typical Hull/Debye–Scherrer camera is shown in Fig. 1. It consists essentially of
a cylindrical chamber with a light-tight cover, a collimator to admit and define the
incident beam, a beam stop to confine and stop the transmitted beam, a means for
holding the film tightly against the inside circumference of the camera, and a spec-
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S

Figure 2 Geometry of the Hull/Debye–Scherrer method. Section
through film and one diffraction cone.

1 Resolving power is often defined by the quantity , which is the reciprocal of that given above.
However, the power of resolving two wavelengths which are nearly alike is a quantity which should log-
ically increase as , the difference between the two wavelengths to be separated, decreases. This is the
reason for the definition given in the text. The same argument applies to interplanar spacings d.

¢l

¢l>l

imen holder that can be rotated. The collimator is important not only to define the
area of the sample irradiated but also to produce a beam consisting of rays as near-
ly parallel as possible.

Camera diameters vary from about 5 to about 20 cm. The greater the diameter,
the greater the resolution or separation of a particular pair of lines on the film. In
spectroscopy, resolving power is the power of distinguishing between two compo-
nents of radiation which have wavelengths very close together and is given by

, where is the difference between the two wavelengths and is their mean
value; in crystal-structure analysis, resolving power is the ability to separate dif-
fraction lines from sets of planes of very nearly the same spacing, or as the value of

.1 Thus, if S is the distance measured on the film from a particular diffraction
line to the point where the transmitted beam would strike the film (Fig. 2), then

and
(1)

where R is the radius of the camera.Two sets of planes of very nearly the same spac-
ing will give rise to two diffracted beams separated by a small angle ; for a given
value of , Eq. (1) shows that , the separation of the lines on the film, increas-
es with R. The resolving power may be obtained by differentiating
Bragg’s law:

(2)

But

du �
dS

2R
.

du
dd

�
�1
d

 tan  u.

l � 2d  sin  u

¢S¢2u
¢2u

¢S � R¢2u,

S � 2uR

d>¢d

l¢ll>¢l
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Therefore

(3)

where d is the mean spacing of the two sets of planes, the difference in their
spacings, and the separation of two diffraction lines which appear just resolved
on the film. Equation (3) shows that the resolving power increases with the size of
the camera; this increased resolution is obtained, however, at the cost of increased
exposure time, and the smaller cameras are usually preferred for all but the most
complicated patterns. A camera diameter of 5.73 cm is often used and will be found
suitable for most work. This particular diameter, equal to 1/10 the number of
degrees in a radian, facilitates calculation, since (in degrees) is obtained simply by
multiplication of S (in cm) by 10, except for certain corrections necessary in precise
work. Equation (3) also shows that the resolving power of a given camera increas-
es with , being directly proportional to tan .

The increased exposure time required by an increase in camera diameter is due
not only to the decrease in intensity of the diffracted beam with increased distance
from the specimen, but also to the partial absorption of both the incident and dif-
fracted beams by the air in the camera. For example, the curves of  Fig. 3 show that,
in a camera of 19 cm diameter (about the largest in common use), the decrease in
intensity due to air absorption is about 18 percent for radiation and about
48 percent for radiation. This decrease in intensity may be avoided by evac-
uating the camera or by filling it with a light gas such as hydrogen or helium during
the exposure.

Correct design of the pinhole system which collimates the incident beam is
important, especially when weak diffracted beams must be recorded. The exit pin-
hole scatters x-rays in all directions, and these scattered rays, if not prevented from
striking the film, can seriously increase the intensity of the background. A “guard-
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Figure 4 Design of collimator and beam stop (schematic).

ed-pinhole” assembly which practically eliminates this effect is shown in Fig. 4,
where the divergent and convergent rays in the incident beam are ignored and only
the parallel component is shown. The collimator tube is extended a considerable
distance beyond the exit pinhole and constricted so that the end A is close enough
to the main beam to confine the radiation scattered by the exit pinhole to a very
narrow angular range and yet not close enough to touch the main beam and be
itself a cause of further scattering. The beam stop is usually a thick piece of lead
glass placed behind a fluorescent screen, the combination allowing the transmitted
beam to be viewed with safety when adjusting the camera in front of the x-ray tube.
Back scatter from the stop is minimized by extending the beam-stop tube backward
and constricting its end B. Another reason for extending the collimator and beam-
stop tubes as close to the specimen as possible is to minimize the extent to which
rays scattered by air from the primary beam can reach the film. Both tubes are
tapered to interfere as little as possible with low-angle and high-angle diffracted
beams.

Some cameras have rectangular slits rather than pinholes to define the beam, the
long edges of the slits being parallel to the axis of the specimen. The use of slits
instead of pinholes decreases exposure time by increasing the irradiated volume of
the specimen, but requires more accurate positioning of the camera relative to the
source and produces diffraction lines which are sharp only along the median line of
the film.

3 SPECIMEN PREPARATION

Metals and alloys may be converted to powder by filing or, if they are sufficiently
brittle, by grinding in a small agate mortar. In either case, the powder should be
filed or ground as fine as possible, preferably to pass a 325-mesh screen, in order to
produce smooth, continuous diffraction lines. The screened powder is usually
annealed in evacuated glass or quartz capsules in order to relieve the strains due to
filing or grinding. These strains are so low in extremely brittle solids (most miner-
als and ceramics) that annealing may be omitted.

Special precautions are necessary in screening two-phase alloys. If a small, rep-
resentative sample is selected from an ingot for x-ray analysis, then that entire sam-
ple must be ground or filed to pass through the screen. The common method of
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grinding until an amount sufficient for the x-ray specimen has passed the screen, the
oversize being rejected, may lead to very erroneous results. One phase of the alloy
is usually more brittle than the other, and that phase will more easily be ground into
fine particles; if the grinding and screening are interrupted at any point, then the
material remaining on the screen will contain less of the more brittle phase than the
original sample while the undersize will contain more, and neither will be
representative.

The final specimen for the Hull/Debye–Scherrer camera should be in the form
of a thin rod, 0.5 mm or less in diameter and about 1 cm long. There are various
ways of preparing such a specimen, one of the simplest being to coat the powder on
the surface of a fine glass fiber with a small amount of glue or petroleum jelly. Other
methods consist in packing the powder into a thin-walled capillary tube made of a
weakly absorbing substance such as cellophane or lithium borate glass, or in extrud-
ing a mixture of powder and binder through a small hole. Polycrystalline wires or
polymer fibers may be used directly, but since they usually exhibit some preferred
orientation, the resulting diffraction pattern must be interpreted with that fact in
mind. Strongly absorbing substances may produce split low-angle lines; if this effect
becomes troublesome, it may be eliminated by diluting the substance involved with
some weakly absorbing substance, so that the absorption coefficient of the com-
posite specimen is low. Both flour and cornstarch have been used for this purpose.
The diluent chosen should not produce any strong diffraction lines of its own and
too much of it should not be used, or the lines from the substance being examined
will become spotty. These and other details of specimen preparation are described
elsewhere [G.28].

After the specimen rod is prepared, it is mounted in its holder so that it will lie
accurately along the rotation axis of the camera when the specimen holder is rotat-
ed. This adjustment is made by viewing the specimen through a short-focus lens or
low-power microscope temporarily inserted into the camera in place of the beam-
stop tube; the specimen holder is then adjusted so that the specimen does not
appear to wobble when the holder is rotated. Rotation of the specimen during the
exposure is common practice but not an intrinsic part of the powder method; its
only purpose is to produce continuous, rather than spotty, diffraction lines by
increasing the number of powder particles in diffracting positions.

4 FILM AND OTHER DETECTION MEDIA

Fluorescent Screens

Fluorescent screens are made of a thin layer of zinc sulfide, containing a trace of
nickel, mounted on a cardboard backing. Under the action of x-rays, this compound
fluoresces in the visible region, i.e., emits visible light, in this case yellow light. Other
phosphors are also used. Although most diffracted beams are too weak to be
detected by this method, fluorescent screens are widely used in diffraction work to
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locate the position of the primary beam when adjusting apparatus. In cameras such
screens often find use as intensifiers for photographic emulsions.

Photographic Film

Photographic film is affected by x-rays in much the same way as by visible light.
However, the emulsion on ordinary film is too thin to absorb much of the incident
x-radiation, and only absorbed x-rays can be effective in blackening the film. For
this reason, x-ray films are made with rather thick layers of emulsion on both sides
in order to increase the total absorption. (Division of the total emulsion thickness
into two layers permits easier penetration of the film-processing solutions.) The
grain size is also made large for the same purpose: this has the unfortunate conse-
quence that x-ray films are grainy, do not resolve fine detail, and cannot stand much
enlargement.

Because the mass absorption coefficient of any substance varies with wave-
length, it follows that film sensitivity, i.e., the amount of blackening caused by x-ray
beams of the same intensity, depends on their wavelength. This should be borne in
mind whenever white radiation is recorded photographically; for one thing, this
sensitivity variation alters the effective shape of the continuous spectrum.
Figure 5(a) shows the intensity of the continuous spectrum as a function of wave-
length and (b) the variation of film sensitivity. This latter curve is merely a plot of
the mass absorption coefficient of silver bromide, the active ingredient of the emul-
sion, and is marked by discontinuities at the K absorption edges of silver and
bromine. (Note, incidentally, how much more sensitive the film is to the K radiation
from copper than to the K radiation from molybdenum, other things being equal.)
Curve (c) of Fig. 5 shows the net result, namely the amount of film blackening
caused by the various wavelength components of the continuous spectrum, or what
might be called the “effective photographic intensity” of the continuous spectrum.
These curves are only approximate, however, and in practice it is almost impossible
to measure photographically the relative intensities of two beams of different wave-
length. On the other hand, the relative intensities of beams of the same wavelength
can be accurately measured by photographic means, and such measurements are
described in Sec. 16.

The Polaroid Land rapid-process system of photography has been adapted to
some kinds of diffraction equipment. The Polaroid film is backed by an intensifying
screen which converts x-rays to visible light that can darken the film. X-ray expo-
sures are about one tenth of those required by x-ray film, and finished prints are
available about ten seconds after the x-ray exposure.

Image Plates

Originally developed for medical radiology, image plates consist of a thick x-ray
sensitive phosphor (typically 150 of BaFBr:Eu2+ or more recently
BaF(Br,I):Eu2+) on a flexible plastic backing. X-rays incident on the 5 diametermm

mm
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Figure 5 Relation between film sensitivity and effective shape of continuous  spectrum (schematic): (a)
continuous spectrum from a tungsten target at 40kV; (b) film sensitivity; (c) blackening curve for spec-
trum shown in (a).

2 F centers are point defects and are also called color centers: in NaCl, for example, a vacancy in the Cl
sub-lattice is one type of F center and can capture electrons and absorb light photons.

grains of the phosphor ionize a fraction of the Eu2+ ions to Eu3+, and the liberated
electrons are trapped at F-centers.2 During nondestructive reading of the exposed
plate, illumination by visible light (typically a very small diameter He-Ne laser
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beam with 632.8 nm wavelength) liberates the trapped electrons to the conduction
band. The electrons then recombine with Eu3+ ions, converting them to Eu2+ and
producing light characteristic of the transition, i.e., with 398 nm wavelength. The
wavelength of this photostimulated emission is far enough from that of the stimu-
lating light that a conventional photomultiplier tube can be used to collect the light
emitted from picture elements (pixels) down to in size. Any resid-
ual image can be erased simply by exposing the image plate to a large dose of visi-
ble light.This reusable x-ray “film” has a dynamic range of five orders of magnitude,
which is comparable to that of electronic detectors. Image plates are also much
faster than x-ray film, typically 35 times faster than Polaroid Type 57 film and 500
times faster than Kodak SR-5 x-ray film [2], and have very high efficiencies. More
information can be found elsewhere [3, 4].

25 mm � 25 mm

5 FILM LOADING

The film for Hull/Debye–Scherrer is a narrow strip punched with one or two holes.
Normally x-ray film for Hull/Debye–Scherrer cameras comes in rolls of the correct
width and must be punched and cut to the right length.

Figure 6 illustrates three methods of arranging the film strip. The small sketches
on the right show the loaded film in relation to the incident beam, while the films
laid out flat are indicated on the left. In (a), a hole is punched in the center of the
film so that the film may be slipped over the beam stop; the transmitted beam thus
leaves through the hole in the film.The pattern is symmetrical about the center, and
the value of a particular reflection is obtained by measuring U, the distance apart
of two diffraction lines formed by the same cone of radiation, and using the relation

(4)

Photographic film always shrinks slightly during processing and drying, and this
shrinkage effectively changes the camera radius. The film-shrinkage error may be
minimized by slipping the ends of the film under metal knife-edges which cast a
sharp shadow near each end of the film. In this way, a standard distance is
impressed on the film which will shrink in the same proportion as the distance
between a given pair of diffraction lines. If the angular separation of the knife-
edges in the camera is known, either by direct measurement or by calibration with
a substance of known lattice parameter, then the value of for a particular reflec-
tion may be obtained by simple proportion:

(5)

where UK is the distance apart of the knife-edge shadows on the film.
Figure 6(b) illustrates a method of loading the film which is just the reverse of

the previous one. Here the incident beam enters through the hole in the film, and 
is obtained from the relation

u

u

uK
�

U
UK

,

u

4uK

4uR � U.

u
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Figure 6 Methods of film loading in Hull/Debye–Scherrer cameras. Coresponding lines have the same
numbers in all films.

(6)

Knife-edges may also be used in this case as a basis for film-shrinkage corrections.
The unsymmetrical, or Straumanis, method of film loading is shown in Fig. 6(c).

Two holes are punched in the film so that it may be slipped over both the entrance
collimator and the beam stop. Since it is possible to determine from measurements
on the film where the incident beam entered the film circle and where the trans-
mitted beam left it, no knife-edges are required to make the film-shrinkage correc-
tion. The point , where the incident beam entered, is halfway between
the measured positions of lines 4,4; similarly, the point   , where the trans-
mitted beam left, is halfway between lines 1,1.The difference between the positions
of X and Y gives W, and is found by proportion:

(7)

Unsymmetrical loading thus provides for the film-shrinkage correction without cal-
ibration of the camera or knowledge of any camera dimension. It is the most pop-
ular film arrangement.

2u
p

�
S
W

.

u

Y12u � 0°2
X12u � 180°2

12p � 4u2R � V.
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The shapes of the diffraction lines in Fig. 6 should be noted. The low-angle lines
are strongly curved because they are formed by cones of radiation which have a
small apex angle .The same is true of the high-angle lines, although naturally they
are curved in the opposite direction. Lines for which is nearly equal to 180° are
practically straight. This change of line shape with change in may also be seen in
the powder photographs.

u

4u
4u

6 CAMERAS FOR SPECIAL CONDITIONS

Various kinds of special cameras have been devised for obtaining diffraction pat-
terns from specimens subjected to unusual conditions of temperature or pressure.
These cameras, usually of the Hull/Debye–Scherrer or flat plate types and usually
custom-built, have designs that vary from laboratory to laboratory.

High-Temperature Cameras

Materials investigations frequently require that the crystal structure of a phase sta-
ble only at high temperature be determined. In many cases, this can be accom-
plished by quenching the specimen at a high enough rate to suppress the decom-
position of the high-temperature phase and then examining the specimen in an
ordinary camera at room temperature. In other cases, the transformation into the
phases stable at room temperature cannot be suppressed, and a high-temperature
camera is necessary in order that the specimen may be examined at the tempera-
ture at which the phase in question is stable. Such a camera may also be used to
determine coefficients of thermal expansion from measurements of lattice param-
eters as a function of temperature.

High-temperature cameras all involve a small furnace, usually of the electric-
resistance type, to heat the specimen and a thermocouple to measure its tempera-
ture.The main design problem is to keep the film cool without too great an increase
in the camera diameter; this requires water-cooling of the body of the camera
and/or the careful placing of radiation shields between the furnace and the film,
shields so designed that they will not interfere with the diffracted x-ray beams. The
furnace which surrounds the specimen must also be provided with a slot of some
kind to permit the passage of the incident and diffracted beams. If the specimen is
susceptible to oxidation at high temperatures, means of evacuating the camera or
of filling it with an inert gas must be provided; or the powder specimen may be
sealed in an evacuated thin-walled silica tube. Because of the small size of the fur-
nace in a high-temperature camera, the temperature gradients in it are usually quite
steep, and special care must be taken to ensure that the temperature recorded by
the thermocouple is actually that of the specimen itself. Specimen temperatures as
high as 3000ºC have been attained. Since the intensity of any reflection is decreased
by an increase in temperature, the exposure time required for a high-temperature
diffraction pattern is normally rather long.
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Low-Temperature Cameras

These cameras are usually designed for specimen temperatures down to about
–150ºC. Diffraction studies at still lower temperatures can be more easily made with
the diffractometer.

The simplest cooling method is to run a thin stream of coolant, such as liquid air,
over the specimen throughout the x-ray exposure. The diffraction pattern of the
coolant will also be recorded but this is easily distinguished from that of a crys-
talline solid, because the typical pattern of a liquid contains only one or two very
diffuse maxima in contrast to the sharp diffraction lines from a solid. Scattering
from the liquid will, however, increase the background blackening of the
photograph.

A better method is to cool the specimen with a stream of cold gas. Liquid nitro-
gen, for example, boils at 77ºK (= –196ºC) and can easily produce nitrogen gas at
the specimen at about –150ºC. Gas produces much less background scattering than
a liquid coolant.

High-Pressure Cameras

Many substances have quite different crystal structures at high pressure. Usually
these structures exist only under pressure, and their study necessarily requires high-
pressure cameras. Maximum pressures reached in such cameras are of the order of
500 kilobars (1 bar = 105 MPa2 = 14.5 lb/in2 1 atmosphere).

Camera design involves the difficult problem of applying large forces to the
specimen and simultaneously getting x-ray beams into and out of it. Hydrostatic
pressures up to about 5 kbars have been achieved in cameras operated under gas
pressure. Higher pressures are obtained by compressing the specimen between
anvils, either uniaxially or tetrahedrally (along directions, in cubic notation, of the
form {111}).

�

7 SEEMANN–BOHLIN CAMERA

The geometrical focusing used in the Bragg–Bretano ( - ) and Seemann-Bohlin
diffractometers is exploited in the Seemann–Bohlin camera shown in Fig. 7. The slit
S acts as a virtual line source of x-rays, the actual source being the extended focal
spot on the target T of the x-ray tube. Only converging rays from the target can
enter this slit and, after passing it, they diverge to the specimen AB. For a particu-
lar hkl reflection, each ray is then diffracted through the same angle , with the
result that all diffracted rays from various parts of the specimen converge to a focus
at F. As in any powder method, the diffracted beams lie on the surfaces of cones
whose axes are coincident with the incident beam; in this case, a number of incident
beams contribute to each reflection, and a diffraction line is formed by the inter-
section of a number of cones with the film.

The ends of the film strip are covered by knife-edges M and N, which cast refer-
ence shadows on the film.The value of for any diffraction line may be found fromu

2u

2uu
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the distance U, measured on the film, from the line to the shadow of the low-angle
knife-edge N, by use of the relation

(8)

In practice, is found by calibrating the camera with an internal standard of
known lattice parameter, such as NaCl, rather than by the use of Eq. (8).
Differentiation of Eq. (8), yields

(9)

This relation may be combined with Eq. (2) to give

(10)

The resolving power, or ability to separate diffraction lines from planes of almost
the same spacing, is therefore twice that of a Hull/Debye–Scherrer camera of the
same radius. In addition, the exposure time is much shorter, because a much larger
specimen is used (the arc AB of Fig. 7 is of the order of 1 cm) and diffracted rays
from a considerable volume of material are all brought to one focus. The
Seemann–Bohlin camera is, therefore, useful in studying complex diffraction pat-
terns, whether they are due to a single phase or to a mixture of phases such as occur
in alloy systems.

Re solving power �
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On the debit side, the Seemann–Bohlin camera has the disadvantage that the
lines registered on the film cover only a limited range of values, particularly on
the low-angle side. The Seemann–Bohlin camera, in itself, is now virtually obsolete
(the diffractometer has greater resolution), except in combination with a mono-
chromator. The combination is then called a Guinier camera (Sec. 14).

2u

8 BACK-REFLECTION FOCUSING CAMERAS

The most precise measurement of lattice parameter is made in the back-reflection
region. The most suitable camera for such measurements is the symmetrical back-
reflection focusing camera illustrated in Fig. 8.

It employs the same focusing principle as the Seemann-Bohlin camera, but the
film straddles the slit and the specimen is placed diametrically opposite the slit.
Means are usually provided for slowly oscillating the specimen through a few
degrees about the camera axis in order to produce smooth diffraction lines. A typ-
ical film, punched in the center to allow the passage of the incident beam, is shown
in Fig. 8. The value of for any diffraction line may be calculated from the relation

(11)14p � 8u2R � V,

u

T

film

(2	�4   )�

(4	�8  )�

(	�2  )�

F

S

F

R

A

B

2�

V

Figure 8 Symmetrical back-reflection focusing camera. Only one hkl reflection is shown.
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where V is the distance on the film between corresponding diffraction lines on
either side of the entrance slit.

Differentiation of Eq. (11) gives

(12)

where is the separation on the film of two reflections differing in Bragg
angle by . Combination of this equation with Eq. (2) shows that

(13)

The resolving power of this camera is therefore the same as that of a
Seemann–Bohlin camera of the same diameter.

In the pattern shown in Fig. 9, two pairs of closely spaced lines can be seen, lines
1 and 2 and lines 4 and 5. Each pair is a doublet formed by reflection from one set
of planes of the two components, and , which make up radiation. These
component lines are commonly found to be resolved, or separated, in the back-
reflection region. (The lines in this photograph are not resolved since radia-
tion consists only of a single wavelength.) To determine the conditions under which
a given camera can separate two components of radiation which have almost the
same wavelength, the spectroscopic definition of resolving power must be
employed namely  , where is the difference between the two wavelengths
and is their mean value. For radiation, these wavelengths are:

Å*

¢l � 0.00383

l1Cu Ka12 � 1.54056
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Figure 9 Powder photograph of tungsten made in a symmetrical back-reflection focusing camera, 4.00
in. (10.16 cm) in diameter. Unfiltered copper radiation.
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Therefore

The resolving power of the camera must exceed this value, for the particular reflec-
tion considered, if the component lines are to be separated on the film.

Differentiating Bragg’s law, yields

(14)

Substitution of Eq. (12) gives

(15)

The negative sign here can be disregarded; it merely means that an increase in 
causes a decrease in V/2, since the latter is measured from the center of the film.
Equation (15) demonstrates that the resolving power increases with the camera
radius and with , becoming very large near 90°. This latter point is clearly evident
in Fig. 9, which shows a greater separation of the higher-angle 400 reflections as
compared to the 321 reflections.

By use of Eq. (15), the resolving power can be calculated for the 321 reflections,
and the camera used to obtain Fig. 9.The camera radius is 2.00 in. (5.08 cm), and the
mean value for these reflections is about 65.7°. The line breadth at half maximum
intensity is about 0.04 cm. The two component lines of the doublet will be clearly
resolved on the film if their separation is twice their breadth (Fig. 10). Therefore

Since this value exceeds the resolving power of 403, found above to be necessary
for resolution of the doublet, this doublet should be resolved for the 321
reflection, and such is seen to be the case in Fig. 9. At some lower angle, this would
not be true and the two components would merge into a single, unresolved line.The
fact that resolution of the doublet normally occurs only in the back-reflection
region can be seen from the Hull/Debye–Scherrer photographs.

Ka

Cu Ka

l

¢l
�
142 12.002 12.542 1tan 65.7°2

10.082
� 563.

¢a
V
2
b � 210.042 � 0.08cm

u

u

l

Re solving power �
l

¢l
�

�4R tan  u
¢ 1V>22

.

l

¢l
�

tan  u
¢u

.

du
dl

�
1

2d  cos  u
�

tan  u
2d  sin  u

�
tan  u
l

l � 2d  sin  u

l

¢l
�

1.542
0.00383

� 403.

Powder Photographs

258
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Figure 10 Resolution of closely spaced lines.
The lines shown have . Any small-
er separation might make the two lines
appear as one.
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9 PINHOLE PHOTOGRAPHS

When “monochromatic” radiation is used to examine a “powder” specimen in a
Laue (flat-film) camera, the result is often called, for no particularly good reason, a
pinhole photograph. It is also called a flat-plate photograph. (There is no general
agreement on the name of this method. Klug and Alexander [G.17], for example,
call it the “monochromatic-pinhole technique.”) Either a transmission or a back-
reflection camera may be used. A typical transmission photograph recorded on
standard x-ray film is shown in Fig. 11 for a sample of fine-grained aluminum sheet.
This geometry is used in commercially available diffraction apparatus using two-
dimensional detectors such as CCD’s or multiwire proportional counters. Output
from a multiwire detector system is shown in Fig. 12; note that the detector was not
perpendicular to the incident x-ray beam when this pattern was recorded. This
method is also becoming increasing popular with image plates at synchrotron radi-
ation sources; monochromatic radiation is normally used. Polychromatic synchro-
tron radiation, however, can be used profitably for highly textured samples: a filter
possessing an absorption edge at an appropriate wavelength can help in the identi-
fication of which features in the pattern are formed by a given diffraction plane [5].
One such pattern recorded in the transmission geometry appears in Fig. 13.

The pinhole method has the advantage that an entire Debye ring, and not just a
part of it, is recorded on the film. On the other hand, the range of values which
are recorded is rather limited: either low-angle or high-angle reflections may be
obtained, but not those in the median range of (see Fig. 14). One can, of course,
rotate the flat sheet of film from the orientations shown, but only partial cones will
be recorded. It is also possible to make a cylinder of film whose axis is the incident
beam (Fig. 15); cameras with this design are commercially available. In the trans-
mission method, the value of for a particular reflection is found from the relationu

u

u
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Figure 11 Transmission pinhole photograph of an aluminum sheet specimen. Filtered copper radiation.
(The diffuse circular band near the center is caused by white radiation. The nonuniform blackening of
the Debye rings is due to preferred orientation in the specimen.)

Figure 12 Diffraction patterns collected with a two-dimensional multiwire detector of random (left) and
oriented (right) thin film samples of yttrium barium copper oxide. (Data courtesy of T.A. Polley, D.W.
Stollberg and Microcoating Technologies.)

(16)

where U = diameter of the Debye ring and D = specimen-to-film distance. The cor-
responding relation for the back-reflection method is

(17)tan1p � 2u2 �
V

2D
,

tan  2u �
U

2D
,
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Figure 13 Transmission pinhole diffraction pattern using synchrotron white radiation of an aluminum
sample deformed in torsion. The pattern at the left was recorded without and pattern at the right with a
palladium filter inserted in the beam; the two sharp changes in contrast in the right-hand pattern show
the positions (angles) at which grains are oriented for 111 and 200 diffraction of the Pd K-edge wave-
length (0.509 Å). [7.6]

where V = diameter of the Debye ring. The distance D is usually of the order of 3
to 5 cm.

Powder specimens may be prepared simply by spreading a bit of the powder
mixed with a binder on any convenient support. For a transmission photograph a
piece of paper or cellophane will do. If there is any doubt about diffraction from the
support material, a control pattern without the specimen can be prepared.

However, the greatest utility of the pinhole method in materials work lies in the
fact that polycrystalline specimens can be examined directly. In back reflection, a
specimen, mounted in the usual 1-in. (25-mm) diameter plastic mount for micro-
scopic examination, can be positioned so that the primary beam falls on any select-
ed area: the advantage of being able to examine the same area of the specimen both
with the microscope and with x-rays is obvious; it is worth noting also that
both methods of examination, the optical and the x-ray, provide information only
about the surface layer of the specimen. The transmission method is restricted to
wire and sheet specimens which are not too highly absorbing.

There is an optimum specimen thickness for the transmission method, because
the diffracted beams will be very weak or entirely absent if the specimen is either
too thin (insufficient volume of diffracting material) or too thick (excessive absorp-

Powder Photographs

Figure 14 Angular relationships in the
pinhole method.
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specimen
film

(a) (b)

Figure 15 Transmission pinhole method for
thick specimens: (a) section through incident
beam: (b) partial pattern obtained.

tion). The specimen thickness which produces the maximum diffracted intensity is
given by , where is the linear absorption coefficient of the specimen.
Inspection shows that this condition can also be stated as follows: a transmission
specimen is of optimum thickness when the intensity of the beam transmitted
through the specimen is 1/e, or about 1/3, of the intensity of the incident beam.
Normally this optimum thickness is of the order of a few thousandths of an inch (0.1
mm). There is one way, however, in which a partial transmission pattern can be
obtained from a thick specimen and that is by diffraction from an edge (Fig. 15).
Only the upper half of the pattern is recorded on the film, but that is all that is nec-
essary in many applications. The same technique has also been used in some
Hull/Debye–Scherrer cameras.

The pinhole method is used in studies of preferred orientation, grain size, and
crystal quality.With a back-reflection camera, fairly precise lattice parameter meas-
urements can be made by this method. Precise knowledge of the specimen-to-film
distance D is not necessary, provided the proper extrapolation equation is used or
the camera is calibrated. The calibration is usually performed for each exposure,
simply by smearing a thin layer of the calibrating powder over the surface of the
specimen; in this way, reference lines of known value are formed on each film.

When the pinhole method is used for lattice parameter measurements, the film
or specimen, or both, is moved during the exposure to produce smooth, continuous
diffraction lines. By rotating or oscillating the film about the axis of the incident
beam, the reflections from each reflecting particle or grain are smeared along the
Debye ring. The specimen itself may be rotated about the incident beam axis or
about any axis parallel to the incident beam, or translated back and forth in any
direction in a plane parallel to the specimen surface. Such movements increase the
number of grains in diffracting positions and allow a greater proportion of the total
specimen surface to take part in diffraction, thus ensuring that the information
recorded on the film is representative of the surface as a whole. Any camera in
which the specimen can be so moved during the exposure that the incident beam
traverses a large part of its surface is called an integrating camera.

The camera has a motor to rotate the specimen for such integration.
The sectored disc on the cassette of this camera is designed for recording two or
more partial patterns on one film for comparative purposes. After the first pattern
is made, the specimen is changed, the disc is rotated about the collimator by 

u

m1>m
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an amount sufficient to cover the previously exposed portion of film and uncover
an unexposed portion, and the second exposure is made. Or the disc may be
removed, in order to record complete Debye rings from a single specimen.

10 MICROBEAMS AND MICROCAMERAS

Sometimes one has only a minute amount of material from which a diffraction pat-
tern has to be obtained. Or one may wish to obtain a pattern from only a very small
region of a large specimen. In either case, a very small incident beam, called a
microbeam, is needed, of the order of or less in
diameter. Beams with diameters on the order of 10 are routinely used with syn-
chrotron radiation [7, 8], and beams smaller than 1 in diameter have beam
obtained [9].

The central problem is the design and construction of the collimator and its
placement relative to the focal spot of the x-ray tube. Hirsch [7.10] has discussed
these matters. Collimators are often made of glass capillary tubing. If such collima-
tors are used with ordinary x-ray tubes, the collimated beam will be weak and expo-
sure times very long, because most of the x-rays coming from the tube are wasted.
The proper procedure is to employ a microfocus tube. Use of perfect external
reflection from the inner surface of glass capillary tubes with variable taper greatly
increases the intensity of the microbeam compared to a pinhole collimator, and use
of multiple capillaries to increase x-ray intensity still further appears very attractive
[11]. The price that is paid for the smaller diameter, higher intensity beam is
increased divergence.

While it may be possible to adapt an ordinary pinhole camera to some
microbeam work simply by changing the collimator, better results will be obtained
with a specially designed microcamera [10, G.17]. Such a camera will usually have a
small specimen-to-focal-spot distance (to increase intensity and improve collima-
tion), a small specimen-to-film distance (to reduce exposure time), and some
arrangement for accurately positioning the specimen in the beam. Diffraction pat-
terns of specimens amounting to as little as 10 micrograms have been obtained in
such cameras.

mm
mm

100 mm 1 � 0.1 mm �  4 � 10�3 in.2

11 CHOICE OF RADIATION

With any of the powder methods described above, the investigator must choose the
radiation best suited to the problem at hand. In making this choice, the two most
important considerations are:

1. The characteristic wavelength used should not be shorter than the K
absorption edge of the specimen, or the fluorescent radiation produced
will badly fog the film. In the case of alloys or compounds, it may be diffi-
cult or impossible to satisfy this condition for every element in the speci-
men.
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2. Bragg’s law shows that the shorter the wavelength, the smaller the Bragg
angle for planes of a given spacing. Decreasing the wavelength will there-
fore shift every diffraction line to lower Bragg angles and increase the total
number of lines on the film, while increasing the wavelength will have the
opposite effect. The choice of a short or a long wavelength depends on the
particular problem involved.

Whatever the radiation, the appropriate filter is used to suppress the compo-
nent of the radiation. All in all, radiation is generally the most useful. It can-
not be employed with ferrous materials, however, since it will cause fluorescent
radiation from the iron in the specimen; instead, , , or radiation
should be used.

Precise lattice-parameter measurements require that there be a number of lines
in the back-reflection region, while some specimens may yield only one or two.This
difficulty may be avoided by using unfiltered radiation, in order to have as well
as lines present.Ka

Kb

Cr KaFe KaCo Ka

Cu Ka
Kb

12 BACKGROUND RADIATION

A good powder photograph has sharp intense lines superimposed on a background
of minimum intensity. However, the diffraction lines themselves vary in intensity,
because of the structure of the crystal itself, and an appreciable background inten-
sity may exist, due to a number of causes. The two effects together may cause the
weakest diffraction line to be almost invisible in relation to the background.

This background intensity is due to the following causes:

1. Fluorescent radiation emitted by the specimen. It cannot be too strongly
emphasized that the characteristic wavelength used should be longer than
the K absorption edge of the specimen, in order to prevent the emission of
fluorescent radiation. Incident radiation so chosen, however, will not com-
pletely eliminate fluorescence, since the short-wavelength components of
the continuous spectrum will also excite K radiation in the specimen. For
example, suppose a copper specimen is being examined with radia-
tion of wavelength 1.542 Å from a tube operated at 30 kV. Under these
conditions the short-wavelength limit is 0.413 Å. The K absorption edge of
copper is at 1.380 Å. The component of the incident radiation will not
cause fluorescence, but all wavelengths between 0.413 and 1.380 Å will. If a
nickel filter is used to suppress the component of the incident beam, it
will also have the desirable effect of reducing the intensity of some of the
short wavelengths which cause fluorescence, but it will not eliminate them
completely, particularly in the wavelength region near 0.6 Å, where the
intensity of the continuous spectrum is high and the absorption coefficient
of nickel rather low.

Kb

Ka

Cu Ka
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It is sometimes possible to filter part of the fluorescent radiation from the
specimen by placing the proper filter over the film. For example, if a steel
specimen is examined with copper radiation, which is not generally advis-
able, the situation may be improved by covering the film with aluminum
foil, because aluminum has a greater absorption for the fluorescent 
radiation contributing to the background than for the radiation
forming the diffraction lines. In fact, the following is a good general rule to
follow: if it is impossible to use a wavelength longer than the K absorption
edge of the specimen, choose one which is considerably shorter and cover
the film with a filter. Sometimes the air itself will provide sufficient  filtra-
tion. Thus excellent patterns of aluminum can be obtained with 
radiation, even though this wavelength (1.54 Å) is much shorter than the K
absorption edge of aluminum (6.74 Å), simply because the radiation
excited has such a long wavelength (8.34 Å) that it is almost completely
absorbed in a few centimeters of air.

2. Diffraction of the continuous spectrum. Each crystal in a powder specimen
forms a weak Laue pattern, because of the continuous radiation compo-
nent of the incident beam.This is true whether or not that particular crystal
has the correct orientation to diffract the characteristic component into the
Debye ring. Many crystals in the specimen are therefore contributing only
to the background of the photograph and not to the diffraction ring, and
the totality of the Laue patterns from all the crystals is a continuous distri-
bution of background radiation. If the incident radiation has been so cho-
sen that very little fluorescent radiation is emitted, then diffraction of the
continuous spectrum is the largest single cause of high background inten-
sity in powder photographs.

3. Diffuse scattering from the specimen itself.
a) Incoherent (Compton modified) scattering. This kind of scattering

becomes more intense as the atomic number of the specimen
decreases.

b) Coherent scattering.
(i) Temperature-diffuse scattering.This form is more intense with soft

materials of low melting point.
(ii) Diffuse scattering due to various kinds of imperfection in the crys-

tals. Any kind of randomness or strain will cause such scattering.
4. Diffraction and scattering from other than the specimen material.

a) Collimator and beam stop. This kind of scattering can be minimized by
correct camera design, as discussed in Sec. 2.

b) Specimen binder, support, or enclosure. The glue or other adhesive
used to compact the powder specimen, the glass fiber to which the
powder is attached, or the glass or fused-quartz tube in which it is
enclosed all contribute to the background of the photograph, since
these are all amorphous substances. The amount of these materials
should be kept to the absolute minimum.

Al Ka

Cu Ka

Cu Ka
Fe Ka
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c) Air. Diffuse scattering from the air may be avoided by evacuating the
camera or filling it with a light gas such as hydrogen or helium.

13 CRYSTAL MONOCHROMATORS

If a single crystal is set to diffract the strong component of the general radiation
from an x-ray tube and this diffracted beam is used as the incident beam in a cam-
era, then the causes of background radiation listed under (1) and (2) above can be
completely eliminated. Since the other causes of background scattering are less
serious, the use of crystal-monochromated radiation produces diffraction photo-
graphs of remarkable clarity. There are two kinds of monochromators in use,
depending on whether the reflecting crystal is unbent or bent and cut.

As discussed in Sec 6-13, an unbent crystal is not a very efficient reflector, and a
large gain in intensity may be obtained by using a bent and cut crystal, which oper-
ates on the focusing principle. The reduction in exposure time can be considerable.
Note that the use of a monochromator produces a change in the relative intensities
of the beams diffracted by the specimen. the usual polarization factor

, which is included, must be replaced by the factor
, where  is the diffraction angle in the mono-

chromator (see Fig. 16).
2a11 � cos2 2a  cos2 2u2> 11 � cos2 2a2

11 � cos2 2u2>2

Ka

14 GUINIER CAMERAS [G.13, G.17]

S 2�

2�

2�A B
D C

F
C�

D�Figure 16 Cameras used with focusing monochro-
mators. Only one diffracted beam is shown in each
case. After Guinier [G.13].

The focusing monochromator is best used with powder cameras especially designed
to take advantage of the particular property of the diffracted beam, namely its
focusing action. A cylindrical camera (Fig. 16) is used with the specimen and film
arranged on the surface of the cylinder. Low-angle reflections are registered with
the camera placed in position C, in which case the specimen D must be thin enough
to be examined in transmission. High-angle reflections are obtained by back reflec-
tion with the camera in position C´, shown dashed, and the specimen at D´; the
geometry of the camera is then exactly similar to that of the Seemann-Bohlin cam-
era, the focal point F of the monochromatic beam acting as a virtual source of diver-
gent radiation. In either case, the diffracted rays from the specimen are focused on
the film for all hkl reflections; the only requirement is that the film be located on a
circle passing through the specimen and the point F.

The combination of a focusing monochromator and a focusing camera is known
as a Guinier camera, pioneered by Guinier in the late 1930s. Later investigators
produced variants known by hyphenated names. Thus, the Guinier-de Wolff “cam-
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Figure 17 Single film with four powder patterns, made with Guinier-de Wolff camera. The two bottom
patterns are of quartz, the third from the bottom is of ammonium alum, and the top one is of a mixture
of quartz and ammonium alum. The range of angles is 4° to 82°. (Courtesy of Enraf-Nonius Inc.,
Delft.)

2u

era” [12] is a set of two, or four, Guinier cameras stacked one above the other and
separated by baffles; patterns from two or four different specimens are registered
simultaneously on one piece of film (Fig. 17): this arrangement is possible because
the beam from the monochromator in Fig. 16 is physically wide enough normal to
the plane of the drawing to be split into two or four beams.The Guinier-Jagodzinski
“camera” [13] has two cameras on one support, arranged as in Fig. 16 but symmet-
rically with respect to the incident beam, one for transmission and one for back
reflection: three specimens can be examined simultaneously in each camera.

Compared to a Hull/Debye-Scherrer camera of the same size, operated directly
from the x-ray tube, a Guinier camera provides a much clearer pattern with twice
the resolution and about the same exposure time, but any one Guinier camera cov-
ers only a limited range of . It is best suited to the examination of particular parts
of complex patterns.

2u

15 MEASUREMENT OF LINE POSITION

The solution of any powder photograph begins with the measurement of the posi-
tions of the diffraction lines on the film. Measurements are made using a light box
with an opal-glass plate on top, illuminated from below, on which the film to be
measured is placed. On top of the glass plate is a graduated scale carrying a slider
equipped with a vernier and cross-hair; the cross-hair is moved over the illuminat-
ed film from one diffraction line to another and their positions noted. The film is
usually measured without magnification. A low-power hand lens may be of occa-
sional use, but magnification greater than 2 or 3 diameters usually causes the line to
merge into the background and become invisible, because of the extreme graininess
of x-ray film.

After the line positions are measured, their values are calculated from the
appropriate equation for the camera involved; this can be done without great effort
using various math software packages or spread sheets. But if no great precision is
needed and many patterns are to be evaluated rapidly, both of these steps can be

u
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avoided in routine work by making a cardboard scale marked with values; this
scale is placed next to the film and the value of each line read off.A separate scale
will be needed for each size and type of camera. Scales giving directly the spacing
d of the reflecting planes causing each line may also be made for any particular
wavelength, such as .Cu Ka

u

u

16 MEASUREMENT OF LINE INTENSITY

Many diffraction problems require an accurate measurement of the integrated
intensity, or the breadth at half maximum intensity, of a diffraction line on a pow-
der photograph. For this purpose it is necessary to obtain a curve of intensity vs.
for the line in question.

The intensity of an x-ray beam may be measured by the amount of blackening it
causes on a photographic film. The photographic density (blackening) of a film is in
turn measured by the amount of visible light the film will transmit, with an instru-
ment called a microphotometer or microdensitometer. A photometer is an instru-
ment that measures light intensity with some kind of photocell, and a micropho-
tometer is one that operates with an extremely thin light beam, about 0.1 mm wide,
defined by narrow slits.The x-ray film to be measured is slowly traversed across this
beam, and the intensity of the light passing through the film is continuously meas-
ured with a photocell connected to a recording galvanometer. The result is a plot
like that of Fig. 18.

The microphotometer is little used today because the detector of a diffractome-
ter is faster, more accurate, and more sensitive. However, when only a camera is
available or when circumstances are such that a camera is required (Sec. 1) then a
microphotometer is the only means of measuring diffracted intensities quantita-
tively. Two-dimensional microdensitometers are also commercially available and
are capable of digitizing film with pixel (picture element) sizes down to 25 .
These are useful for flat-plate photographs. More information can be found in
sources such as [G.17].

mm

2u

Figure 18 Powder pattern of quartz (above) and corresponding microphotometer trace (below).
(Courtesy of U.S. Bureau of Mines.) [14]
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PROBLEMS

*1 Plot a curve similar to that of Fig. 3 showing the absorption of radiation
by air. Take the composition and density of air. If a 1-hr exposure in air is required
to produce a certain diffraction line intensity in a 19-cm-diameter camera with

radiation, what exposure is required to obtain the same line intensity with
the camera evacuated, other conditions being equal?
*2 Derive an equation for the resolving power of a Hull/Debye–Scherrer camera
for two wavelengths of nearly the same value, in terms of , where S is defined by
Fig. 2.
3 For a Hull/Debye–Scherrer pattern made in a 5.73-cm-diameter camera with

radiation, calculate the separation of the components of the doublet in
degrees and in centimeters for =10, 35, 60, and 85° .
*4 What is the smallest value of at which the doublet will be resolved in a
5.73-cm-diameter Hull/Debye–Scherrer camera? Assume that the line width is 0.03
cm and that the separation must be twice the width for resolution.
5 A powder pattern of zinc is made in a Hull/Debye–Scherrer camera 5.73 cm in
diameter with radiation.

a) Calculate the resolving power necessary to separate the 11.0 and 10.3 dif-
fraction lines.

b) Calculate the resolving power of the camera used, for these lines. Assume
that the line width is 0.03 cm.

c) What minimum camera diameter is required to produce resolution of these
lines?

Cu Ka

Cr Kau 
u

KaCu Ka

¢S

Fe Ka

Fe Ka
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1. 41 minutes 2.

4. 81 6. 4.2 cm°
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Laue Photographs
1 INTRODUCTION

The present chapter deals with the Laue method only from the experimental side.
Both aspects are described in a book by Amoros et al. [G.31].

Laue photographs are the easiest kind of diffraction pattern to make and require
only the simplest kind of apparatus. White radiation is necessary, and the best
source is a tube with a heavy-metal target, such as tungsten, since the intensity of
the continuous spectrum is proportional to the atomic number of the target metal.
Good patterns can also be obtained with radiation from other metals, such as
molybdenum or copper. Ordinarily, the presence of strong characteristic compo-
nents, such as etc., in the radiation used, does not compli-
cate the diffraction pattern in any way or introduce difficulties in its interpretation.
Such a component will be diffracted only if the crystal happens to be oriented in
just such a way that Bragg’s law is satisfied for that component, and then the only
effect will be the formation of a Laue spot of exceptionally high intensity.

The specimen used in the Laue method is a single crystal. This may mean an iso-
lated single crystal or one particular crystal grain, not too small, in a polycrystalline
aggregate. The only restriction on the size of a crystal in a polycrystalline mass is
that it must be no smaller than the incident x-ray beam, if the pattern obtained is to
correspond to that crystal alone.

Each diffracted beam in the Laue method has a different wavelength, selected
from the incident polychromatic beam by the d spacing and value of the (hkl)
planes producing the reflection. If x-rays were visible like light, each diffracted
beam would be a different color. Although these colors cannot be seen by the
unaided eye, colored Laue patterns can be made by special photographic proce-
dures. Blum [1] made such patterns by preparing a special film, in which the three
color-producing layers of emulsion in color film were separated by layers contain-
ing metal atoms that acted as filters for the incident x-rays.Ting et al. [G.2] achieved
the same result with commercially available materials, and it is also possible to

u

W La1, Cu Ka, Mo Ka

From Chapter 8 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 1 Combination transmission and back-reflection Laue camera. In this camera the Polaroid cas-
sette (at right) and the cassette for ordinary film (at left) are interchangeable; either can be used for
transmission or for back reflection. (Courtesy of Blake Industries, Inc.)

back-reflection 
cassette

transmission
cassette

specimen
holder

collimator

achieve this effect by recording the Laue pattern multiple times, each time with a
different absorption filter.

The position of any Laue spot is unaltered by a change in plane spacing, since the
only effect of such a change is to alter the wavelength of the diffracted beam. It fol-
lows that two crystals of the same orientation and crystal structure, but of different
lattice parameter, will produce identical Laue patterns.

2 CAMERAS

Laue cameras are so simple to construct that homemade models are not uncom-
mon.

Transmission Camera

Figure 1 shows a transmission camera, in this case a dual-purpose instrument, and
Fig. 2 illustrates its essential parts. A is the collimator, a device used to produce a
narrow incident beam made up of rays as nearly parallel as possible; it usually con-
sists of two pinholes in line, one in each of two lead disks set into the ends of the
collimator tube. C is the single-crystal specimen supported on the holder B. F is the
light-tight film holder, or cassette, made of a frame, a removable metal back, and a
sheet of opaque paper; the film, usually 4 5 in. (10 13 cm) in size, is sand-
wiched between the metal back and the paper. S is the beam stop, designed to pre-
vent the transmitted beam from striking the film and causing excessive blackening.
A small copper disk, about 0.5 mm thick, cemented on the paper film cover serves
very well for this purpose: it stops all but a small fraction of the beam transmitted
through the crystal, while this small fraction serves to record the position of this
beam on the film. The shadow of a beam stop of this kind.

��
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Figure 2 Transmission Laue camera.
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The Bragg angle corresponding to any transmission Laue spot is found very
simply from the relation

(1)

where r1 = distance of spot from center of film (point of incidence of transmitted
beam) and D = specimen-to-film distance (usually 5 cm). Adjustment of the speci-
men-to-film distance is best made by using a feeler gauge of the correct length.

The voltage applied to the x-ray tube has a decided effect on the appearance of
a transmission Laue pattern. It is of course true that the higher the tube voltage, the
more intense the spots, other variables, such as tube current and exposure time,
being held constant. But there is still another effect due to the fact that the contin-
uous spectrum is cut off sharply on the short-wavelength side at a value of the
wavelength which varies inversely as the tube voltage. Laue spots near the center
of a transmission pattern are caused by first-order reflections from planes inclined
at very small angles to the incident beam. In this circumstance, only short-wave-
length radiation can satisfy Bragg’s law, but, if the tube voltage is too low to pro-
duce the wavelength required, the corresponding Laue spot will not appear on the
pattern. It therefore follows that there is a region near the center of the pattern
which is devoid of Laue spots and that the size of this region increases as the tube
voltage decreases. The tube voltage therefore affects not only the intensity of each
spot, but also the number of spots. This is true also of spots far removed from the
center of the pattern: some of these are due to (hkl) so oriented and of such a spac-
ing that they diffract radiation of wavelength close to the short-wavelength limit,
and such spots will be eliminated by a decrease in tube voltage no matter how long
the exposure.

Back-Reflection Camera

A back-reflection camera is illustrated in Figs. 3 and 4 and at the left of Fig. 1.
The Bragg angle for any spot on a back-reflection pattern may be found from

the relation

(2)tan1180° � 2u2 �
r2

D
,

u

tan 2u �
r1

D
,

u
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Figure 3 Back-reflection Laue camera. The sectored disc on the front of the cassette would be removed
for a Laue photograph. (Courtesy of Philips Electronic Instruments, Inc.)

x-ray tubecassette

specimen
holder

collimator

Figure 4 Back-reflection Laue camera (schematic).
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where r2 = distance of spot from center of film and D = specimen-to-film distance
(usually 3 cm). In contrast to transmission patterns, back-reflection patterns may
have spots as close to the center of the film as the size of the collimator permits.
Such spots are caused by high-order overlapping reflections from (hkl) almost per-
pendicular to the incident beam. Since each diffracted beam is formed of a number
of wavelengths, the only effect of a decrease in tube voltage is to remove one or
more short-wavelength components from some of the diffracted beams. The longer
wavelengths will still be diffracted, and the decrease in voltage will not, in general,
remove any spots from the pattern.

General

To obtain a diffraction pattern a Laue camera must be correctly oriented with
respect to the x-ray tube. This alignment requires that the collimator axis point
directly at the focal spot on the tube target and make an angle of about 6° with the
face of the target. Normally a spot focus (as opposed to a line focus) is used. The
camera is moved relative to the tube until the primary beam, observed on a small
fluorescent screen held near the collimator exit, is of maximum intensity and circu-
lar, not elliptical, in section.

Transmission patterns can usually be obtained with much shorter exposures than
back-reflection patterns. For example, with a tungsten-target tube operating at

Laue Photographs
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30 kV and 20 mA and an aluminum crystal about 1 mm thick, the required expo-
sure is about 5 min in transmission and +30 min in back reflection. This difference
is due to the fact that the atomic scattering factor f decreases as the quantity

increases, and is much larger in back reflection than in transmis-
sion. Transmission patterns are also clearer, in the sense of having greater contrast
between the diffraction spots and the background, since the coherent scattering,
which forms the spots, and the incoherent (Compton modified) scattering, which
contributes to the background, vary in opposite ways with . The incoherent
scattering reaches its maximum value in the back-reflection region; it is in this
region also that the temperature-diffuse scattering is most intense. In both Laue
methods, the short-wavelength radiation in the incident beam will cause most spec-
imens to emit K fluorescent radiation. If this becomes troublesome in back reflec-
tion, it may be minimized by placing a filter of aluminum sheet 0.01 in. (0.25 mm)
thick in front of the film.

If necessary, the intensity of a Laue spot may be increased by means of an inten-
sifying screen, as used in radiography. This resembles a fluorescent screen in having
an active material coated on an inert backing such as cardboard, the active materi-
al having the ability to fluoresce in the visible region under the action of x-rays.
When such a screen is placed with its active face in contact with the film (Fig. 5), the
film is blackened not only by the incident x-ray beam but also by the visible light
which the screen emits under the action of the beam. Whereas fluorescent screens
emit yellow light, intensifying screens are designed to emit blue light, which is more
effective than yellow in blackening the film. Calcium tungstate intensifying screens
are used at short x-ray wavelengths (about 0.5 Å or less), while zinc sulfide with a
trace of silver can be used at longer wavelengths.

An intensifying screen should not be used if it is important to record fine detail
in the Laue spots, as in some studies of crystal distortion, since the presence of the
screen will cause the spots to become more diffuse than they would ordinarily be.
Each particle of the screen which is struck by x-rays emits light in all directions and
therefore blackens the film outside the region blackened by the diffracted beam
itself, as suggested in Fig. 5. This effect is aggravated by the fact that most x-ray film
is double-coated, the two layers of emulsion being separated by an appreciable
thickness of film base. Even when an intensifying screen is not used, double-coated
film causes the size of a diffraction spot formed by an obliquely incident beam to
be larger than the cross section of the beam itself; in extreme cases, an apparent
doubling of the diffraction spot results, as shown in Fig. 6.

Intensifying screens of one kind or another are routinely used for x-ray radiog-
raphy but not for diffraction. Most film manufacturers make one or more kinds of
film designed for radiography and another kind for diffraction, whether for the
Laue or powder method. Diffraction films are faster and have coarser grain. They
are designed for use without an intensifying screen and are often named “no
screen” to emphasize this fact.

It is likely that most Laue patterns recorded since the mid 1970’s have been on
high speed Polaroid film in a camera incorporating an intensifier screen. This film,

1sin  u2>l

1sin  u2>l1sin  u2>l
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Figure 6 Effect of double-coated film on appearance of
Laue spot: (a) section through diffracted beam and film;
(b) front view of doubled spot on film.

emulsion
film base

diffracted
beam

(a) (b)

designed for optical microscopy, requires no development or fixation tanks, is very
rapid and can include negatives as well as positive images. Multiwire x-ray detec-
tors, image storage plates or CCD (charge coupled device) detectors have also been
used to record Laue patterns rapidly and in digital form; systems based on these
technologies have found a place in the production environment.

3 SPECIMENS AND HOLDERS

Obviously, a specimen for the transmission method must have low enough absorp-
tion to transmit the diffracted beams; in practice, this means that relatively thick
specimens of a light element like aluminum may be used but that the thickness of
a fairly heavy element like copper must be reduced, by etching, for example, to a
few thousandths of an inch. On the other hand, the specimen must not be too thin
or the diffracted intensity will be too low, since the intensity of a diffracted beam is
proportional to the volume of diffracting material. In the back-reflection method,
there is no restriction on the specimen thickness and quite massive specimens may
be examined, since the diffracted beams originate in only a thin surface layer of the
specimen. This difference between the two methods may be stated in another way
and one which is well worth remembering: any information about a thick specimen
obtained by the back-reflection method applies only to a thin surface layer of that
specimen, whereas information recorded on a transmission pattern is representa-

Laue Photographs

Figure 5 Arrangement of film and intensifying screen
(exploded view).
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Figure 7 Goniometer with three rotation axes. (Courtesy of
Charles Supper Co.)

Laue Photographs

tive of the complete thickness of the specimen, simply because the transmission
specimen must necessarily be thin enough to transmit diffracted beams from all
parts of its cross section.

There is a large variety of specimen holders in use, each suited to some particu-
lar purpose. The simplest consists of a fixed post to which the specimen is attached
with wax, plasticine or epoxy. A more elaborate holder is required when it is nec-
essary to set a crystal in some particular orientation relative to the x-ray beam. In
this case, a three-circle goniometer is used (Fig. 7); it has three mutually perpendi-
cular axes of rotation, two in the horizontal plane and one in the vertical, and is so
constructed that the crystal, cemented to the tip of the short metal rod at the top, is
not displaced in space by any of the three possible rotations.

After the orientation of a crystal has been determined by the Laue method, it is
sometimes necessary to cut the crystal along some selected plane. A more massive
goniometer-holder than that of Fig. 7 is then required; such a holder can be
removed from the track of the Laue camera and transferred to a similar track on
the cutting device without disturbing the orientation of the crystal.

In the examination of sheet specimens, it is frequently necessary to obtain dif-
fraction patterns from various points on the surface, and this requires movement of
the specimen, between exposures, in two directions at right angles in the plane of
the specimen surface, this surface being perpendicular to the incident x-ray beam.
The mechanical stage from a microscope can be easily converted to this purpose as
are components for laser optics.

It is often necessary to know exactly where the incident x-ray beam strikes the
specimen, as, for example, when one wants to obtain a pattern from a particular
grain, or a particular part of a grain, in a polycrystalline mass. This is sometimes a
rather difficult matter in a back-reflection camera because of the short distance
between the film and the specimen. One method is to project a light beam through
the collimator and observe its point of incidence on the specimen with a mirror or
prism held near the collimator. An even simpler method is to push a stiff straight
wire through the collimator and observe where it touches the specimen with a small
mirror, of the kind used by dentists, fixed at an angle to the end of a rod.
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Figure 8 Pinhole collimator and small source.

u
v

�1

S d

4 COLLIMATORS

Collimators of one kind or another are used in all varieties of x-ray cameras, and it
is therefore important to understand their function and to know what they can and
cannot do. To “collimate” means, literally, to “render parallel,” and the perfect col-
limator would produce a beam composed of perfectly parallel rays. Such a collima-
tor does not exist, and the reason, essentially, lies in the source of the radiation,
since every tube emits radiation in all possible directions and even synchrotron
radiation possesses save divergence.

Consider the simplest kind of collimator (Fig. 8), consisting of two circular aper-
tures of diameter d separated by a distance u, where u is large compared to d. If
there is a point source of radiation at S, then all the rays in the beam from the col-
limator are nonparallel, and the beam is conical in shape with a maximum angle of
divergence given by the equation

(3)

where v is the distance of the exit pinhole from the source. Since is always very
small, this relation can be closely approximated by the equation

(4)

Whatever is done to decrease and therefore to render the beam more nearly
parallel will at the same time decrease the intensity of the beam. Note also that the
entrance pinhole serves no function when the source is very small, and may be
omitted.

No actual source is a mathematical point, and, in practice, x-ray tubes are
encountered which have focal spots of finite size, usually rectangular in shape. The
projected shape of such a spot, at a small target-to-beam angle, is either a small
square or a very narrow line, depending on the direction of projection. These are
termed spot-focus and line focus sources, respectively. Such sources produce beams
having parallel, divergent, and convergent rays.
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Figure 9 Pinhole collimator and large source. S = source, C = crystal.
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Figure 9 illustrates the case when the projected source shape is square and of
such a height h that convergent rays from the edges of the source cross at the cen-
ter of the collimator and then diverge. The maximum divergence angle is now given
by

(5)

and the center of the collimator may be considered as the virtual source of these
divergent rays. The beam issuing from the collimator contains not only parallel and
divergent rays but also convergent ones, the maximum angle of convergence being
given by

(6)

where w is the distance of the crystal from the exit pinhole. The size of the source
shown in Fig. 9 is given by

(7)

In practice, v is very often about twice as large as u, which means that the condi-
tions illustrated in Fig. 9 are achieved when the pinholes are about one-third the
size of the projected source. If the value of h is smaller than that given by Eq. (7),
then conditions will be intermediate between those shown in Figs. 8 and 9; as h
approaches zero, the maximum divergence angle decreases from the value given by
Eq. (5) to that given by Eq. (4) and the proportion of parallel rays in the beam and
the maximum convergence angle both approach zero. When h exceeds the value
given by Eq. (7), none of the conditions depicted in Fig. 9 is changed, and the
increase in the size of the source merely represents wasted energy.

When the shape of the projected source is a fine line, the geometry of the beam
varies between two extremes in two mutually perpendicular planes. In a plane at
right angles to the line source, the shape is given by Fig. 8 and in a plane parallel to
the source by Fig. 9. Aside from the component which diverges in the plane of the
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Figure 10 Focusing of diffracted beam in the transmission Laue method. S = source, C = crystal, F = focal
point.
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source, the resulting beam is shaped somewhat like a wedge. Since the length of the
line source greatly exceeds the value given by Eq. (7), a large fraction of the x-ray
energy is wasted with this arrangement of source and collimator.

The extent of the nonparallelism of actual x-ray beams may be illustrated by tak-
ing, as typical values, d = 0.5 mm, u = 5 cm, and w = 3 cm. Then Eq. (5) gives 2 =
1.15° and Eq. (6) gives = 0.36°.These values may of course be reduced by decreas-
ing the size of the pinholes, for example, but this reduction will be obtained at the
expense of decreased beam intensity and increased exposure time.

The collimators of most cameras, both for Laue and powder photographs, pro-
duce beams about 1 mm in diameter. Much smaller beams are used in microcam-
eras for special purposes.

a

b

5 THE SHAPES OF LAUE SPOTS

As will be seen later, Laue spots become smeared if the diffracting crystal is dis-
torted. Here, however, the concern is with the shapes of spots obtained from per-
fect, undistorted crystals. These shapes are greatly influenced by the nature of the
incident beam, i.e., by its convergence or divergence, and it is important to realize
this fact, or Laue spots of “unusual” shape may be erroneously taken as evidence of
crystal distortion.

Consider the transmission case first, and assume that the crystal is thin and larg-
er than the cross section of the primary beam at the point of incidence. If this beam
is mainly divergent, which is the usual case in practice (Fig. 8 or 9), then a   focus-
ing action takes place on diffraction. Figure 10 is a section through the incident
beam and any diffracted beam; the incident beam, whose cross section at any point
is circular, is shown issuing from a small source, real or virtual. Each ray of the inci-
dent beam which lies in the plane of the drawing diffracts at a slightly different
Bragg angle, this angle being a maximum at A and decreasing progressively toward
B. The lowermost rays, deviate therefore through a greater angle than the upper
ones, with the result that the diffracted beam converges to a focus at F. This is true
only of the rays in the plane of the drawing; those in a plane at right angles

2u
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Figure 11 Shape of transmission Laue spots as a function
of position.

continue to diverge after diffraction, with the result that the diffracted beam is ellip-
tical in cross section. The film intersects different diffracted beams at different dis-
tances from the crystal, so elliptical spots of various sizes are observed, as shown in
Fig. 11. This is not a sketch of a Laue pattern but an illustration of spot size and
shape as a function of spot position in one quadrant of the film. Note that the spots
are all elliptical with their minor axes aligned in a radial direction and that spots
near the center and edge of the pattern are thicker than those in intermediate posi-
tions, the latter being formed by beams near their focal point. Spots having the
shapes illustrated are fairly common.

In back reflection, no focusing occurs and a divergent incident beam continues
to diverge in all directions after diffraction. Back-reflection Laue spots are there-
fore more or less circular near the center of the pattern, and they become increas-
ingly elliptical toward the edge, due to the oblique incidence of the rays on the film,
the major axes of the ellipses being approximately radial.

PROBLEMS

*1 A transmission Laue pattern is made of an aluminum crystal with 40-kV tung-
sten radiation. The film is 5 cm from the crystal. How close to the center of the pat-
tern can Laue spots be formed by diffraction planes of maximum spacing, namely
(111), and those of next largest spacing, namely (200)?
2 A transmission Laue pattern is made of an aluminum crystal with a specimen-to-
film distance of 5 cm. The (111) planes of the crystal make an angle of 3° with the
incident beam.What minimum tube voltage is required to produce a 111 reflection?
*3 (a) A back-reflection Laue pattern is made of an aluminum crystal at 50 kV. The
(111) planes make an angle of 88° with the incident beam.What orders of reflection
are present in the beam diffracted by these planes? (Assume that wavelengths larg-
er than 2.0 Å are too weak and too easily absorbed by air to register on the film.)
b)What orders of the 111 reflection are present if the tube voltage is reduced to 40
kV?
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ANSWERS TO SELECTED PROBLEMS

1. 0.67 cm for (111); 0.77 cm for (200) 

3. a) 3rd to 18th; b) 3rd to 15th.
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Section 00 Section Title 275

Phase Identification by

X-Ray Diffraction
1 INTRODUCTION

1 Of course, if the sample contains only A and B, and if it can be safely assumed that each of these ele-
ments is wholly in a combined form, then the presence of AxBy and AxBzy can be demonstrated by cal-
culations based on the amounts of A and B in the sample. But this method is not generally applicable,
and it usually involves a prior assumption as to the constitution of the sample. For example, a determi-
nation of the total amounts of A and B present in a sample composed of A, AxBy, and Bcannot, in itself,
disclose the presence of AxBy, either qualitatively or quantitatively.

A given substance always produces a characteristic diffraction pattern, whether
that substance is present in the pure state or as one constituent of a mixture of sub-
stances. This fact is the basis for the diffraction method of chemical analysis.
Qualitative analysis for a particular substance is accomplished by identification of
the pattern of that substance. Quantitative analysis is also possible, because the
intensities of the diffraction lines due to one phase of a mixture depend on the pro-
portion of that phase in the specimen.

The particular advantage of diffraction analysis is that it discloses the presence
of a substance as that substance actually exists in the sample, and not in terms of its
constituent chemical elements. For example, if a sample contains the compound
AxBy, the diffraction method will disclose the presence of AxBy as such, whereas
ordinary chemical analysis would show only the presence of elements A and B.
Furthermore, if the sample contained both AxBy and AxBzy, both of these com-
pounds would be disclosed by the diffraction method, but chemical analysis would
again indicate only the presence of A and B.1 To consider another example, chemi-
cal analysis of a plain carbon steel reveals only the amounts of iron, carbon, man-
ganese, etc., which the steel contains, but gives no information regarding the phas-
es present. Is the steel in question wholly martensitic, does it contain both marten-
site and austenite, or is it composed only of ferrite and cementite? Questions such
as these can be answered by the diffraction method. Another rather obvious appli-

From Chapter 9 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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cation of diffraction analysis is in distinguishing between different allotropic modi-
fications of the same substance: solid silica, for example, exists in one amorphous
and six crystalline modifications, and the diffraction patterns of these seven forms
are all different.

Diffraction analysis is therefore useful whenever it is necessary to know the state
of chemical combination of the elements involved or the particular phases in which
they are present.As a result, the diffraction method has been widely applied for the
analysis of such materials as ores, clays, refractories, alloys, corrosion products, wear
products, industrial dusts, etc. Compared with ordinary chemical analysis, the dif-
fraction method has the additional advantages that it is usually much faster,
requires only a very small sample, and is nondestructive. Detailed treatments of
chemical analysis by x-ray diffraction are given by Klug and Alexander [G.17] and
Jerkins and Snyder [G.25].

2 BASIC PRINCIPLES

The powder pattern of a substance is characteristic of that substance and forms a
sort of fingerprint by which the substance may be identified. A collection of dif-
fraction patterns for a great many substances, allows identification of an unknown
by recording its diffraction pattern and then locating in the file of known patterns
one which matches the pattern of the unknown exactly. The collection of known
patterns has to be fairly large, if it is to be at all useful, and then pattern-by-pattern
comparison in order to find a matching one becomes out of the question.

What is needed is a system of classifying the known patterns so that the one
which matches the unknown can be located quickly. Such a system was devised by
Hanawalt in 1936 [1]. Any one powder pattern is characterized by a set of line posi-
tions and a set of relative line intensities I/I1 scaled relative to I1, the peak in the
pattern with maximum intensity. But the angular positions of the lines depend on
the wavelength used, and a more fundamental quantity is the spacing d of the lat-
tice planes forming each line. Hanawalt therefore decided to describe each pattern
by listing the d and l values of its diffraction lines, and to arrange the known pat-
terns in decreasing values of d for the strongest line in the pattern. This arrange-
ment made possible a search procedure which would quickly locate the desired pat-
tern. In addition, the problem of solving the pattern was avoided and the method
could be used even when the crystal structure of the substance concerned was
unknown.

2u

3 POWDER DIFFRACTION FILE

The task of building up a collection of known patterns was initiated by Hanawalt,
Rinn, and Frevel [1] at the Dow Chemical Company; they obtained and classified
diffraction data on some 1000 different substances. It soon became apparent that
these data were of great potential value to a wide range of industries and, beginning
in 1941, several technical societies, including the American Society for Testing and
Materials, began to cooperate in acquiring and disseminating diffraction data. From
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1941 to 1969 the ASTM published and sold an increasing volume of data in the
form of in. file cards, one card for each pattern. Since 1969 this activity has
been carried out by the Joint Committee on Powder Diffraction Standards(JCPDS)
which in 1978 was renamed the International Centre for Diffraction Data (ICDD)
[2]. Approximately three-hundred scientists from around the world participate in
the Centre. In 1995 the Powder Diffraction File (PDF) contained nearly 62,000 dif-
fraction patterns in 45 sets, with a new set of about 2000 patterns being added each
year. The substances included are elements, alloys, inorganic compounds, minerals,
organic compounds, and organometallic compounds.

Hanawalt Method

Since more than one substance can have the same, or nearly the same, d value for
its strongest line and even its second strongest line, Hanawalt decided to character-
ize each substance by the d values of its three strongest lines, namely d1, d2, and d3
for the strongest, second-strongest, and third-strongest line, respectively. The values
of d1, d2, and d3, together with relative intensities, are usually sufficient to charac-
terize the pattern of an unknown and enable the corresponding pattern in the file
to be located. Originally, in each section or set of the ASTM file, the cards were
arranged in groups characterized by a certain range of d1 spacings and identified by
a set number and a card number within that set. Within each group, e.g., the group
covering d1 values from 2.29 to 2.25 Å, the cards were arranged in decreasing order
of d2 values, rather than d1 values. When several substances in the same group had
identical d2 values, the order of decreasing d3 values was followed. The groups
themselves were arranged in decreasing order of their d1 ranges. However, as the
number of cards grew, the direct card search became unwieldy, and it was recog-
nized that it would become more cumbersome as the file became larger.
Accordingly, the JCPDS decided to number the cards randomly, or chronological-
ly, in each set, rather than according to the value of d1, and to use the Hanawalt
Search Manual to replace the group-arranged card sets.

A typical card from the PDF is reproduced in Fig. 1. Note that new patterns have
superceded older patterns in a number of cases when better data became available,
and, for this reason, there are gaps in the older sets of cards. Individual in.
( cm) cards are no longer available. Instead, these cards, grouped in inorgan-
ic and organic sections, are found in the following forms:

Microfiche. Cards are photographically reduced and printed on in.
( cm) sheets of photographic film (microfiche), but this format is fading
from use.

Books. Cards from Sets 1 to 45 are reproduced, three to a page, in book form.
All cards from these sets, inorganic and organic, are included.The number of sets
per volume has decreased as the rate of addition of new patterns have increased.

10 � 15
4 � 6

8 � 13
3 � 5

3 � 5
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Figure 1 Standard in. ICDD diffraction data card (card 628 from Set 5) for sodium chloride.
Appearing on the card are 1 (file number), 2 (three strongest lines), 3 (lowest-angle line), 4 (chemical
formula and name of substance), 5 (data on diffraction method used), 6 (crystallographic data), 7 (opti-
cal and other data), 8 (data on specimen), and 9 (diffraction pattern). Intensities are expressed as per-
centages of I1, the intensity of the strongest line on the pattern. Most cards have a symbol in the upper
right corner indicating the quality of the data: * (high quality), i (lines indexed, intensities fairly reliable),
c (calculated pattern), and o (low reliability). (Courtesy of International Centre for Diffraction Data)

3 � 5

431

5

6

7

8

9

2

d 2.82 1.99 1.63 3.26 NaCl

Sodium ChlorideI/l1

I/I1

100 55 15 13

Rad. CuK�1

Cut off
Ref.  Swanson and Fuyat,  NBS  Circular 539,  Vol.  2,   41

(1953)

1.5405
Diffractometer I/I cor.

Dia.NiFilter

Sys.  Cubic
a0 5.6402 b0 c0

���

S.G. Fm3m  (225)
A C
Z 4 Dx 2.164

Ref.  Ibid.

Ref.  Ibid.

�

�a ��� �n 1.542
Color

Sign
ColorlessmpD2V

An ACS reagent grade sample recrystallized twice from
hydrochloric acid.
X-ray pattern at 26˚C.
Merck Index, 8th Ed.,  p.  956.

d A I/I1 I/I1hkl hkld A

(Halite)

3.258
2.821
1.994
1.701
1.628
1.410
1.294
1.261
1.1515
1.0855

0.9969
.9533
.9401
.8917
.8601
.8503
.8141

13
100
55
2

15
6
1

11
7
1

2
1
3
4
1
3
2

111
200
220
311
222
400
331
420
422
511
440
531
600
620
533
622
444

5 – 6 2 8

FORM M-2

Magnetic Tape. Various formats are available for different tape drives and com-
puter operating systems, but this media has become more or less obsolete since
software began to be distributed via CDs.

CD-ROM. These are optical discs read with low-power laser light reflected from
a pattern of pits written by the recording laser. Typically 680 Mbytes of data can
be stored in a disc, and because the CD technology was originally was developed
for consumer audio electronics, it is very cost-effective and provides good per-
formance for databases such as the PDF.

Numerous vendors offer software for searching computer-based format of the
PDF for a particular pattern, using numerical, alphabetical or other methods.

1. Alphabetical. Substances are listed alphabetically by name. After the name
are given the chemical formula, the d values and relative intensities (as
subscripts) of the three strongest lines and the file number of the card. All
entries are fully cross-indexed: i.e., both “sodium chloride” and “chloride:

Phase Identification by X-Ray Diffraction
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sodium” are listed. This manual is useful if the investigator has any knowl-
edge of the chemical composition of the sample.

2. Numerical. Substances are listed in terms of the d spacings of their three
strongest lines, and d spacings and intensities are given for a total of eight
lines for each substance. Also included are the chemical formula and file
number. Each substance is currently listed twice (d1, d2 and d2, d1) if I2/I1 >
0.75 and . If I3/I1 > 0.75 and I4/I1 < 0.75, the substance is listed
three times (d1, d2; d2, d1; and d3, d1. The pattern appears four times when
I4/I1 > 0.75 (d1, d2; d2, d1; d3, d1; and d4, d1). All entries are divided into
groups according to the first spacing listed; the arrangement within each
group is in decreasing order of the second spacing listed. The purpose of
these additional listings (second-strongest line first and third-strongest line
first) is to enable the user to match an unknown with an entry in the search
manual even when complicating factors have altered the relative intensi-
ties of the three strongest lines of the unknown. These complications are
usually due to the presence of more than one phase in the sample. This
leads to additional lines and even superimposed lines. Use of the numerical
search manual requires no knowledge of the chemical composition of the
sample.

Fink Method

The Fink method [3] of numerical searching of the data file relies more on d spac-
ings than on intensities. It was originally designed for use with electron diffraction
patterns, where observed line intensities are not always directly related to structure
and therefore not always a reliable guide to identification. It is sometimes helpful
to use the Fink index when there is difficulty identifying an unknown phase using
the Hanawalt index; the presence of large amounts of preferred orientation in solid
samples is one instance in which intensities may not correspond to those expected
from the powder diffraction file.

In the Fink-method search manual, which covers inorganic compounds only, d
spacings and intensities are listed for the eight strongest lines of each substance.The
order of listing is determined by the four strongest lines. Each substance is listed
four times in Set 24 and later (six times in earlier sets), with one of the four
strongest lines listed first and the others following in descending order of d values.

I3>I1 	 0.75

4 PROCEDURE

Identification of the unknown begins with recording its diffraction pattern. Sample
preparation should result in fine grain size and in a minimum of preferred orienta-
tion, which can cause relative line intensities to differ markedly from their normal
values. Note also that relative line intensities depend to some extent on wavelength;
this should be kept in mind if the observed pattern is compared with one in the data
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file made with a different wavelength. Most of the patterns in the file were made
with radiation, except those for iron-bearing substances.

The pattern may be recorded with a Hull/Debye–Scherrer camera, Guinier cam-
era, or diffractometer. Here again, line intensities depend on the apparatus. In par-
ticular, absorption effects cause high-angle lines on a Hull/Debye-Scherrer pattern
to be stronger, relative to low-angle lines, than on a diffractometer recording.

After the pattern of the unknown is prepared, the d-spacing corresponding to
each line on the pattern is calculated. If the diffraction pattern has been obtained
on film, relative line intensities are usually estimated by eye, on a scale running
from 100 for the strongest line down to 10 or 5 for the weakest. If a densitometer is
available, it may be used to provide more accurate values of diffracted intensities.
For data recorded with a diffractometer, the background must be subtracted from
the peak intensity before computing I1/I1 for each peak. In general, the background
for a given sample varies with diffraction angle. Modern, computer-integrated dif-
fractometers generally have software to identify peaks positions (angles and
d-spacings) and to calculate the relative intensities of peaks.

After the experimental values of d and I/I1 are tabulated, the unknown can be
identified by the following procedure:

1. Locate the proper d1 group in the numerical search manual.
2. Read down the second column of d values to find the closest match to d2.

(In comparing experimental and tabulated d values, always allow for the
possibility that either set of values may differ by Å.)

3. After the closest match has been found for d1, d2, and d3, compare their rel-
ative intensities with the tabulated values.

4. When good agreement has been found for the lines listed in the search
manual, locate the proper PDF card and compare the d and I/I1 values of
all the observed lines with those tabulated. When full agreement is
obtained, identification is complete.

;0.01

Cu Ka

5 IDENTIFICATION OF SINGLE PHASE SAMPLES

When the unknown is a single phase, the search procedure is relatively straight-for-
ward. Consider, for example, the pattern described in Table 1. It was obtained with

radiation and a Hull/Debye–Scherrer camera: line intensities were estimat-
ed. The experimental values of d1, d2, and d3 are 2.82, 1.99, and 1.63 Å, respectively.
By examining the numerical search manual, strongest line is found to fall is found
to within the 2.84-2.80 Å group of d1 values. Inspection of the listed d2 values in this
group discloses twenty-seven substances having d2 = 1.99 Å, but only five of these
have d1 = 2.82 Å. The data on these five are shown in Table 2 in the form given in
the manual. And of these five only NaCl has d3 = 1.63 Å, Note that the intensities
listed for the three strongest lines of this substance agree fairly well with the
observed intensities; so do the data for the other five lines listed in the manual.

Cu Ka
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d(Å) I/I1 d(Å) I/I1

3.25
2.82
2.18
1.99
1.71

1.63
1.42
1.25
1.15
1.09

10
100

5
60
5

30
20
30
30
5

1.00
0.95
0.94
0.89
0.86

0.85
0.82
0.79
0.78

20
5

20
20
5

20
10
10
20

TABLE 1 PATTERN OF UNKNOWN

Turn to PDF card 5-628, reproduced in Fig. 1 and compares the complete pattern
given there with the observed one. In general the agreement is good, but there are
some discrepancies, and these must be resolved before the identification as NaCl is
accepted. These discrepancies are:

1. A very weak line with d = 2.18 Å, not listed on the file card is observed.
Calculation shows that this line is a 220 reflection of radiation not
removed by the filter. Note that the even stronger 200 reflection would also
produce a line, but this line falls on the 111 line and is therefore
not seen separately.

KaKbKb

Cu Kb

QM Strongest reflections PSC
Chemical 
formula

Mineral 
name; 
common 
name

PDF # I/Ic

*

*
*

C

2.82x
2.82x
2.829
2.82x

2.82x

1.993
1.999
1.99x
1.996

1.99x

3.992
3.268
2.306
1.632

1.998

1.632
1.637
1.414
3.261

1.263

1.411
1.411
1.632
1.261

1.632

1.261
1.261
0.891
1.151

1.152

1.071
1.151
1.201
0.941

0.941

1.781
1.731
1.151
0.891

1.411

cP5
cF8
cP5
cF8

 
cP2

Ca0.6Sr0.4NbO3

PdO
KMgF3

NaCl

BePd

Halite, 
syn

47-35
46-1211
18-1033
  5-628

18-428

7.05

0.90

TABLE 2 PORTION OF THE ICDD HANAWALT SEARCH MANUAL*

*Extracted from the numerical search manual (Inorganic Compounds, Hanawalt Search Manual, Sets
1-48, 1998). The different quality marks (QM) are explained in Fig. 1. The three strongest lines appear
in bold-face type. Intensities (rounded) are shown by the suffix x = 100 and the subscripts 9, 8, 7 =
90, 80, 70 The PSC is composed of the Pearson Bravais lattice mnemonic followed by the number
of atoms in the unit cell: C denotes cubic, F face-centered and P primitive. The ratio I/Ic gives the ratio
of the intensity of the most intense peak of the phase’s pattern to that of the most intense peak of corun-
dum hexagonal reflection 113.

p

p
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2. The 331 line (d = 1.294 Å) listed on the file card is not observed. However,
its intensity is expected to be very low.

3. Two high-angle lines (d = 0.79 and 0.78 Å) are observed but are not listed
on the PDF card. Often the file cards’ data do not extend to highest-acces-
sible values. However, these lines can be indexed as 711-551 and 640
lines, which are the next expected lines after 444 in the FCC sequence.

4. After the fifth observed line, observed intensities on the Hull/Debye–
Scherrer pattern are all higher than those on the file pattern, which was
obtained with a diffractometer. These differences are due to absorption
effects, as mentioned in Sec. 4.

Because the discrepancies are now understood, the identification of the the spec-
imen as NaCl is complete, or more precisely, the data is consistent with NaCl and
not with any other phase in the file. However, not all identifications are as positive
as this example. A few unexplained weak lines are often assumed to be due to an
unknown impurity: the identification of the main constituent is then somewhat ten-
tative, and its reliability depends on the judgement and experience of the investi-
gator. See also Sec. 8.

Because small d spacings correspond to back-reflection lines, they are measura-
ble with greater precision than large d spacings. Spacings smaller than about 1 Å
should therefore be computed to the nearest 0.001 Å, rather than to 0.01 Å as in
Table 1, in order to permit a better match with data in the file.

2u

6 IDENTIFICATION OF PHASES IN MIXTURES

d(Å) I/I1 d(Å) I/I1

3.01
2.47
2.13
2.09*
1.80*
1.50
1.29
1.28*

5
72
28

100
52
20

9
18

1.22
1.08*
1.04*
0.98
0.91*
0.83*
0.81*

4
20
3
5
4
8

10

TABLE 3 PATTERN OF UNKNOWN

The analysis is now more complex, but not impossible. Consider the pattern in
Table 3, obtained with radiation and a diffractometer, for which d1 = 2.09 Å,
d2 = 2.47 Å, and d3 = 1.80 Å. Examination of the numerical index in the d1 group
2.09 to 2.05 Å reveals several substances having d2 values near 2.47 Å, but in no case
do the three strongest lines, taken together, agree with those of the unknown. This
impasse suggests that the unknown is actually a mixture of phases, and that it is
incorrect to assume that the three strongest lines in the pattern of the unknown are
all due to the same substance. Suppose the strongest line (d = 2.09 Å) and the sec-

Cu Ka
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ond-strongest line (d = 2.47 Å) are formed by two different phases, and that the
third-strongest line (d = 1.80 Å) is due to, say, the first phase. In other words, assume
that d1 = 2.09 Å and d2 = 1.80 Å for one phase. A search of the same group of d1 val-
ues, but now in the vicinity of d2 = 1.80 Å, discloses agreement between the three
strongest lines of the pattern of copper, PDF card 4-0836, and three lines in the pat-
tern of our unknown. Turning to PDF card 4-0836, all lines of the copper pattern,
described in Table 4, agree with the starred lines in Table 3, the pattern of the
unknown.

One phase of the mixture is thus shown to be copper, providing that the remain-
der of the lines can be assigned to some other substance. These remaining lines are
listed in Table 5. By multiplying all the observed intensities by a normalizing factor
of 1.39, the intensity of the strongest line is increased to 100. Searching the index
and PDF in the usual way reveals that these remaining lines agree with the pattern
of cuprous oxide, Cu2O, which is given at the right of Table 5. The unknown is thus
shown to be a mixture of copper and cuprous oxide.

The analysis of mixtures becomes still more difficult when a line from one phase
is superimposed on a line from another, and when this composite line is one of the
three strongest lines in the pattern of the unknown. The usual procedure then leads
only to a very tentative identification of one phase, in the sense that agreement is
obtained for some d values but not for all the corresponding intensities.This in itself
is evidence of line superposition. Such patterns can be untangled by separating lines
which agree in d value with those of phase X, the observed intensity of any super-
imposed lines being divided into two parts. One part is assigned to phase X, and the
balance, together with the remaining unidentified lines, is treated as in the previous
example.

Analysis of patterns containing multiple overlapping peaks requires careful
tracking of how much intensity is from each individual phase. This can be done
using a spread sheet, for example, or by the graphical plot-replot method [4] which
is outlined below. In this subtractive method, the steps are:

1. Make a “stick” plot of I/I1 vs d for the unknown mixture. Perhaps the most
useful plot is I/I1 vs ln d which is easily made on semi-log paper; this allows

Phase Identification by X-Ray Diffraction

d(Å) I/I1

2.088
1.808
1.278
1.0900
1.0436
0.9038
0.8293
0.8083

100
46
20
17
5
3
9
8

TABLE 4 PATTERN OF COPPER
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Remainder of pattern of unknown Pattern of Cu2O

d(Å)

I/I1

Observed Normalized d(Å) I/I1

3.01
2.47
2.13

1.50
1.29
1.22

0.98

5
72
28

20
9
4

5

7
100

39

28
13
6

7

3.020
2.465
2.135
1.743
1.510
1.287
1.233
1.0674
0.9795
0.9548
0.8715
0.8216

9
100

37
1

27
17
4
2
4
3
3
3

TABLE 5

systematic peak shifts due to various diffractometer errors to be easily rec-
ognized. About 10 or 20 increments of I/I1 are sufficient.

2. Select likely possibilities (“three strongest lines”, a priori knowledge,
hunches) and make “stick” plots for these knowns based on PDF cards.

3. Solve the “jig-saw” puzzle, allowing for superposition of lines:
a. Graphically subtract the relative intensities of the first identified phase

of the mixture. Note that the normalization of the identified phase may
need to be changed to match the pattern: the mixture’s most intense
peak may not be the 100% peak of the identified phase.

b. Replot the remaining lines (i.e. those with non-zero intensities), renor-
malizing the maximum peak to 100% intensity. This is done to allow
easy comparison of the remainder with another phase from the PDF.

c. Repeat a. and b. until all peaks are accounted for.
4. Every line in the pattern must be assigned to some material. All major lines

of each component identified (i.e., of each card) must be present. All
remainders from subtractions must be zero or higher since negative inten-
sities do not exist. In practise, negative remainders I/I1 less than 0.05 are
acceptable. Preferred orientation is often the cause of less than perfect
agreement of intensities.

Completing the steps listed above is sufficient for most analyses. For a complete
analysis, however, the following should be done.

Phase Identification by X-Ray Diffraction
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5. Prepare mixtures of the identified components until the original diffraction
pattern is duplicated. This step adds considerable reliability to the identifi-
cation.

6. Compare absolute intensities of the peaks in the unknown and duplicating
mixtures to see if there is any noncrystalline material in the unknown.

The plot-replot algorithm was developed before the advent of personal computers,
and in many cases the same steps, albeit without plotting, can be done using a
spreadsheet. A spreadsheet allow rapid sorting of the phases present in a mixture,
but the plot-replot or other graphical approaches provide a better over-all view of
the hypothetical constituents of the experimental pattern.

The following example illustrates the use of the plot-replot method. Fig. 2 shows
the diffraction pattern of the unknown mixture, recorded with radiation, a
step size of 0.02° and counting time of 1 sec. The diffractometer used to collect
the data was equipped with a post-sample monochromator and with an incident
beam slit whose width varied automatically with so as to irradiate a constant
area of the sample. Thus, the measured peak intensities at high are greater than
they would be for a diffractometer with a fixed-width divergence slit (i.e., the

2u
2u

2u
Cu Ka

Figure 2 Diffraction pattern of a multi-phase sample recorded with a variable slit - diffractometer.
The pattern is plotted as the square root of the intensity (in thousands of counts) as a function of 
(degrees).

2u
2uu

20.0 25.0 30.0 35.0 40.0 45.0 50.0

0.01
0.06
0.13
0.22
0.35
0.50
0.69
0.90
1.13
1.40

50.0 55.0 60.0 65.0 70.0 75.0 80.0

0.01
0.06
0.13
0.22
0.35
0.50
0.69
0.90
1.13
1.40
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data which appears in the PDF). Note also that the vertical axis plots the square
root of intensity in order to show the low intensity peaks more clearly.

Important clues sometimes can be gleaned by examining the entire diffraction
pattern, peaks and background. Differences in peak shapes or widths, for example,
can suggest which peaks belong to which phase. The pattern in Fig. 2 consists or
many peaks of different shapes, and several peaks can be resolved from neighbor-
ing peaks (e.g., those at ~32°, 34°, 57°), suggesting that there may be additional
peaks which cannot be resolved.The vertical bars on the plot indicate the peaks the
diffractometer software has identified, but overmuch reliance on these types of rou-
tines is unwise, and their results should always be checked manually (i.e., by com-
paring the identified peak positions with the diffraction pattern itself). For exam-
ple, peaks at ~63°, 68° and 74° in Fig. 2 appear to have been missed by the software,
whereas similar appearing peaks in the same angular range (~57°, 69° and 76°) have
been found.

Table 6 lists the average d and I/I1 for the mixture obtained from scans of three
repackings of the sample in a powder holder. The average intensities of the peaks
identified by the software have been corrected to values which would have been
observed were a one degree fixed divergence slit used. The ten most intense peaks
appear in bold type in Table 6, numerical values of intensities for peaks above 5%
are given in normal type and the remaining intensities are represented by “o”. For
the three repackings, the d-spacings of all peaks were reproducible within 
Å, and the relative intensities varied no more than compared to I1.

Table 7 lists only the ten most intense peaks of the mixture, and the identifica-
tion proceeds by checking triplets of peaks against the Hanawalt Index: lines 10, 6
and 8 match zincite (ZnO, card 36-1451) lines 2.48x, 2.866, 2.604. The third column of
the Table compares zincite’s d-spacings and intensities with the experimental data,
and Fig. 3(a) shows the corresponding I vs. ln d plots. Multiplying the remainder
shown in column four by 2.5 yields the renormalized set of lines shown in column
five. Lines 4 and 5 match the Index’s entry for baddeleyite (ZrO2, card 37-1484),
and the remaining lines match halite (NaCl, card 5-628). The corresponding I vs. ln
d plots appear in Fig. 3(b) and (c).

The largest remainder from the ten most intense peaks is 4% of the pattern’s
maximum intensity, and this is not surprising because this peak is primarily from
halite, grains of which have a strong cubic morphology. All but three of the very
smallest peaks (out of the 43 identified by the software) are from either ZnO, ZrO2
or NaCl; examination of the three diffraction patterns recorded of the mixture, one
of which is shown in Fig. 2, indicates that these three peaks are noise. As all of the
expected peaks from the PDF cards are observed, and no major peaks in the exper-
imental pattern have not been assigned to one of the three substances, this identifi-
cation would be accepted with considerable confidence. In fact, these three phases
were combined in the mixture for purposes of this example.

In Fig. 4 the diffractometer software is used to compare the experimental pattern
with the PDF patterns of the phases identified in the analysis. This type of soft-

;3%
;0.005
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line d(Å) I(%) line d(Å) I(%)

1 3.68 7 26 1.66 6

2 3.62 5 27 1.62 31

3 3.24 0 28 1.60 0

4 3.15 40 29 1.58 0

5 2.84 27 30 1.54 0

6 2.80 83 31 1.51 0

7 2.62 8 32 1.49 0

8 2.60 46 33 1.48 31

9 2.53 6 34 1.45 0

10 2.47 100 35 1.42 0

11 2.40 0 36 1.40 0

12 2.37 0 37 1.38 22

13 2.34 10 38 1.36 12

14 2.21 0 39 1.32 0

15 2.20 5 40 1.30 0

16 2.17 0 41 1.26 6

17 2.08 0 42 1.23 0

18 2.02 6 43 1.21 0

19 1.99 20

20 1.90 20

21 1.84 8

22 1.81 10

23 1.80 0

24 1.78 0

25 1.69 0

TABLE 6 LIST OF D-SPACING AND RELATIVE INTENSITIES FOR THE PEAKS IN FIG. 2, CONVERTED FROM THE VARI-
ABLE INCIDENT BEAM SLIT DATA TO INTENSITIES WHICH WOULD HAVE BEEN OBSERVED WITH A 1º FIXED INCIDENT
SLIT. PEAKS WITH INTENSITIES LESS THAN 5% ARE REPRESENTED BY “O” AND THE INTENSITIES AND D-SPACINGS ARE
THE AVERAGE FROM THREE SAMPLE REPACKINGS.
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* Instead of rounding each peak’s intensity to the nearest 10% and using the most significant digit in the
subscript to indicate intensity, as in the Hanawalt Index, a two digit subscript is used to indicate intensity
to the nearest 1%. The peak intensity of 68% is indicated by the subscript “68” instead of “7”.

Line Unknown 36-1451 Remain. Renorm. 37-1484 Remain. Renorm. 5-628

10 2.47x 2.476x 0 – – – – –

6 2.8083 2.81457 26 2.8065 – 65 2.80x 2.82x

8 2.6046 2.60344 2 2.6005 – 5 2.5008 –

4 3.1540 – – 3.15x 3.16x 0 – –

27 1.6231 1.62532 
1 – – – – –

33 1.4829 1.47729 0 – – – – –

5 2.8427 – – 2.8468 2.8468 0 – –

37 1.3822 1.37822 0 – – – – –

19 1.9920 – – 1.9950 – 50 1.9977 1.9955

20 1.9120 1.91123 -3 – – – – –

TABLE 7 NUMERICAL ILLUSTRATION OF THE GRAPHICAL SUBTRACTIONS IN FIG. 3*

ware is very useful for rapidly confirming the presence of phases suspected to be
present but is less useful without this knowledge.

7 COMPUTERIZED SEARCH-MATCH

The procedure for searching the PDF for a pattern or patterns matching that of the
unknown is essentially one of matching numbers. This task is ideally suited to the
computer. As the number of phases in the unknown increases beyond two, manual
searching becomes very difficult and time consuming; computer searching is then
more efficient. This is especially true since the personal computer revolution of the
1980’s has allowed automatic peak intensity and d-spacing measurement to be the
rule rather than the exception: data files listing I and d values or even the entire dif-
fraction pattern can be exported into search-match programs without inordinate
effort.

At least 17 stand-alone phase identification programs are available in addition
to those provided by hardware vendors with their instruments [5].The goal of these
programs is to scan the reference data base selecting the phase(s) with highest
probability of comprising the unknown sample. Usually the best a program can do
is to rank the possibilities based on some figure of merit calculated using a particu-
lar algorithm (for example, see Eq. 1 below). The different programs’ procedures
vary widely, and there are often many tricks to getting the best results, tricks which
can be learned only from long experience with a specific program.
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Figure 3 Illustration of the plot-replot method for identifying phases in mixtures. Only peaks with
intensities greater than or equal to 20% in Fig. 2 and the corresponding Table 6 are shown. In (a) the
top plot shows the experimental peak intensities as a function of ln d while the bottom plot shows the
first phase identified ZnO, zincite, card 36-1451. The top plot of (b) shows the intensities remaining in
the experimental pattern after subtracting the zincite peaks’ intensities and renormalizing. The bottom
plot of pattern (b) shows the peaks of the second phase ZrO2, zirconia, card 37-1484. The plots in (c)
show the same steps as in (b) and show that NaCl, halite, card 5-628, accounts for the remaining peaks
of the pattern.
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Computer searching is not immune to errors originating in the pattern of the
unknown or in the data file. If the unknown contains only one phase, the software
may produce from 10 to 50 matching patterns, depending on the width d of the
“window” selected by the user; this window is the range of d values about a given
experimental value within which a match is judged acceptable. The value(s) of
d-spacing window(s) in software packages are sometimes not obvious, and consid-
erable caution must be exercised when using search-match software with which one
is unfamiliar. In many laboratories more than one researcher will use the search-
match software, and the default settings must be checked at the start of every ses-
sion. From the excessive number of possible matches provided by the computer, the
user must select the most probable ones, usually on the basis of some knowledge of
the unknown’s chemical composition.

Search-match programs are very powerful: an early program successfully identi-
fied six phases in a mixture [6]. Automatic phase identification, however, is very
sensitive to the quality of data in the PDF. In a study of 76 different phosphate min-
erals (common as well as rare species), 43% were unequivocally identified, 18%
were identified with other (absent) phases also being identified, 15% were listed in
the output file but were not identified and the remaining 24% did not appear in the
output list; and inaccuracies in some of the 275 PDF reference patterns of phos-
phate minerals in sets 1-31 were found to be the principal origin of the failure of
one-in-four identifications of this study [7].

¢
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Figure 4 Comparison of the experimental diffraction pattern shown in Fig. 2 (note the linear intensity
scale) with the cards of the phases identified in Fig. 3 and Table 7.
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2 Addition to the unknown of a small amount of a phase with known d-spacings and with peaks which
do not interfere with the principle peaks of the unknown. Systematic errors in the peak positions of the
unknown(s) can be corrected by observing the shifts in the peaks of the internal standard.

Fortunately standards are being raised for new additions to the PDF, and con-
siderable effort has gone into replacing inaccurate cards. Routine use of an internal
standard2 in samples would help to minimize uncertainties in experimental peak
positions. Full diffraction patterns and not merely lists of I and d are now being
added to the PDF [8]; this should lead to major improvements in future phase iden-
tification.

One figure of merit which has gained acceptance as a measure of both the accu-
racy of the diffraction peak positions and the completeness of the pattern is

, (1)

where Nposs is the number of independent diffraction lines possible up to the Nth
observed line and is the average absolute discrepancy between calculated and
observed values [9 -10].The units of FN are reciprocal degrees, and the higher the
accuracy or the more complete the pattern, the larger is FN. Thus, FN=100 

2u
0¢2u 0

FN �
1

0¢2u 0

N
Nposs
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means that the average difference was . In the study of phosphate min-
erals cited earlier in this section, computer identification was quite reliable for

, and remeasurement of 34 of the 275 phosphate mineral PDF patterns
improved the average F30 from 11.5 to 49.9 [7].

Before discussing the practical difficulties which might be encountered in phase
identification work, it is instructive to compare the results of a search-match pro-
gram on the mixture analyzed manually in Sec. 6. SANDMAN, the search-match
program provided with the diffractometer used to record the pattern in question,
grades the agreement between reference and experimental peaks using a
Lorentzian probability distribution instead of relying on a window with definite
limits for the “hit/miss” decision. This makes SANDMAN quite robust and allows
it to score patterns primarily on the basis of relative line positions and to report the
level of systematic errors explicitly for a given match.

The program performs a search through the entire PDF using the eight lines of
the Hanawalt Index and checking multiple permutations. A second pass is used to
match only the best candidates with the full pattern (generally those lines with

or the 15 most intense lines [11]). SANDMAN adds the patterns of the
phases identified and compares the result with the experimental pattern; most
other search-match programs are subtractive rather than additive. For the mixture
analyzed in the previous section, SANDMAN used 15 peaks down to I/I1 = 7.9% in
the search and matched 126 patterns to the experimental pattern. SANDMAN
identified cards 37-1484 (baddeleyite, ZrO2), 36-1451 (zincite, ZnO) and 17-469
(nadorite) explicitly, with very high match scores for the first two; however, it pro-
duced nearly as good a match for halite (NaCl, 5-628) as for nadorite.

I>I1  10%

F30  6.0

	 0.01°2u

8 PRACTICAL DIFFICULTIES

In theory, the Hanawalt method should lead to the positive identification of any
substance whose diffraction pattern is included in the powder diffraction file. In
practice, various difficulties arise, and these are usually due either to errors in the
diffraction pattern of the unknown or to errors in the PDF.

Errors of the first kind, those affecting the observed positions and intensities of
the diffraction lines, have been discussed in various parts of this text and need not
be reexamined here. However, the possibility of abnormal intensities due to pre-
ferred orientation or graininess needs continuous emphasis. Preferred orientation
is particularly common in surface deposits on metals, such as oxide or sulfide lay-
ers. If the deposit is very thin, its removal may not yield enough material for exam-
ination. The diffractometer is then an ideal instrument for examining the deposit in
situ, because of the shallow penetration of x-rays. Very thin deposits can  yield good
diffraction lines, and the analyst can often make a positive identification, even in
the presence of pronounced preferred orientation, if he or she has some knowledge
of crystal morphology and of the chemical composition of the deposit. Thus, a very
thin deposit on sheet steel was identified as graphite by a single strong basal-plane

Phase Identification by X-Ray Diffraction
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reflection and the knowledge that graphite crystals are normally oriented with their
basal planes more or less parallel to the substrate on which they have grown.

Preferred orientation is also a problem with particulate samples which have
well-defined, platey habits. It is easy to imagine that plate-like samples will tend to
lie with their major face parallel to the sample surface. If large grains are present in
a particulate sample, some diffraction lines will have abnormally large intensities.
While graininess can be regarded as a type of preferred orientation, it is better to
treat its effect separately. With a few large crystals present in an otherwise suitable
sample, there is a chance that one of the large crystals is correctly oriented for hkl
diffraction. In this case, the intensity of that particular hkl will be abnormally high.
The difference between graininess and preferred orientation can be seen upon
repacking the sample (with the same material as was used in the first packing). In
a sample with preferred orientation, the peak intensities Ij/Ii will be reproduced
from packing to packing. If large grains are present, the intensities will vary widely.

The data in Table 8 illustrates what might be observed from grainy samples. The
sample was produced from shards of a 100 Si wafer mixed with 325 mesh Si pow-
der. The first three columns of intensities are from three separate samples made by
smearing petroleum jelly on a glass slide and sprinkling the sample material on the
slide. The second group of three columns of intensities are from the same material
packed into a powder holder. The final column gives the PDF intensity ratios. As
would be expected, the intensity of the 400 line is abnormally high in one case. It is
for this reason that it is always desirable to run at least three re-packings of a sam-
ple of an unknown.

These remarks on abnormal intensities are not meant to suggest that successful
use of the Hanawalt method requires extremely accurate intensity measurements.
If reasonable care has been taken to minimize preferred orientation, then it is often

I/Ii (I/Ii)PDF

hkl d(Å) Glass slide Powder holder

Packing: 1 2 3 1 2 3

111 3.11 100 100 100 69 100 100 100

220 1.91 51 59 52 31 44 46 55

311 1.63 37 26 23 20 25 30 30

400 1.35 7 7 5 100 7 3 6

331 1.24 5 11 10 8 10 13 11

422 1.11 5 7 8 8 11 14 12

511 1.04 5 - 4 5 6 4 6

TABLE 8
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enough to be able to list the diffraction lines in the correct order of decreasing
intensity.

Errors in the PDF itself are generally more serious, because they may go unde-
tected by the investigator and lead to mistaken identifications. Many such errors
existed in the earlier editions of the file, but critical editing by members of the
ICDD has resulted in the removal of incorrect data and in the labeling of doubtful
data as being of low reliability. Moreover, the ICDD supports continuing work at
the National Institute of Standards and Technology and elsewhere, in which the dif-
fraction patterns of pure, well-characterized specimens are carefully prepared and
the data added to the file. Most of the high-quality, “starred” patterns in the card
file, such as that in Fig. 1, have been obtained at NIST.

Whenever any doubt exists in the investigator’s mind as to the validity of a par-
ticular identification, he or she should prepare her or his, own standard pattern.
Thus, if the unknown has been tentatively identified as substance X, the pattern of
pure X should be prepared under exactly the same experimental conditions used
for the pattern of the unknown. Comparison of the two patterns will furnish posi-
tive proof, or disproof, of identity.

The Hanawalt method fails completely, of course, when the unknown is a sub-
stance not listed, in the PDF, or when the unknown is a mixture and the component
to be identified is not present in sufficient quantity to yield a good diffraction pat-
tern. The latter effect  can be quite troublesome and mixtures may be encountered
which contain more than 50 percent of a particular component without the pattern
of that component being visible in the pattern of the mixture.

PROBLEMS

The d and I/Ii values tabulated in Probs. 1 to 4 represent the diffraction patterns of
various unknown substances. Identify the substances involved by reference to the
ICDD powder diffraction file.

d(Å) I/I1 d(Å) I/I1 d(Å) I/I1

3.66 50 1.46 10 1.06 10

3.17 100 1.42 50 1.01 10

2.24 80 1.31 30 0.96 10

1.91 40 1.23 10 0.85 10

1.83 30 1.12 10

1.60 20 1.08 10

  *1
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d(Å) I/I1 d(Å) I/I1 d(Å) I/I1

5.85 60 2.08 10 1.47 20

3.05 30 1.95 20 1.42 10

2.53 100 1.80 60 1.14 20

2.32 10 1.73 20 1.04 10

d(Å) I/I1 d(Å) I/I1 d(Å) I/I1

2.40 50 1.25 20 0.85 10

2.09 50 1.20 10 0.81 20

2.03 100 1.06 20 0.79 20

1.75 40 1.02 10

1.47 30 0.92 10

1.26 10

d(Å) I/I1 d(Å) I/I1 d(Å) I/I1

3.02 100 2.11 10 1.46 10

2.79 10 1.90 20 1.17 10

2.52 10 1.65 10

2.31 30 1.62 10

2

*3

4
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1. BaS 3. Mixture of Ni and NiO
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Determination of Crystal

Structure
1 INTRODUCTION

Since 1913, when W. L. Bragg solved the structure of NaCl, the structures of many
thousands of crystals, organic and inorganic, have been determined. This vast body
of knowledge is of fundamental importance in such fields as crystal chemistry, solid-
state physics, and the biological sciences because, to a large extent, structure deter-
mines properties and the properties of a substance are never fully understood until
its structure is known. In metallurgy, a knowledge of crystal structure is a necessary
prerequisite to any understanding of such phenomena as plastic deformation, alloy
formation, or phase transformations. Crystal structure underlies technologically
useful effects such as piezoelectricity, and knowledge of it is required for under-
standing the nature of point and other atomic-scale defects controlling many mate-
rials properties.

The work of structure determination goes on continuously since there is no
dearth of unsolved structures. New substances are constantly being synthesized, and
the structures of many old ones remain unknown. In themselves, crystal structures
vary widely in complexity: the simplest can be solved in a few hours, while the more
complex may require months or even years for their complete solution. (Proteins
form a notable example of the latter kind; some protein structures are now known,
but others still defy solution.) Complex structures require complex methods of
solution, and structure determination in its entirety is more properly the subject of
a series of books than of a single chapter.Therefore, only some of the principles and
their application to the solution of fairly simple structures will be considered here.
Because polycrystalline diffraction patterns are the kind most often encountered by
the materials scientist/engineer, this chapter will treat only these methods.

The basic principles involved in structure determination may already be
familiar to you. In brief, the crystal structure of a substance determines the
diffraction pattern of that substance or, more specifically, the shape and size of

From Chapter 10 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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the unit cell determines the angular positions of the diffraction lines, and the
arrangement of the atoms within the unit cell determines the relative intensities of
the lines. It may be worthwhile to state this again in tabular form:

Crystal structure Diffraction pattern

Unit cell Line positions
Atom positions Line intensities

Since structure determines the diffraction pattern, it should be possible to go in the
other direction and deduce the structure from the pattern. It is possible but not by
any direct manner. Given a structure, its diffraction pattern can be calculated in a
very straightforward fashion; but the reverse problem, that of directly calculating
the structure from the observed pattern, has not yet been solved for the general
case (Sec. 7). The procedure adopted is essentially one of trial and error. On the
basis of an educated guess, a structure is assumed, its diffraction pattern calculated,
and the calculated pattern compared with the observed one. If the two agree in all
detail, the assumed structure is correct; if not, the process is repeated as often as is
necessary to find the correct solution. The problem is not unlike that of decipher-
ing a code, and requires of the crystallographer the same qualities possessed by a
good cryptanalyst, namely, knowledge, perseverance, and not a little intuition.

The determination of an unknown structure proceeds in three major steps:

1. The shape and size of the unit cell are deduced from the angular positions
of the diffraction lines.An assumption is first made as to which of the seven
crystal systems the unknown structure belongs and then, on the basis of
this assumption, the correct Miller indices are assigned to each reflection.
This step is called “indexing the pattern” and is possible only when the cor-
rect choice of crystal system has been made. Once this is done, the shape of
the unit cell is known (from the crystal system), and its size is calculable
from the positions and Miller indices of the diffraction lines.

2. The number of atoms per unit cell is then computed from the shape and
size of the unit cell, the chemical composition of the specimen, and its
measured density.

3. Finally, the positions of the atoms within the unit cell are deduced from the
relative intensities of the diffraction lines.

Only when these three steps have been accomplished is the structure determi-
nation complete. The third step is generally the most difficult, and there are many
structures which are known only incompletely, in the sense that this final step has
not yet been made. Nevertheless, a knowledge of the shape and size of the unit cell,
without any knowledge of atom positions, is in itself of very great value in many
applications.

Determination of Crystal Structure

306
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



The average materials scientist/engineer is rarely, if ever, called upon to deter-
mine an unknown crystal structure. If the structure is at all complex, its determina-
tion is a job for a specialist in x-ray crystallography, who can bring special tech-
niques, both experimental and mathematical, to bear on the problem. He or she
should, however, know enough about structure determination to unravel any sim-
ple structures encountered and, what is more important, to index the powder pat-
terns of substances of known structure, as this is a routine problem in almost all dif-
fraction work. The procedures given below for indexing patterns are applicable
whether the structure is known or not, but they are of course very much easier to
apply if the structure is known beforehand.

Many crystal structures allow substitution of atoms of one element for another.
Materials such as GaAs and InSb, both of which have the zinc blende structure, and
have lattice parameters 5.653 Å and 6.479 Å, respectively, are isotypes. As such, it
is not surprising that considerable In, for example, can replace Ga atoms in the
GaAs lattice; this type of alloying, in which the minority atoms are in solid solution,
can improve mechanical properties, i.e., resistance to dislocation generation, prop-
agation and multiplication. Whenever there are two types of atoms occupying a lat-
tice or a set of sub-lattice sites, it is possible that the different atoms take up a non-
random or ordered arrangement. This ordering can be long range or short range,
and examining ordering is an important subset of crystal structure determination in
materials work. Accordingly, the last three sections of this chapter concern them-
selves with what can be learned about ordering from diffraction from polycrys-
talline samples.

2 PRELIMINARY TREATMENT OF DATA

The first step in determining the crystal structure of a polycrystalline sample is
recording the diffraction pattern over as wide a range of as possible, normally
with diffractometry. Specimen preparation must ensure random orientation of the
individual particies of powder, if the observed relative intensities of the diffraction
lines are to have any meaning in terms of crystal structure. After the pattern is
obtained the value of is calculated for each diffraction line; this set of 
values is the raw material for the determination of cell size and shape. Or one can
calculate the d value of each line and work from this set of numbers.

Since the problem of structure determination is one of finding a structure which
will account for all the lines on the pattern, in both position and intensity, the inves-
tigator must make sure at the outset that the observed pattern does not contain any
extraneous lines. The ideal pattern contains lines formed by x-rays of a single wave-
length, diffracted only by the substance whose structure is to be determined. There
are therefore two sources of extraneous lines:

1. Diffraction of x-rays having wavelengths different from that of the principal
component of the radiation. If filtered radiation is used, then  radiation
is the principal component, and characteristic x-rays of any other wave-

Ka

sin2 usin2 u

2u
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length may produce extraneous lines. The chief offender is radiation,
which is never entirely removed by a filter and may be a source of extrane-
ous lines for reflections with high diffracting power. A quick check for 
radiation begins with identification of the most intense line of the pattern,
presumably formed with radiation. Using is calculated from 
via Bragg’s law. If radiation is present, a diffraction peak from d1 results
at a different from and the relationship between diffraction angles
and wavelengths is

, (1)

where has a value near 1.2 for most radiations. If it is suspected
that a particular line is due to radiation, multiplication of its value
by will give a value equal, or nearly equal, to the value of for
some line on the pattern, unless the product exceeds unity. The line
corresponding to a given line is always located at a smaller angle and
has lower intensity. However, since and lines (from different
planes) may overlap on the pattern, Eq. (1) alone can establish only the
possibility that a given line is due to radiation, but it can never prove
that it is. Another possible source of extraneous lines is L characteristic
radiation from tungsten contamination on the target of the x-ray tube, par-
ticularly if the tube is old. If such contamination is suspected, equations
such as (1) can be set up to test the possibility that certain lines are due to
tungsten radiation.

2. Diffraction by substances other than the unknown. Such substances are usu-
ally impurities in the specimen but may also include the specimen mount
or badly aligned slits. Careful specimen preparation and good experimen-
tal technique will eliminate extraneous lines due to these causes.

For reasons beyond the scope of this chapter, the observed values of 
always contain small systematic errors. These errors are not large enough to cause
any difficulty in indexing patterns of cubic crystals, but they can seriously interfere
with the determination of some noncubic structures. The best method of removing
such errors from the data is to calibrate the camera or diffractometer with a sub-
stance of known lattice parameter, mixed with the unknown, i.e., by adding an
internal standard. The difference between the observed and calculated values of

for the standard substance gives the error in , and this error can be plot-
ted as a function of the observed values of . Figure 1 shows a correction curve
of this kind, obtained with a particular specimen and a particular
Hull/Debye–Scherrer camera.1 The errors represented by the ordinates of such a
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Figure 1  An example of a correction curve for 
values.
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curve can then be applied to each of the observed values of for the diffraction
lines of the unknown substance. For the particular determination represented by
Fig. 1, the errors shown are to be subtracted from the observed values.

sin2 u

3 INDEXING PATTERNS OF CUBIC CRYSTALS

A cubic crystal gives diffraction lines whose values satisfy the following equa-
tion, obtained by combining the Bragg’s law with the plane-spacing equation for the
cubic system, as in Eq. (3-11):

. (2)

Since the sum is always integral and is a constant for any
one pattern, the problem of indexing the pattern of a cubic substance is one of find-
ing a set of integers s which will yield a constant quotient when divided one by one
into the observed values. (Certain integers, such as 7, 15, 23, 28, 31, etc., are
impossible because they cannot be formed by the sum of three squared integers.)
Once the proper integers s are found, the indices hkl of each line can be written
down by inspection or from the tabulation in “Appendix: Quadratic Forms of Miller
Indices.”

The proper set of integers s is not hard to find because there are only a few pos-
sible sets. Each of the four common cubic lattice types has a characteristic sequence
of diffraction lines, described by their sequential s values:

Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, . . .
Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, . . .
Face-centered cubic: 3, 4, 8, 11, 12, 16, . . .
Diamond cubic: 3, 8, 11, 16, . . .

Each set can be tried in turn. If a set of integers satisfying Eq. (2) cannot be found,
then the substance involved does not belong to the cubic system, and other possi-
bilities (tetragonal, hexagonal, etc.) must be explored. Note that some s values from
the lists shown above may be absent, even though the sample in question properly
belongs to one of the three cubic Bravais lattices. Diamond cubic materials such as

sin2 u
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Si are FCC, but symmetry, due to presence of two Si atoms per lattice site, dictates
that s = 4, 12, etc. will be absent.

The following example will illustrate the steps involved in indexing the pattern
of a cubic substance and finding its lattice parameter. In this particular example,

radiation was used and eight diffraction lines were observed.Their val-
ues are listed in the second column of Table 1. Values of for the three cubic
Bravais lattices are given in columns 4, 8, and 10 for FCC, simple cubic and BCC,
respectively. If the observed lines are from a particular lattice type, the 
values should be constant.The data in Table 1 reveal the material to be fcc.The fifth
column lists the lattice parameter calculated from each line position, and the sixth
column gives the Miller indices of each line. The systematic error in appears
as a gradual decrease in the value of , and a gradual increase in the value of
a, as increases. The systematic error in a decreases as increases; therefore, the
value of a for the highest-angle line, namely, 3.62 Å, is the most accurate of those
listed. The analysis of line positions face-centered therefore leads to the conclusion
that the substance involved, copper in this case, is cubic in structure with a lattice
parameter of 3.62 Å. Certain information about the arrangement of atoms within
the unit cell has been obtained, and use of observed line intensities was required in
order to obtain this information. In this particular case, the observation consisted
simply in noting which lines had zero intensity.

uu

l2>4a2
sin2 u

1sin2 u2>s

1sin2 u2>s
sin2 uCu Ka
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1 2 3 4 5 6 7 8 9 10

FCC SC BCC

Line a(Å) hkl s s

1 0.140 3 0.0467 3.57 111 1 0.140 2 0.0700

2 0.185 4 0.0463 3.59 200 2 0.093 4 0.0463

3 0.369 8 0.0461 3.59 220 3 0.123 6 0.0615

4 0.503 11 0.0457 3.61 311 4 0.123 8 0.0629

5 0.548 12 0.0457 3.61 222 5 0.110 10 0.0548

6 0.726 16 0.0454 3.62 400 6 0.121 12 0.0605

7 0.861 19 0.0453 3.62 331 8 0.108 14 0.0615

8 0.905 20 0.0453 3.62 420 9 0.101 16 0.0566

θ2sin s h
2

k
2

l
2

+ +( )=
θ2sin

s
-------------

λ2

4a2
--------= θ2sin

s
-------------

θ2sin
s

-------------

TABLE 1
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Figure 2 Calculated diffraction patterns for various lattices s � 1h2 � k2 � l22
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The characteristic line sequences for cubic lattices are shown graphically in
Fig. 2, in the form of calculated diffraction patterns. The calculations are made for

radiation and a lattice parameter a of 3.50 Å. The positions of all the dif-
fraction lines which would be formed under these conditions are indicated as they
would appear on a film or chart of the length shown. (For comparative purposes,
the pattern of a hexagonal close-packed structure is also illustrated, since this struc-
ture is frequently encountered. The line positions are calculated for radia-
tion, a = 2.50 Å, and c/a = 1.633, which corresponds to the close packing of spheres.)

Cu Ka

Cu Ka
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Powder patterns of cubic substances can usually be distinguished at a glance
from those of noncubic substances, since the latter patterns normally contain many
more lines. In addition, the Bravais lattice can usually be identified by inspection:
there is an almost regular sequence of lines in simple cubic and body-centered cubic
patterns, but the former contains almost twice as many lines, while a face-centered
cubic pattern is characterized by a pair of lines, followed by a single line, followed
by a pair, another single line, etc.

The problem of indexing a cubic pattern is of course very much simplified if the
substance involved is known to be cubic and if the lattice parameter is also known.
The simplest procedure then is to calculate the value of and divide this value
into the observed values to obtain the value of s for each line.

There is one difficulty that may arise in the interpretation of cubic powder pat-
terns, and that is due to a possible ambiguity between simple cubic and body-cen-
tered cubic patterns. There is a regular sequence of lines in both patterns up to the
sixth line; the sequence then continues regularly in body-centered cubic patterns,
but is interrupted in simple cubic patterns since s = 7 is impossible. Therefore, if 
is so large, or a so small, that six lines or less appear on the pattern, the two Bravais
lattices are indistinguishable. For example, suppose that the substance involved is
actually body-centered cubic but the investigator mistakenly indexes it as simple
cubic, assigning the value  to the first lines, to the second line, etc. He or
she thus obtains a value of twice as large as the true one, and a value of a
which is times the true one. This mistake becomes apparent when the num-
ber of atoms per unit cell is calculated from the measured density of the specimen
(Sec. 6); the wrong cell size will give a nonintegral value for the number of atoms
per cell, and such a value is impossible. The ambiguity in the diffraction pattern
itself can be avoided by choosing a wavelength short enough to produce at least
seven lines on the pattern.

1>22
l2>4a2

s � 2s � 1

l

sin2 u

l2>4a2

4 INDEXING PATTERNS OF NONCUBIC CRYSTALS

The problem of indexing powder patterns becomes more difficult as the number of
unknown parameters increases. There is only one unknown parameter for cubic
crystals, the cell edge a, but noncubic crystals have two or more, and special tech-
niques have had to be devlsed in order to index the patterns of such crystals.
Graphical methods were the primary method before computers became wide-
spread; availability of spreadsheet programs, for example, allows rapid implemen-
tation of routines for indexing diffraction patterns from non-cubic phases.
Analytical methods of indexing involve arithmetical manipulation of the observed

values in an attempt to find certain relationships among them. Since each
crystal system is characterised by particular relationships between values,
recognition of these relationships identifies the crystal system and leads to a solu-
tion of the line indices. These analytical methods are due mainly to Hesse and
Lipson [1, 2, G.15, G.32, G.33].

sin2 u

sin2 u
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Tetragonal System

Here the values must obey the relation:

, (3)

where and are constants for any one pattern. The prob-
lem is to find these constants, since, once found, they will disclose the cell parame-
ters a and c and enable the line indices to be calculated. The value of A is obtained
from the hk0 lines. When l = 0, Eq. (3) becomes

. (4)

The permissible values of are 1, 2, 4, 5, 8, etc. Therefore the hk0 lines must
have values in the ratio of these integers, and A will be some number which
is etc., times the values of these lines. C is obtained from the other
lines on the pattern and the use of Eq. (3) in the form

. (5)

Differences represented by the left-hand side of the equation are set up, for various
assumed values of h and k, in an attempt to find a consistent set of values, which
must be in the ratio 1, 4, 9, 16, etc. Once these values are found, C can be calculat-
ed.

Hexagonal System

For hexagonal crystals, an exactly similar procedure is used. In this case, val-
ues are given by

, (6)

where A = and C = . Permissible values of are tabulat-
ed in “Appendix: Quadratic Forms of Miller Indices” they are 1, 3, 4, 7, 9, etc. The
indexing procedure is best illustrated by means of a specific example, namely, the
powder pattern of zinc, whose observed values are listed in Table 2. First
divide the values by the integers 1, 3, 4, etc., and tabulate the results, as shown
by Table 3, which applies to the first six lines of the pattern. Then examine these
numbers, looking for quotients which are equal to one another or equal to one of
the observed values. In this case, the two starred entries, 0.112 and 0.111, are
the most nearly equal, so assume that lines 2 and 5 are hk0 lines. Then, tentatively
put A = 0.112 which is equivalent to saying that line 2 is 100. Since the value
of line 5 is very nearly 3 times that of line 2, line 5 should be 110. To find the value
of C, the equation

(7)sin2 u � A1h2 � hk � k22 � Cl2

sin2 u

sin2 u

sin2 u

sin2 u

1h2 � hk � k22l2>4c2l2>3a2

sin2 u � A1h2 � hk � k22 � Cl2

sin2 u

Cl2

sin2 u � A1h2 � k22 � Cl2

sin2 u1, 12, 
1
4, 

1
5, 

1
8,

sin2 u

1h2 � k22

sin2 u � A1h2 � k22

3C � l2>4c2 4A1 � l2>4a22

sin2 u � A1h2 � k22 � Cl2

sin2 u
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Line Intensity hkl

1 s 0.097 00.2

2 s 0.112 10.0

3 vs 0.136 10.1

4 m 0.209 10.2

5 s 0.322 10.3, 11.0

6 vw 0.390 00.4

7 m 0.434 11.2

8 m 0.472 20.1

9 vw 0.547 20.2

10 w 0.668 20.3

11 m 0.722 11.4, 10.5

12 m 0.806 21.1

13 w 0.879 21.2

θ2sin

TABLE 2

must be used. Now subtract from each value the value of A (= 0.112), 3A (=
0.336), 4A (= 0.448), etc., and look for remainders which are in the ratio of 1,
4, 9, 16, etc. These figures are given in Table 4. Here the five starred entries are of
interest, because these numbers (0.024, 0.097, 0.221, and 0.390) are very nearly in
the ratio 1, 4, 9, and 16. Therefore put 0.024 = , 0.097 = , 0.221 = , and
0.390 = . This gives C = 0.024 and immediately identifies line 1 as 002 and line
6 as 004. Since line 3 has a value equal to the sum of A and C, its indices mustsin2 u

C142
C1322C1222C1122

1Cl22
sin2 u

Determination of Crystal Structure

Line hkl

1 0.097 0.032 0.024 0.014

2 0.112* 0.037 0.028 0.016 100

3 0.136 0.045 0.034 0.019

4 0.209 0.070 0.052 0.030

5 0.332 0.111* 0.083 0.047 110

6 0.390 0.130 0.098 0.056

θ2sin
θ2sin

3
-------------

θ2sin
4

-------------
θ2sin

7
-------------

TABLE 3
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Line hkl

1 0.097* 002

2 0.112 0.000 100

3 0.136 0.024* 101

4 0.209 0.097* 102

5 0.332 0.221* 110, 103

6 0.390* 0.278 0.054 004

θ2sin θ2sin A– θ2sin 3A–

TABLE 4

be 101. Similarly, the indices of lines 4 and 5 are found to be 102 and 103, respec-
tively. In this way, indices are assigned to all the lines on the pattern, and a final
check on their correctness is made in the usual manner by a comparison of
observed and calculated values.

Orthorhombic System

The basic equation governing the values is now

. (8)

The indexing problem is considerably more difficult here, in that three unknown
constants, A, B, and C, have to be determined. The general procedure, which is too
lengthy to illustrate here, is to search for significant differences between various
pairs of values. For example, consider any two lines having indices hk0 and
hk1, with hk the same for each, such as 120 and 121; the difference between their

values is C. Similarly, the difference between the values of two lines such
as 310 and 312 is 4C, and so on. If the structure is such that there are many lines
missing from the pattern, because of a zero structure factor for the corresponding
planes, then the difficulties of indexing are considerably increased, inasmuch as the
missing lines may be the very ones which would supply the most easily recognized
clues if they were present. Despite such difficulties, this analytical method has been
applied successfully to a number of orthorhombic patterns. One requisite for its
success is fairly high accuracy in the values (at least 0.0005), and the inves-
tigator should therefore correct all observations for systematic errors before
attempting to index the pattern.

;sin2 u

sin2 usin2 u

sin2 u

sin2u � Ah2 � Bk2 � Cl2

sin2 u

sin2 u
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Monoclinic and Triclinic Systems

These crystal systems involve four and six independent constants, respectively. The
corresponding powder patterns are of great complexity and may contain more than
a hundred lines.

General

Analytical methods of indexing are search procedures designed to reveal certain
numerical relationships among the observed values. The digital computer is
therefore a natural tool to use, and many computer programs have been written for
the indexing of powder patterns. Spreadsheets can be used to great effect.

Computer indexing is not always successful.The computer may yield not one but
many sets of indices that approximately conform to the input data; it is then up to
the investigator’s experience and judgment to select the correct set. Extraneous dif-
fraction lines and inaccurate values can mislead a computer as well as a
human searcher.

The powder patterns of low-symmetry substances are so difficult to solve that
the crystal structures of such substances are almost always determined by examin-
ing a single crystal, by either the rotating-crystal method, one of its variants, With
these methods the x-ray crystallographer can, without much difficulty or by an
other technique determine the shape and size of an unknown unit cell, no matter
how low its symmetry. The single-crystal specimen need not be large: a crystal as
small as 0.1 mm in any dimension can be successfully handled and will give a satis-
factory diffraction pattern with tube-based x-radiation. With synchrotron x-radia-
tion, samples with dimensions of micrometers have been studied. Many substances
are very difficult to prepare in single-crystal form, and the development of the
Rietveld method for polycrystalline single- and multi-phase samples has greatly
extended the range of structures which can be determined [3-5].

sin2 u

sin2 u

5 THE EFFECT OF CELL DISTORTION ON THE POWDER PATTERN

At this point it is profitable to digress slightly from the main subject of this chapter
and to examine some of the changes produced in a powder pattern when the unit
cell of the substance involved is distorted in various ways. Because there are many
more lines on the pattern of a substance of low symmetry, such as triclinic, than on
the pattern of a substance of high symmetry, such as cubic, any distortion of the unit
cell which decreases its symmetry, in the sense of introducing additional variable
parameters, will increase the number of lines on the powder pattern.

Figure 3 graphically illustrates this point. On the left is the calculated diffraction
pattern of the body-centered cubic substance whose unit cell is shown at the top.
The line positions are computed for a = 4.00 Å and radiation. If this cell is
expanded or contracted uniformly but still remains cubic, the diffraction lines mere-
ly shift their positions but do not increase in number, since no change in cell sym-
metry is involved. However, if the cubic cell is distorted along only one axis, then it

Cr Ka
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Figure 3. Effects of cell distortion on powder patterns. Lines unchanged in position are connected by
dashed lines.
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becomes tetragonal, its symmetry decreases, and more diffraction lines are formed.
The center pattern shows the effect of stretching the cubic cell by 4 percent along
its [001] axis, so that c is now 4.16 Å. Some lines are unchanged in position, some
are shifted, and new lines have appeared. If the tetragonal cell is now stretched by
8 percent along its [010] axis, it becomes orthorhombic, with a = 4.00 Å, b = 4.32 Å,
and c = 4.16 Å, as shown on the right. The result of this last distortion is to add still
more lines to the pattern. The increase in the number of lines is due essentially to
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the introduction of new d spacings, caused by nonuniform distortion. Thus, in the
cubic cell, are the same and only one line is formed, called the 200 line,
but this line splits into two when the cell becomes tetragonal, since now

. When the cell becomes orthorhombic, all three spacings are dif-
ferent and three lines are formed.

Changes of this nature are not uncommon among phase transformations and
ordering reactions. For example, the powder pattern of slowly cooled plain carbon
steel shows lines due to ferrite (body-centered cubic) and cementite ( ,
orthorhombic). When the same steel is quenched from the austenite region, the
phases present are martensite (body-centered tetragonal) and, possibly, some
untransformed austenite (face-centered cubic). The a and c parameters of the
martensite cell do not differ greatly from the a parameter of the ferrite cell. The
result is that the diffraction pattern of a quenched steel shows pairs of martensite
lines occurring at about the same positions as the individual lines of ferrite in the
previous pattern. (These line pairs, however, are seldom resolved; martensite con-
tains so much microstrain that each line of a pair is so broad that it merges with its
neighbor.) If the quenched steel is now tempered, the martensite will ultimately
decompose into ferrite and cementite, and each pair of martensite lines will coa-
lesce into a single ferrite line. Somewhat similar effects can be produced in a cop-
per-gold alloy having the composition represented by the formula AuCu. This alloy
is cubic in the disordered state but becomes either tetragonal or orthorhombic
when ordered, depending on the ordering temperature (see Sec. 10).

The changes produced in a powder pattern by cell distortion depend, in degree,
on the amount of distortion. If the latter is small, the pattern retains the main fea-
tures of the pattern of the original undistorted cell.Thus, in Fig. 3, the nineteen lines
of the orthorhombic pattern fall into the six bracketed groups shown, each group
corresponding to one of the single lines on the cubic pattern. In fact, an experienced
crystallographer, if confronted with this orthorhombic pattern, might recognize this
grouping and guess that the unit cell of the substance involved was not far from
cubic in shape, and that the Bravais lattice was either simple or body-centered, since
the groups of lines are spaced in a fairly regular manner. But if the distortion of the
cubic cell had been much larger, each line of the original pattern would split into
such widely separated lines that no features of the original pattern would remain.

2u

Fe3C

d002 � d200 � d020

d200, d020, d002

6 DETERMINATION OF THE NUMBER OF ATOMS IN A UNIT CELL

To return to the subject of structure determination, the next step after establishing
the shape and size of the unit cell is to find the number of atoms in that cell, because
the number of atoms must be known before their positions can be determined.
Because the volume of the unit cell, calculated from the lattice parameters by
means of the equations given in “Appendix: Lattice Geometry,” multiplied by the
measured density of the substance equals the weight of all the atoms in the cell
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, (3.14)

where is the sum of the atomic weights of the atoms in the unit cell, is the
density (g/cm3), and is the volume of the unit cell (Å3). If the substance is an ele-
ment of atomic weight A, then

,

where n1 is the number of atoms per unit cell. If the substance is a chemical com-
pound, or an intermediate phase whose composition can be represented by a sim-
ple chemical formula, then

,

where n2 is the number of “molecules” per unit cell and M the molecular weight.
The number of atoms per cell can then be calculated from n2 and the composition
of the phase.

When determined in this way, the number of atoms per cell is always an integer,
within experimental error, except for a very few substances which have “defect
structures.” In these substances, atoms are simply missing from a certain fraction of
those lattice sites which they would be expected to occupy, and the result is a non-
integral number of atoms per cell. FeO and the phase in the Ni-Al system are
examples.

b

a A � n2M

a A � n1A

V¿

r� A

a A �
rV¿

1.66042

7 DETERMINATION OF ATOM POSITIONS

To find the positions of a known number of atoms in a unit cell of known shape and
size, are required, the observed relative intensities of the diffracted beams, since
these intensities are determined by atom positions. In finding the atom positions,
however, the procedure is one of trial and error, because there is no known gener-
al method of directly calculating atom positions from observed intensities.

To see why this is so, consider the two basic equations involved, namely,

, (4-19)

which gives the relative intensities of the diffracted beams, and

, (4-11)

which gives the value of the structure factor F for the hkl reflection in terms of the
atom positions uvw. Since the relative intensity I, the multiplicity factor p and the
Bragg angle are known for each line on the pattern, the value of for each0F 0u

F � a
N

i
fne2pi1hun�kvn� lwn2

I � 0F 0 2pa
1 � cos2 2u
sin2 u 

 cos  u
b

Determination of Crystal Structure

319
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



reflection follows. But measures only the relative amplitude of each reflection,
whereas requires measurement of both the amplitude and phase of one reflection
relative to another, i.e., F and not merely . This is the crux of the problem. Since
intensity, the square of the diffracted amplitude is all that can be measured, ampli-
tude but not phase is determined, not the structure factor but only its absolute
value. This “phase problem,” baffled crystallographers for years, but it has been
addressed via direct methods of structure determination, applicable to some struc-
tures. No direct method has yet been found powerful enough to solve the structure
of any crystal.

Atom positions, therefore, can be determined only by trial and error. A set of
atom positions is assumed, the intensities corresponding to these positions are cal-
culated, and the calculated intensities are compared with the observed ones, the
process being repeated until satisfactory agreement is reached. The problem of
selecting a structure for trial is not as hopelessly broad as it sounds, since the inves-
tigator has many aids for guidance. Foremost among these is the accumulated
knowledge of previously solved structures. From these known structures a few like-
ly candidates, may be selected as a starting point. Analysis proceeds on the assump-
tion that this unknown structure is the same as, or very similar to, one of these
known ones. A great many known structures may be classified into groups accord-
ing to the kind of bonding (ionic, covalent, metallic, or mixtures of these) which
holds the atoms together, and a selection among these groups is aided by a knowl-
edge of the probable kind of atomic bonding in the unknown phase, as judged from
the positions of its constituent elements in the periodic table. For example, suppose
the phase of unknown structure has the chemical formula AB, where A is strongly
electropositive and B strongly electronegative, and that its powder pattern is char-
acteristic of a simple cubic lattice. Then the bonding is likely to be ionic, and the
CsCl structure is strongly suggested. But the FeSi structure is also a possibility. In
this particular case, one or the other can be excluded by a density measurement,
since the CsCl cell contains one “molecule” and the FeSi cell four. If this were not
possible, diffracted intensities would have to be calculated on the basis of each cell
and compared with the observed ones. It is this simple kind of structure determi-
nation, illustrated by an example in the next section, that the materials scientist or
engineer should be able to carry out unaided.

Needless to say, many structures are too complex to be solved by this simple
approach and the crystallographer must turn to more powerful methods. Chief
among these are space-group theory and Fourier series. Although any complete
description of these subjects is beyond the scope of this text, a few general remarks
may serve to show their utility in structure determination. The theory of 
space groups, one of the triumphs of mathematical crystallography, relates crystal
symmetry, on the atomic scale, to the possible atomic arrangements which possess
that symmetry. For example, if a given substance is known to be hexagonal and to
have n atoms in its unit cell, then space-group theory lists all possible arrangements
of n atoms which will have hexagonal symmetry. This listing of possible arrange-
ments aids tremendously in the selection of trial structures. A further reduction in

0F 0

0F 0

Determination of Crystal Structure

320
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



the number of possibilities can then be made by noting the indices of the reflections
absent from the diffraction pattern. By such means alone, i.e., before any detailed
consideration is given to relative diffracted intensities, space-group theory can
often exclude all but two or three possible atomic arrangements. There are 230 dif-
ferent space groups, and the possible atomic arrangements in each group are listed
in [G.1, Vol. A].

A Fourier series is a type of infinite trigonometric series by which any kind of
periodic function may be expressed. Now the one essential property of a crystal is
that its atoms are arranged in space in a periodic fashion. This means that the den-
sity of electrons is also a periodic function of position in the crystal, rising to a max-
imum at the point where an atom is located and dropping to a low value in the
region between atoms. To regard a crystal in this manner, as a positional variation
of electron density rather than as an arrangement of atoms, is particularly appro-
priate where diffraction is involved, in that x-rays are scattered by electrons and not
by atoms as such. Since the electron density is a periodic function of position, a crys-
tal may be described analytically by means of the Fourier series. This method of
description is very useful in structure determination because it can be shown that
the coefficients of the various terms in the series are related to the F values of the
various x-ray reflections. But such a series is not of immediate use, since the struc-
ture factors are not usually known both in magnitude and phase. However, anoth-
er kind of series has been devised, called the Patterson function, whose coefficients
are related to the experimentally observable values and which gives, not elec-
tron density, but information regarding the various interatomic vectors in the unit
cell. This information is frequently enough to determine the phase of the various
structure factors; then the first kind of series can be used to map out the actual elec-
tron density throughout the cell and thus disclose the atom positions.

0F 0

8 EXAMPLE OF STRUCTURE DETERMINATION

As a simple example, consider an intermediate phase which occurs in the cadmium-
tellurium system. Chemical analysis of the specimen, which appeared essentially
one phase under the microscope, showed it to contain 46.6 weight percent Cd and
53.4 weight percent Te. This is equivalent to 49.8 atomic percent Cd and can be rep-
resented by the formula CdTe. The specimen was reduced to powder and a diffrac-
tion pattern obtained with a Hull/Debye–Scherrer camera and Cu radiation.

The observed values of for the first 16 lines are listed in Table 5, together
with the visually estimated relative line intensities. This pattern can be indexed on
the basis of a cubic unit cell, and the indices of the observed lines are given in the
table. The lattice parameter, calculated from the value for the highest-angle
line, is 6.46 Å.

The density of the specimen, as determined by weighing a quantity of the pow-
der in a pyknometer bottle, was 5.82 g/cm3.

.a A �
15.822 16.4622

1.66042
� 945

sin2 u

sin2 u

Ka
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Line Intensity hkl

1 s 0.0462 111

2 vs 0.1198 220

3 vs 0.1615 311

4 vw 0.1790 222

5 m 0.234 400

6 m 0.275 331

7 s 0.346 422

8 m 0.391 511, 233

9 w 0.461 440

10 m 0.504 531

11 m 0.575 620

12 w 0.616 533

13 w 0.688 444

14 m 0.729 711, 551

15 vs 0.799 642

16 s 0.840 731, 553

θ2sin

TABLE 5

Since the molecular weight of CdTe is 240.02, the number of “molecules” per unit
cell is 945/240.02 = 3.94, or 4, within experimental error.

Knowing that the unit cell of CdTe is cubic and that it contains 4 “molecules”
of CdTe, i.e., 4 atoms of cadmium and 4 atoms of tellurium possible arrangements
of these atoms in the unit cell can be evaluated. Examination of the indices listed
in Table 5 reveals that the indices of the observed lines are all unmixed and that
the Bravais lattice must be face-centered. (Not all possible sets of unmixed
indices are present, however: 200, 420, 600, 442, 622 and 640 are missing from the
pattern. These reflections may be too weak to be observed, and the fact that they
are missing does not invalidate the conclusion that the lattice is face-centered.)
Now there are two common face-centered cubic structures of the AB type, i.e.,
containing two different atoms in equal proportions, and both contain four “mol-
ecules” per unit cell: these are the NaCl structure and the zinc-blende form of
ZnS. Both of these are logical possibilities even though the bonding in NaCl is
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ionic and in ZnS covalent, since both kinds of bonding have been observed in tel-
luride structures.

The next step is to calculate relative diffracted intensities for each structure and
compare them with experiment, in order to determine whether or not one of these
structures is the correct one. If CdTe has the NaCl structure, then its structure fac-
tor for unmixed indices is given by

(9)

On the other hand, if the ZnS structure is correct, then the structure factor for
unmixed indices is given by

(10)

Even before making a detailed calculation of relative diffracted intensities by
means of the NaCl structure can almost be eliminated as a possibility simply by
inspection of Eqs. (9).The atomic numbers of cadmium and tellurium are 48 and 52,
respectively, so the value of  (fCd + fTe)

2 is several hundred times greater than the
value of (fCd – fTe)

2, for all values of . Then, if CdTe has the NaCl structure,
the 111 reflection should be very weak and the 200 reflection very strong, Actually,
111 is strong and 200 is not observed. Further evidence that the NaCl structure is
incorrect is given in the fourth column of Table 6, where the calculated intensities
of the first eight possible lines are listed: there is no agreement whatever between
these values and the observed intensities.

On the other hand, if the ZnS structure is assumed, intensity calculations lead to
the values listed in the fifth column. The agreement between these values and the
observed intensities is excellent, except for a few minor inconsistences among the
low-angle reflections, and these are due to neglect of the absorption factor. In par-
ticular, note that the ZnS structure satisfactorily accounts for all the missing reflec-
tions (200, 420, etc), since the calculated intensities of these reflections are all
extremely low. Therefore this sample of CdTe has the structure of the zinc-blende
form of ZnS.

After a given structure has been shown to be in accord with the diffraction data,
it is advisable to calculate the interatomic distances involved in that structure. This
calculation not only is of interest in itself but also to disclose any gross errors that
may have been made, since there is obviously something wrong with a proposed
structure if it brings certain atoms impossibly close together. In the present struc-
ture, the nearest neighbour to the Cd atom at 0 0 0 is the Te atom at . The Cd-1

4 
1
4 

1
4

1sin  u2>l

0F2 0 � 161fCd � fTe2
2,   if 1h � k � l2  is an even multiple of 2.

0F2 0 � 161fCd � fTe2
2,   if 1h � k � l2  is an odd multiple of 2,

0F 2 0 � 161f Cd
2 � f Te

2 2,   if 1h � k � l2  is odd,

F2 � 161fCd � fTe2
2,   if 1h � k � l2  is odd.

F 2 � 161fCd � fTe2
2,   if 1h � k � l2  is even,
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1 2 3 4 5

Line hkl
Observed     
Intensity

Calculated Intensity*

*Calculated Intensities have been adjusted so that the 220 line has an intensity of 10.0
for both structures.

NaCl structure ZnS structure

1 111 s 0.05 12.4

200 nil 13.2 0.03

2 220 vs 10.0 10.0

3 311 vs 0.02 6.2

4 222 vw 3.5 0.007

5 400 m 1.7 1.7

6 331 m 0.01 2.5

420 nil 4.6 0.01

7 422 s . . . . . . 3.4

8 511, 333 m . . . . . . 1.8

9 440 w . . . . . . 1.1

10 531 m . . . . . . 2.0

600, 442 nil . . . . . . 0.005

11 620 m . . . . . . 1.8

12 533 w . . . . . . 0.9

622 nil . . . . . . 0.004

13 444 w . . . . . . 0.6

14 711, 551 m . . . . . . 1.8

640 nil . . . . . . 0.005

15 642 vs . . . . . . 4.0

16 731, 652 s . . . . . . 3.3

TABLE 6
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Te Interatomic distance is therefore a/4 = 2.80 Å. For comparison a “theoretical”
Cd-Te interatomic distance can be found simply by averaging the distances of
closest approach in the pure elements. In doing this, the atoms are treated as rigid
spheres in contact and ignore the effects of coordination number and type of
bonding on atom size are ignored. These distances of closest approach are 2.98 Å
in pure cadmium and 2.86 Å in pure tellurium, the average being 2.92 Å. The
observed Cd-Te interatomic distance is 2.80 Å, or some 4.1 percent smaller than
the calculated value; this difference is not unreasonable and can be largely
ascribed to the covalent bonding which characterizes this structure. In fact, it is a
general rule that the A-B interatomic distance in an intermediate phase AxBy is
always somewhat smaller than the average distance of closest approach in pure A
and pure B, because the mere existence of the phase shows that the attractive
forces between unlike atoms is greater than that between like atoms. If this were
not true, the phase would not form.

9 ORDER-DISORDER DETERMINATION

In most substitutional solid solutions, the two kinds of atoms A and B are arranged
more or less at random on the atomic sites of the lattice. In solutions of this kind
the only major effect of a change in temperature is to increase or decrease the
amplitude of thermal vibration. But there are some solutions which have this ran-
dom structure only at elevated temperatures. When these solutions are cooled
below a certain critical temperature Tc, the A atoms arrange themselves in an
orderly, periodic manner on one set of atomic sites, and the B atoms do likewise on
another set.The solution is then said to be ordered or to possess a superlattice.When
this periodic arrangement of A and B atoms persists over very large distances in the
crystal, it is known as long-range order. If the ordered solution is heated above Tc,
the atomic arrangement becomes more or less random again and the solution is
said to be disordered.

The change in atom arrangement which occurs on ordering changes a large num-
ber of physical and chemical properties, and the existence of ordering may be
inferred from some of these changes. However, the only conclusive evidence for a
disorder-order transformation is a particular kind of change in the x-ray diffraction
pattern of the substance. Evidence of this kind was first obtained by the American
metallurgist Bain in 1923, for a gold-copper solid solution having the composition

[6]. Since that time, the same phenomenon has been discovered in many
other alloy systems.

Data on the ordered structures found in particular alloys are given by Barrett
and Massalski [G.10] and Pearson [G.9]. The theory of the diffraction phenomena
involved is treated by Warren [G.10] and Guinier [G.30].

AuCu3

10 LONG-RANGE ORDER

The classic example of the order-disorder transformation appears in the copper-
gold system. The gold and copper atoms of , above a critical temperature ofAuCu3
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Figure 4 Unit cells of the disordered and ordered forms of AuCu3

gold atom

(a) Disordered (b) Ordered

copper atom

"average"
gold-copper atom

about 390°C, are arranged more or less at random on the atomic sites of a face-cen-
tered cubic lattice, as illustrated in Fig. 4(a). If the disorder is complete, the proba-
bility that a particular site is occupied by a gold atom is simply , the atomic frac-
tion of gold in the alloy, and the probability that it is occupied by a copper atom is
, the atomic fraction of copper. These probabilities are the same for every site and,

considering the structure as a whole, a statistically “average” gold-copper atom
occupies each site. Below the critical temperature, the gold atoms in a perfectly
ordered alloy occupy only the corner positions of the unit cube and the copper
atoms the face-centered positions, as illustrated in Fig 4(b). Both structures are
cubic and have practically the same lattice parameters. Figure 5 shows how the two
atomic arrangements differ on a particular lattice plane. The same kind of ordering
has been observed in , , , and .

What differences will exist between the diffraction patterns of ordered and dis-
ordered ? Since there is only a very slight change in the size of the unit cell
on ordering, and none in its shape, there will be practically no change in the posi-
tions of the diffraction lines. But the change in the positions of the atoms must nec-
essarily cause a change in line intensities. Calculating the structure factor F for each
atom arrangement illustrates the nature of these charges.

AuCu3

1MnFe2Ni3MnNi3FeNi3PtCu3

1
4

1
4

Figure 5 Atom arrangements on a (100) plane, disordered and ordered AuCu3.

gold copper

OrderedDisordered

Determination of Crystal Structure

326
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



a) Complete disorder. The atomic scattering factor of the “average” gold–cop-
per atom is given by

There are four “average” atoms per unit cell, at 0 0 0, , and
. Therefore the structure factor is given by

By example (d), this becomes

(11)

Therefore, as might be expected, the disordered alloy produces a diffraction
pattern similar to that of any face-centered cubic metal, say pure gold or
pure copper. No reflections of mixed indices are present.
b) Complete order. Each unit cell now contains one gold atom, at 0 0 0, and
three copper atoms, at , and .

(12)

The ordered alloy thus produces diffraction lines for all values of hkl, and its dif-
fraction pattern therefore resembles that of a simple cubic substance. In other
words, there has been a change of Bravais lattice on ordering; the Bravais lattice of
the disordered alloy is face-centered cubic and that of the ordered alloy simple
cubic.

The diffraction lines from planes of unmixed indices are called fundamental
lines, since they occur at the same positions and with the same intensities in the pat-
terns of both ordered and disordered alloys.The extra lines which appear in the pat-
tern of an ordered alloy, arising from planes of mixed indices, are called superlattice
lines, and their presence is direct evidence that ordering has taken place. The phys-
ical reason for the formation of superlattice lines may be deduced from an exami-
nation of Fig. 4. Consider 100 diffraction from the disordered structure, i.e., a 

F � 1fAu � fCu2,              for hkl mixed

F � 1fAu � 3fCu2,           for hkl unmixed,

F � fAu � fCu 3e
pi1h�k2 � epi1h�l2epi1k�l2 4 ;

0, 12, 
1
2

1
2, 0, 12

1
2, 

1
2, 0

F � 0,  for hkl mixed

F � 4fav � 1fAu � 3fcu2,  for hkl unmixed,

F � fav 31 � epi1h�k2 � epi1h�l2 � epi1k�l2 4

F � a fe2pi1hv�kv�lw2

0, 12, 
1
2

1
2, 0, 12

1
2, 

1
2, 0

fav �
1
4

fAu �
3
4

fCu.

fav � 1atomic fraction Au2fAu � 1atomic fraction Cu2fCu,
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beam of wavelength incident at an angle which satisfies Bragg’s law. The atoms
at the top and bottom of the unit cell scatter in phase, therefore, and reinforcement
occurs. Midway between the planes of constant phase, however, is a second set of
atoms (i.e., a “plane”) containing, on the average, exactly the same distribution of
gold and copper atoms. These atoms scatter out of phase and exactly the same
amplitude as the atoms at the top and bottom faces of the unit cell. Complete can-
cellation results and there is no 100 reflection. In the ordered alloy, on the other
hand, the distribution of gold and copper atoms is no longer uniform: the occupan-
cy at the top/bottom of the unit cell (both copper and gold atoms) differs from that
in the middle (only copper atoms). As before the top/bottom layers scatter out of
phase with the midsection of the unit cell, but now the amplitude scattered differs
because of the difference in scattering power of the gold and copper atoms. The
ordered structure therefore produces a weak 100 reflection. And, as Eqs. (12) show,
all the superlattice lines are much weaker than the fundamental lines, since their
structure factors involve the difference rather than the sum, of the atomic scatter-
ing factors of each atom. This effect is shown quite clearly in Fig. 6, where f and s
are used to designate the fundamental and superlattice lines, respectively.

At low temperatures, the long-range order in is virtually perfect but, as
Tc is approached, some randomness sets in. This departure from perfect order can
be described by means of the long-range order parameter S, defined as follows:

AuCu3

ul

Figure 6 Powder patterns of (very coarse-grained) made with filtered copper radiation: (a)
quenched from 440°C (disordered): (b) held 30 min at 360°C and quenched (partially ordered): (c) slow-
ly cooled from 360°C to room temperature (completely ordered).

AuCu3

111 200 220
f

100
8

110
8

210
8

211
8

f f

(a)

(b)

(c)
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(13)

where rA = fraction of A sites occupied by the “right” atoms, i.e., A atoms, and FA =
fraction of A atoms in the alloy.When the long-range order is perfect, rA = 1 by def-
inition, and therefore S = 1. When the atomic arrangement is completely random,
rA = FA and S = 0. For example, consider 100 atoms of , i.e., 25 gold atoms
and 75 copper atoms. Suppose the ordering is not perfect and only 22 of these gold
atoms are on “gold sites,” i.e., cube corner positions, the other 3 being on “copper
sites.” Then, considering the gold atom as the A atom in Eq. 13, rA = 22/25 = 0.88
and FA = 25/100 = 0.25. Therefore,

describes the degree of long-range order present. The same result is obtained for
the distribution of copper atoms.

Any departure from perfect long-range order in a superlattice causes the super-
lattice lines to become weaker. It may be shown [G.20] that the structure factors of
partially ordered AuCu3 are given by

(14)

Comparing these equations with Eqs. (12) shows that only the superlattice lines are
affected. But the effect is a strong one, because the intensity of a superlattice line is
proportional to |F|2 and therefore to S2. For example, a decrease in order from S =
1.00 to S = 0.84 decreases the intensity of a superlattice line by about 30 percent.
The weakening of superlattice lines by partial disorder is illustrated in Fig. 6.
Comparing the integrated intensity ratio of a superlattice and fundamental line,
determines S experimentally.

Values of S obtained in this way are shown in Fig. 7 as a function of the absolute
temperature T, expressed as a fraction of the critical temperature Tc.For the
value of S decreases gradually, with increasing temperature, to about 0.8 at Tc and
then drops abruptly to zero. Above Tc the atomic distribution is random and there
are no superlattice lines. One might expect that the energy lost from the superlat-
tice lines should appear in some form in the pattern of a completely disordered
alloy. As a matter of fact it does, in the form of a weak diffuse background extend-
ing over the whole range of . This diffuse scattering is due to randomness and
illustrates any departure from perfect periodicity of atom arrangement results in
some diffuse scattering at non-Bragg angles.

Von Laue showed that if two kinds of atoms A and B are distributed complete-
ly at random in a solid solution, then the intensity of the diffuse scattering produced
is given by

2u

AuCu3

F � S1fAu � fCu2,     for hkl mixed.

F � 1fAu � 3fCu2,     for hkl unmixed,

S �
0.88 � 0.25
1.00 � 0.25

� 0.84

AuCu3

S �
rA � FA

1 � FA
,
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0
0.4 0.5 0.6 0.7

T/Tc

S

0.8 0.9 1.0

0.2

0.4

0.6

0.8

10 AuCu3

CuZn

Figure 7 Variation of the long-range order param-
eter S with temperature, for AuCu3 and CuZn.
(AuCu3 data from Keating and Warren [7]; CuZn
data from Chipman and Warren [8].)

(15)

where k is a constant for any one composition, and fA and fB are atomic scattering
factors [G.20]. Both fA and fB decrease as increases, and so does their dif-
ference; therefore ID is a maximum at and decreases as increases.This dif-
fuse scattering is very difficult to measure experimentally. It is weak to begin with
and is superimposed on other forms of diffuse scattering that may also be present,
namely, Compton modified scattering, temperature-diffuse scattering, etc. It is
worth noting, however, that Eq. (15) is quite general and applies to any random
solid solution, whether or not it is capable of undergoing ordering at low tempera-
tures. This part will be revisited in Sec. 11.

Another aspect of long-range order that requires some mention is the effect of
change in composition. Since the ratio of corner sites to face-centered sites in the
AuCu3 lattice is 1:3, it follows that perfect order can be attained only when the ratio
of gold to copper atoms is also exactly 1:3. But ordering can also take place in alloys
containing somewhat more, or somewhat less, than 25 atomic percent gold, as
shown by the phase diagram of Fig. 8. In an ordered alloy containing somewhat
more than 25 atomic percent gold, all the corner sites are occupied by gold atoms,
and the remainder of the gold atoms occupy some of the face-centered sites nor-
mally occupied by copper atoms. Just the reverse is true for an alloy containing less
than 25 atomic percent gold. But as the phase diagram shows, there are limits to the
variation in composition which the ordered lattice will accept without becoming
unstable. In fact, if the gold content is increased to about 50 atomic percent, an
entirely different ordered alloy, AuCu, can be formed.

Before considering the ordering transformation in AuCu, which is rather com-
plex, it is instructive to examine the behavior of -brass. This alloy is stable at room
temperature over a composition range of about 46 to almost 50 atomic percent zinc,
and so may be represented fairly closely by the formula CuZn. At high tempera-
tures its structure is, statistically, body-centered cubic, with the copper and zinc
atoms distributed at random. Below a critical temperature of about 460°C, ordering

b

2u2u � 0
1sin  u2>l

ID � k1fA � fB2
2,
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Figure 8 Phase diagram of the copper–gold system. Hansen and Anderko [9].
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occurs; the cell corners are then occupied only by copper atoms and the cell centers
only by zinc atoms, as indicated in Fig. 9. The ordered alloy therefore has the CsCl
structure and its Bravais lattice is simple cubic. Other alloys which have the same
ordered structure are CuBe, CuPd, and FeCo.

By calculations similar to those made in the previous section, the structure fac-
tors of -brass, for the ideal composition CuZn, can be shown to be

(16)

In other words, there are fundamental lines, those for which (h + k + l) is even,
which are unchanged in intensity whether the alloy is ordered or not.And there are
superlattice lines, those for which (h + k + l) is odd, which are present only in the

F � S1fCu � fZn2,       for 1h � k � l2  odd.

F � 1fCu � fZn2,         for 1h � k � l2  even,

b
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Figure 9 Unit cells of the disordered and ordered forms of CuZn.

gold atom

(a) Disordered (b) Ordered

copper atom

"average"
gold-copper atom

pattern of an alloy exhibiting some degree of order, and then with an intensity
which depends on the degree of order present.

Figure 7 indicates how the degree of long-range order in CuZn varies with the
temperature. The order parameter for CuZn decreases continuously to zero as T
approaches Tc, whereas for AuCu3 it remains fairly high right up to Tc and then
drops abruptly to zero. There is also a notable difference in the velocity of the dis-
order-order transformation in these two alloys. The transformation in is rel-
atively so sluggish that the structure of this alloy at any temperature can be retained
by quenching to room temperature, as evidenced by the diffraction patterns in Fig. 6,
which were made at room temperature. In CuZn, on the other hand, ordering is so
rapid that disorder existing at an elevated temperature cannot be retained at room
temperature, no matter how rapid the quench. Therefore, any specimen of CuZn at
room temperature can be presumed to be almost completely ordered. (The S vs.
T/Tc curve for CuZn, shown in Fig. 7, was necessarily based on measurements made
at temperature with a high-temperature diffractometer.)

Not all order-disorder transformations are as simple crystallographically speak-
ing, as those occurring in and CuZn. Complexities are encountered, for
example, in gold-copper alloys at or near the composition AuCu; these alloys
become ordered below a critical temperature of about 410°C or lower, depending
on the composition (see Fig. 8).Whereas the ratio of gold to copper atoms in 
is 1:3, this ratio is 1:1 for AuCu, and the structure of ordered AuCu must therefore
be such that the ratio of gold sites to copper sites is also 1:1. Two ordered forms are
produced, depending on the ordering temperature, and these have different crystal
structures:

a) Tetragonal AuCu, designated I, formed by slow cooling from high tempera-
tures or by isothermal ordering below about 385°C. The unit cell is shown
in Fig. 10(a). It is almost cubic in shape, since c/a equals about 0.93, and the
gold and copper atoms occupy alternate (002) planes.

b) Orthorhombic AuCu, designated II, formed by isothermal ordering
between about 410° and 385°C. Its very unusual unit cell, shown in

AuCu3

AuCu3

AuCu3
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Determination of Crystal Structure

Figure 10 Unit cells of the two ordered forms of AuCu.

gold atom

copper atom

(a) I-tetragonal

(b) II-orthorhombic

a

b

a

a

c

c

Fig. 10 (b), is formed by placing ten tetragonal cells like that of I side by
side and then translating five of them by the vectors c/2 and a/2 with
respect to the other five. (Some distortion occurs, with the result that each
of the ten component cells, which together make up the true unit cell, is not
tetragonal but orthorhombic; i.e., b is not exactly ten times a, but equal to
about 10.02a. The c/a ratio is about 0.92) The result is a structure in which
the atoms in any one (002) plane are wholly gold for a distance of b/2, then
wholly copper for a distance of b/2, and so on. It is called a long-period
superlattice.

From a crystallographic viewpoint, there is a fundamental difference between
the kind of ordering which occurs in or CuZn, on the one hand, and that
which occurs in AuCu, on the other. In there is a change in Bravais lattice,
but no change in crystal system, accompanying the disorder-order transformation:
both the disordered and ordered forms are cubic. In AuCu, the ordering process
changes both the Bravais lattice and the crystal system, the latter from cubic to
tetragonal, AuCu(I), or orthorhombic, AuCu(II). These changes are due to
changes in the symmetry of atom arrangement, because the crystal system to
which a given structure belongs depends ultimately on the symmetry of that struc-
ture. In the gold–copper system, the disordered phase is cubic, because the
arrangement of gold and copper atoms on a face-centered lattice has cubic sym-
metry, in a statistical sense, at any composition. In , the ordering process
puts the gold and copper atoms in definite positions in each cell (Fig. 4), but this

AuCu3

a

AuCu3

AuCu3
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Determination of Crystal Structure

arrangement still has cubic symmetry so the cell remains cubic. In ordered AuCu,
on the other hand, to consider only the tetragonal modification, the atom arrange-
ment is such that there is no longer three-fold rotational symmetry about directions
of the form {111}. Inasmuch as this is the minimum symmetry requirement for the
cubic system, this cell [Fig. 10 (a)] is not cubic. There is, however, four-fold rota-
tional symmetry about [001], but not about [010] or [100]. The ordered form is
accordingly tetragonal. The segregation of gold and copper atoms on alternate
(002) planes causes c to differ from a, in this case in the direction of a small con-
traction of c relative to a, because of the difference in size between the gold and
copper atoms. But even if c were equal to a, the cell shown in Fig. 10 (a) would still
be classified as tetragonal on the basis of its symmetry.

Since the intensity of a superlattice line from an ordered solid solution is much
lower than that of a fundamental line the following question is important to con-
sider: Will it ever be so low that the line cannot be detected? Ignoring the variation
in multiplicity factor and Lorentz-polarization factor from line to line, and assum-
ing that the relative integrated intensities of a superlattice and fundamental line are
given by their relative values, produces an approximate estimate. For fully
ordered , Eqs. (12) show that

(17)

At , we can put f = Z and since the atomic numbers of gold and copper
are 79 and 29, respectively, Eq. (17) becomes, for small scattering angles,

Superlattice lines are therefore only about one-tenth as strong as fundamental
lines, but they can still be detected without difficulty, as shown by Fig. 6.

But in CuZn, even when fully ordered, the situation is much worse. The atomic
numbers of copper and zinc are 29 and 30, respectively, and, making the same
assumptions as before,

This ratio is so low that the superlattice lines of ordered CuZn can be detected by
x-ray diffraction only under very special circumstances. (The powder pattern of this
alloy, ordered or disordered, ordinarily appears to be that of a body-centered cubic
substance.) The same is true of any superlattice of elements A and B which differ
in atomic number by only one or two units, because the superlattice-line intensity
is generally proportional to .

There is one way, however, of increasing the intensity of a superlattice line rela-
tive to that of a fundamental line, when the two atoms involved have almost the
same atomic numbers, and that is by the proper choice of the incident wavelength.
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The atomic scattering factor f of any element is usually considered to be independ-
ent of the wavelength of the scattered radiation, as long as the quantity is
constant. This is not quite true. When the incident wavelength is nearly equal to
the wavelength of the K absorption edge of the scattering element, then the
atomic scattering factor of that element may be several units lower than it is when

is very much shorter than . This change in f is anomalous dispersion. Physically,
it can be regarded as a resonance effect in which the oscillations of the K electrons,
which are the cause of the scattering, are disturbed when the radiation being scat-
tered has a frequency near that at which K electrons can be actually ejected from
the atom. If f0 = atomic scattering factor for « (this is the usual value as tabu-
lated, for example, in “Appendix: Atomic Scattering Factors”) and = change in
f0 when is near , then the quantity f = f0 + gives the value of the atomic scat-
tering factor when is near . Figure 11 shows approximately how varies with

, and this curve may be used to estimate the correction which must be
applied for any particular combination of wavelength and scattering element.

Strictly speaking, depends also on the atomic number of the scattering ele-
ment, which means that a different correction curve is required for every element.
But the variation of with Z is not very large, and Fig. 11, which is computed for
an element of medium atomic number (about 50), can be used with fairly good
accuracy as a master correction curve for any element. Figure 11 was calculated
from data in James [G.19, p. 608]. Anomalous dispersion is also discussed by
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Figure 11 Variation of the scattering-factor correction with . See text for details.The two points
on the curve show the corrections for the scattering of radiation by copper and zinc atoms.Zn Ka
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Guinier [G.30]. Values of as a function of Z at constant , for five characteristic
wavelengths, can be calculated from data in [G.1., Vol.C].

When is less than about 0.8, the correction is practically negligible. When
exceeds about 1.6, the correction is practically constant and independent of

small variations in . But when is near , the slope of the correction curve is
quite steep, which means that the correction can be quite different for two ele-
ments of nearly the same atomic number. By taking advantage of this fact, the
intensity of a superlattice line can often be increased above its normal value.

For example, if ordered CuZn is examined with radiation, is 0.52 for
the copper atom and 0.55 for the zinc atom. The value of is then about +0.3 for
either atom, and the intensity of a superlattice line would be proportional to [(29 +
0.3) - (30 + 0.3)]2 = 1 at low values of . Under these circumstances the line would
be invisible in the presence of the usual background. But if radiation is used,

becomes 1.04 and 1.11 for the copper and zinc atoms, respectively, and
Fig. 11 shows that the corrections are -3.6 and -2.7, respectively. The superlattice-
line intensity is now proportional to [(29 - 3.6) - (30 - 2.7)]2 = 3.6, which is large
enough to permit detection of the line. It was by means of radiation that
Jones and Sykes [10] first detected ordering in CuZn. radiation also offers
some advantage over , but not so large an advantage as , and order in
CuZn can be detected with only if crystal-monochromated radiation is used
or if the specimen is a single crystal.

To a very good approximation, the change in atomic scattering factor is inde-
pendent of scattering angle and therefore a constant for all lines on the diffraction
pattern.

Taking advantage of this anomalous change in scattering factor near an absorp-
tion edge push the x-ray method about as far as it will go. A better tool for the
detection of order in alloys of metals of nearly the same atomic number is neutron
diffraction. Two elements may differ in atomic number by only one unit and yet
their neutron scattering powers may be entirely different, a situation conducive to
high superlattice-line intensity.
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11 SHORT-RANGE ORDER AND CLUSTERING

Above the critical temperature Tc long-range order disappears and the atomic dis-
tribution becomes more or less random. This is indicated by the absence of super-
lattice lines from the powder pattern. But careful analysis of the diffuse scattering
which forms the background of the pattern shows that perfect randomness is not
attained. Instead, there is a greater than average tendency for unlike atoms to be
nearest neighbors. This conditions is known as short-range order.

For example, when perfect long-range order exists in AuCu3, a gold atom locat-
ed at 0 0 0 is surrounded by 12 copper atoms at and equivalent positions (see
Fig. 4), and any given copper atom is surrounded by 8 copper and 4 gold atoms.This
kind of grouping is a direct result of the existing long-range order, which also
requires that gold atoms be on corner sites and copper atoms on face-centered sites.

1
2 

1
2 0
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Above Tc this order breaks down and, if the atomic distribution became truly ran-
dom, a given gold atom might be found on either a corner or face-centered site. It
would then have only (12) = 9 copper atoms as nearest neighbours, since on the
average 3 out of 4 atoms in the solution are copper. Actually, it is observed that
some short-range order exists above Tc: at 405°C, for example, which is 15°C above
Tc, there are on the average about 11.0 copper atoms around any given gold atom
[11].

This is a quite general effect. Any solid solution which exhibits long-range order
below a certain temperature exhibits some short-range order above that tempera-
ture. Above Tc the degree of short-range order decreases as the temperature is
raised; i.e., increasing thermal agitation tends to make the atomic distribution more
and more random. One interesting fact about short-range order is that it has also
been found to exist in solid solutions which do not undergo long-range ordering at
low temperatures, such as gold-silver and gold-nickel solutions.

Another kind of departure from randomness in a solid solution is the tendency
of like atoms to be close neighbors. This effect is known as clustering, and it has
been observed in aluminum-silver and aluminum-zinc solutions. In fact, there is
probably no such thing as a perfectly random solid solution.All real solutions prob-
ably exhibit either short-range ordering or clustering to a greater or lesser degree,
simply because they are composed of unlike atoms with particular forces of attrac-
tion or repulsion operating between them. Short-range order, however, is far more
common than clustering.

The degree of short-range order or clustering may be defined in terms of a suit-
able parameter, just as long-range order is, and the value of this parameter may be
related to the diffraction effects produced. The general nature of these effects is
illustrated in Fig. 12, where the intensity of the diffuse scattering is plotted, not
against , but against a function of . (The fundamental lines are not included
in Fig. 12 because their intensity is much too high compared with the diffuse scat-
tering shown, but the positions of two of them, 111 and 200, are indicated on the
abscissa.) If the atomic distribution is perfectly random, the scattered intensity
decreases gradually as or increases from zero, in accordance with Eq. (15).
If short-range order exists, the scattering at small angles becomes less intense and
low broad maxima occur in the scattering curve; these maxima are usually located
at the same angular positions as the sharp superlattice lines formed by long-range
ordering. Clustering causes strong scattering at low angles.

These effects, however, are all very weak and are masked by the other forms of
diffuse scattering which are always present. As a result, the details shown in
Fig. 12 are never observed in an ordinary powder pattern made with filtered radia-
tion. To disclose these details and so learn something about the structure of the
solid solution, it is necessary to use strictly monochromatic radiation and, prefer-
ably, single-crystal specimens, and to make allowances for the other forms of diffuse
scattering, chiefly temperature-diffuse and Compton modified, that are always
present.

sin  u2u

sin  u2u

3
4
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Figure 12 Calculated intensity ID of diffuse scattering in powder patterns of solid solutions (here, the
face-centered cubic alloy Ni4Au) which exhibit complete randomness, short-range order, and clustering.
The short-range order curve is calculated on the basis of one additional unlike neighbor over the ran-
dom configuration, and the clustering curve on the basis of one less unlike neighbor. Warren and
Averbach [12].
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PROBLEMS

*1 The powder pattern of aluminum, made with radiation, contains ten lines,
whose values are 0.1118, 0.1487, 0.294, 0.403, 0.439, 0.583, 0.691, 0.727, 0.872,
and 0.981. Index these lines and calculate the lattice parameter.
2 A pattern is made of a cubic substance with unfiltered chromium radiation. The
observed values and intensities are 0.265(m), 0.321(vs), 0.528(w), 0.638(s),
0.793(s), and 0.958(vs). Index these lines and state which are due to and which
to radiation. Determine the Bravais lattice and lattice parameter. Identify the
substance by reference to “Appendix: Crystal Structures of Some Elements”.

In each of the following problems th powder pattern of an element is represented by
the observed sin2 � values of the first seven or eight lines on the pattern, made with Cu
K� radiation. In each case, index the lines, find the crystal system, Bravais lattice, and
approximate lattice parameter (or parameters), and identify the element from the tab-
ulation given in “Appendix: Crystal Structures of Some Elements”.

Kb
Ka

sin2 u

sin2 u
Cu Ka
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*6 7 * 8

0.0603 0.1202 0.0768

0.1610 0.238 0.0876

0.221 0.357 0.0913

0.322 0.475 0.1645

0.383 0.593 0.231

0.484 0.711 0.274

0.545 0.830 0.308

0.645 0.319

7 An Hull/Debye–Scherrer pattern is made with radiation of AuCu2
quenched from a temperature T1. The ratio of the integrated intensity of the 420
line to that of the 421 line is found to be 4.38. Calculate the value of the long-range
order parameter S at temperature T1. (Take the lattice parameter of AuCu3 as 3.75
Å. Ignore the small difference between the Lorentz-polarization factors for these
two lines and the corrections to the atomic scattering factors mentioned in
Sec. 10).
8 Calculate the ratio of the integrated intensity of the 100 superlattice line to that
of the 110 fundamental line for fully ordered -brass, if radiation is used.
Estimate the corrections to the atomic scattering factors from Fig. 11. The lattice
parameter of -brass (CuZn) is 2.95 Å.
9 a) What is the Bravais lattice of AuCu(I), the ordered tetragonal modification?

b) Calculate the structure factors for the disordered and ordered (tetragonal)
forms of AuCu.

c) On the basis of the calculations made in (b) and a consideration of the change
in the ratio, describe the qualitative differences between the powder pat-
terns of the ordered (tetragonal) and disordered forms of AuCu.

c>a

b

Cu Kab

Cu Ka
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ANSWERS TO SELECTED PROBLEMS

1. 111, 200, 220, 311, 222, 400, 331, 420, 422, and 511 (333); a = 4.05 Å

4. 111, 220, 311, 400, 331, 422, 511 (333), 440. Diamond cubic; a = 5.4 Å; silicon.

6. 100, 002, 101, 102, 110, 103, 200, 112. Hexagonal close-packed; a = 3.2 Å,
c = 5.2 Å; magnesium.

8. 0.0010
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Phase-Diagram

Determination 
1 INTRODUCTION 

1 The pressure on the alloy is another effective variable, but it is usually held constant at that of the
atmosphere and may be neglected.

An alloy is a combination of two or more metals, of metals and nonmetals or of
non-metals. It may consist of a single phase or of a mixture of phases, and these
phases may be of different types, depending only on the composition of the alloy
and the temperature,1 provided the alloy is at equilibrium. The changes in the con-
stitution of the alloy produced by given changes in composition or temperature
may be conveniently shown by means of a phase diagram and also called an equi-
librium diagram or constitution diagram. Normally, it is a plot of temperature vs.
composition, divided into areas wherein a particular phase or mixture of phases is
stable. As such it forms a sort of map of the alloy system involved. Phase diagrams
are therefore of great importance in materials science and engineering, and much
time and effort have been devoted to their determination. This chapter, therefore,
covers how x-ray methods can be used in the study of phase diagrams of binary 
systems.

X-ray methods are, of course, not the only ones which can be used in investiga-
tions of this kind. The two classical methods are thermal analysis and microscopic
examination, and many diagrams have been determined by these means alone.
Diffraction-based methods however, supplement these older techniques in many
useful ways and provide, in addition, the only means of determining the crystal
structures of the various phases involved. Because x-ray diffraction is so widely
available and requires relatively trivial sample preparation it is the technique most
often used for phase identification. Of course, TEM is also useful for crystal struc-
ture studies, but it is best employed for miniscule volumes of material. Most phase
diagrams today are therefore determined by a combination of all three methods. In

From Chapter 11 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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addition, measurements of other physical properties may be used to advantage in
some alloy systems: among the most important of these subsidiary techniques are
measurements of the change in length and of the change in electric resistance as a
function of temperature.

In general, among the various experimental techniques differ in sensitivity, and
therefore in usefulness, from one portion of the phase diagram to another. Thus,
thermal analysis is the best method for determining the liquidus and solidus, includ-
ing eutectic and peritectic horizontals, but it may fail to reveal the existence of
eutectoid and peritectoid horizontals because of the sluggishness of some solid-
state reactions or the small heat effects involved. Such features of the diagram are
best determined by microscopic examination or x-ray diffraction, and the same
applies to the determination of solvus (solid solubility) curves.

2 GENERAL PRINCIPLES

Figure 1 Phase diagram of two metals showing com-
plete solid solubility.
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The key to the interpretation of the powder patterns of alloys is the fact that each
phase produces its own pattern independently of the presence or absence of any
other phase. Thus a single-phase alloy produces a single pattern while the pattern
of a two-phase alloy consists of two superimposed patterns, one due to each phase.

Assume, for example, that two elements A and B are completely soluble in the
solid state, as illustrated by the phase diagram of Fig. 1. The solid phase , called a
continuous solid solution, is of the substitutional type; it varies in composition, but
not in crystal structure, from pure A to pure B, which must necessarily have the
same structure. The lattice parameter of also varies continuously from that of
pure A to that of pure B. Since all alloys in a system of this kind consist of the same
single phase, their powder patterns appear quite similar, the only effect of a change
in composition being to shift the diffraction-line positions in accordance with the
change in lattice parameter.

More commonly, the two elements A and B are only partially soluble in the solid
state. The first additions of B to A go into solid solution in the A lattice, which may

a

a
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expand or contract as a result, depending on the relative sizes of the A and B atoms
and the type of solid solution formed (substitutional or interstitial). Ultimately the
solubility limit of B in A is reached, and further additions of B cause the precipita-
tion of a second phase. This second phase may be a B-rich solid solution with the
same structure as B, as in the alloy system illustrated by Fig. 2(a). Here the solid
solutions and are called primary solid solutions or terminal solid solutions. Or
the second phase which appears may have no connection with the B-rich solid solu-
tion, as in the system shown in Fig. 2(b). Here the effect of supersaturating with
metal B is to precipitate the phase designated . This phase is called an intermedi-
ate solid solution or intermediate phase. It usually has a crystal structure entirely dif-
ferent from that of either or , and it is separated from each of these terminal
solid solutions, on the phase diagram, by at least one two-phase region.

Phase diagrams much more complex than those just mentioned are often
encountered in practice, but they are always reducible to a combination of fairly
simple types. When an unknown phase diagram is being investigated, it is best to
make a preliminary survey of the whole system by preparing a series of alloys at
definite composition intervals, say 5 or 10 atomic percent, from pure A to pure B.
The powder pattern of each alloy and each pure element is then prepared. These
patterns may appear quite complex but, no matter what the complexities, the pat-
terns may be unraveled and the proper sequence of phases across the diagram may
be established, if proper attention is paid to the following principles:

1. Equilibrium. Each alloy must be at equilibrium at the temperature where
the phase relations are being studied.

2. Phase sequence. A horizontal (constant temperature) line drawn across the
diagram must pass through single-phase and two-phase regions alternately.
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Figure 2 Phase diagrams showing (a) partial solid solubility, and (b) partial solid solubility together with
the formation of an intermediate phase.
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Figure 3 Phase diagram and lattice con-
stants of a hypothetical alloy system.

3. Single-phase regions. In a single-phase region, a change in composition
generally produces a change in lattice parameter and therefore a shift in
the positions of the diffraction lines of that phase.

4. Two-phase regions. In a two-phase region, a change in composition of the
alloy produces a change in the relative amounts of the two phases but no
change in their compositions. These compositions are fixed at the intersec-
tions of a horizontal “tie line” with the boundaries of the two-phase field.
Thus, in the system illustrated in Fig. 2(a), the tie line drawn at temperature
T1 shows that the compositions of and at equilibrium at this tempera-
ture are x and y respectively. The powder pattern of a two-phase alloy
brought to equilibrium at temperature T1 will therefore consist of the
superimposed patterns of of composition x and of composition y. The
patterns of a series of alloys in the xy range will all contain the same dif-
fraction lines at the same positions, but the intensity of the lines of the 
phase relative to the intensity of the lines of the phase will decrease in a
regular manner as the concentration of B in the alloy changes from x to y,
since this change in total composition decreases the amount of relative to
the amount of .

These principles are illustrated with reference to the hypothetical alloy system
shown in Fig. 3. This system contains two substitutional terminal solid solutions 
and , both assumed to be face-centered cubic, and an intermediate phase , which
is body-centered cubic. The solubility of either A or B in is assumed to be negli-
gibly small: the lattice parameter of is therefore constant in all alloys in which this
phase appears. On the other hand the parameters of and vary with composition
in the manner shown by the lower part of Fig. 3. Since the B atom is assumed to be
larger than the A atom, the addition of B expands the A lattice, and the parameter
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of increases from a1 for pure A to a3 for a solution of composition x, which rep-
resents the limit of solubility of B in A at room temperature. In two-phase 
alloys containing more than x percent B, the parameter of remains constant at its
saturated value a3. Similarly, the addition of A to B causes the parameter of to
decrease from a2 to a4 at the solubility limit, and then remain constant in the two-
phase field.

Calculated powder patterns, in a format similar to that which would be seen in
film from a Hull/Debye–Scherrer camera, are shown in Fig. 4 for the eight alloys
designated by number in the phase diagram of Fig. 3. It is assumed that the alloys
have been brought to equilibrium at room temperature by slow cooling.
Examination of these patterns reveals the following:

1. Pattern of pure A (face-centered cubic).
2. Pattern of almost saturated with B. The expansion of the lattice causes

the lines to shift to smaller angles .
3. Superimposed patterns of and .The phase is now saturated and has its

maximum parameter a3.
aga

2u
a

1g � b2

b

a

1a � g2
a

Figure 4 Calculated powder patterns of alloys 1 to 8 in the alloy system shown in Fig. 3.
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2 When working with films, superposition of the two films is generally confusing and may make some of
the weaker lines almost invisible. A better method of comparison consists of slitting each
Hull/Debye–Scherrer film lengthwise down its center and placing the center of one film adjacent to the
center or another. The curvature of the diffraction lines then does not interfere with the comparison of
line positions..
3 Slow cooling alone may not suffice to produce room-temperature equilibrium, which is often very dif-
ficult to achieve. It may be promoted by cold working and recrystallizing the cast alloy, in order to
decrease its grain size and thus accelerate diffusion, prior to homogenizing and slow cooling.

4. Same as pattern 3, except for a change in the relative intensities of the two
patterns which is not indicated on the drawing.

5. Pattern of pure (body-centered cubic).
6. Superimposed patterns of and of saturated with a parameter of a4.
7. Pattern of pure with a parameter somewhat greater than a4.
8. Pattern of pure B (face-centered cubic).

When an unknown phase diagram is being determined, the investigator must, of
course, work in the reverse direction and deduce the sequence of phases across the
diagram from the observed powder patterns. This is done by visual comparison of
patterns prepared from alloys ranging in composition from pure A to pure B, and
the previous example illustrates the nature of the changes which can be expected
from one pattern to another. Corresponding lines in different patterns are identi-
fied by placing the patterns side by side as in Fig. 4 and noting which lines are com-
mon to the two patterns. 2 This may be difficult in some alloy systems where the
phases involved have complex diffraction patterns, or where it is suspected that
lines due to radiation may be present in some patterns and not in others. It is
important to remember that a diffraction pattern of a given phase is characterized
not only by line positions but also by line intensities. This means that the presence
of phase X in a mixture of phases cannot be proved merely by coincidence of the
lines of phase X with a set of lines in the pattern of the mixture; the lines in the pat-
tern of the mixture which coincide with the lines of phase X must also have the
same relative intensities as the lines of phase X. The addition of one or more phases
to a particular phase weakens the diffraction lines of that phase, simply by dilution,
but it cannot change the intensities of those lines relative to one another. Finally, it
should be noted that the crystal structure of a phase need not be known for the
presence of that phase to be detected in a mixture: it is enough to know the posi-
tions and intensities of the diffraction lines of that phase.

Phase diagram determination by x-ray methods usually begins with a determi-
nation of the room-temperature equilibria. The first step is to prepare a series of
alloys by melting and casting, or by melting and solidification. The resulting ingots
are homogenized at a temperature just below the solidus to remove segregation,
and very slowly cooled to room temperature.3 Powder specimens are then prepared
by grinding or filing, depending on whether the alloy is brittle or not. If the alloy is
brittle enough to be ground into powder, the resulting powder is usually sufficient-
ly stress-free to give sharp diffraction lines. Filed powders, however, must be re-
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annealed to remove the stresses produced by plastic deformation during filing
before they are ready for x-ray examination. Only relatively low temperatures are
needed to relieve stresses, but the filings should again be slowly cooled, after the
stress-relief anneal, to ensure equilibrium at room temperature. Screening is usual-
ly necessary to obtain fine enough particles for x-ray examination, and when two-
phase alloys are being screened, precautions should be observed.

After the room-temperature equilibria are known, a determination of the phas-
es present at high temperatures can be undertaken. Powder specimens are sealed in
small evacuated silica tubes, heated to the desired temperature long enough for
equilibrium to be attained, and rapidly quenched. Diffraction patterns of the
quenched powders are then made at room temperature. This method works very
well in many alloy systems, in that the quenched powder retains the structure it had
at the elevated temperature. In some alloys, however, phases stable at high temper-
ature will decompose on cooling to room temperature, no matter how rapid the
quench, and such phases can be studied only by means of a high-temperature cam-
era or diffractometer.

The latter instrument is of particular value in work of this kind because it allows
continuous observation of a diffraction line. For example, the temperature below
which a high-temperature phase is unstable, such as a eutectoid temperature, can be
determined by setting the diffractometer detector to receive a prominent diffract-
ed beam of the high-temperature phase, and then measuring the intensity of this
beam as a function of temperature as the specimen is slowly cooled. The tempera-
ture at which the intensity falls to that of the general background is the tempera-
ture required, and any hysteresis in the transformation can be detected by a similar
measurement on heating.

3 SOLID SOLUTIONS

Inasmuch as solid solubility, to a greater or lesser extent, is so common, it is valu-
able to digress a little at this point to consider how the various kinds of solid solu-
tions may be distinguished experimentally. Irrespective of its extent or its position
on the phase diagram, any solid solution may be classified as one of the following
types, solely on the basis of its crystallography:

1. Interstitial.
2. Substitutional.

a) Random.
b) Ordered. (Because of its special interest, this type is beyond the scope

of this chapter)
c) Defect. (A very rare type.)

Information on specific solid solutions, particularly on the variation of lattice
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Figure 5 Variation of marten-
site and austenite lattice
parameters with carbon con-
tent. After Roberts [1].
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parameter with composition, is given by Pearson [G.8].
An interstitial solid solution of B in A is to be expected only when the B atom is

so small compared to the A atom that it can enter the interstices of the A lattice
without causing much distortion. As a consequence, about the only interstitial solid
solutions of any importance in metallurgy are those formed between a metal and
one of the elements, carbon, nitrogen, hydrogen, and boron, all of which have atoms
less than 2 Å in diameter. The interstitial addition of B to A is always accompanied
by an increase in the volume of the unit cell. If A is cubic, then the single lattice
parameter a must increase. If A is not cubic, then one parameter may increase and
the other decrease, as long as these changes result in an increase in cell volume.
Thus, in austenite, which is an interstitial solid solution of carbon in face-centered
cubic -iron, the addition of carbon increases the cell edge a. But in martensite, a
metastable interstitial solid solution of carbon in -iron, the c parameter of the
body-centered tetragonal cell increases while the a parameter decreases, when car-
bon is added. These effects are illustrated in Fig. 5.

The density of an interstitial solid solution is given by the basic density equation

where

(1)

ns and ni are numbers of solvent and interstitial atoms, respectively, per unit cell; and
As and Ai are atomic weights of solvent and interstitial atoms, respectively. Note that
the value of ns is an integer and independent of the concentration of the interstitial
element, and that ni is normally a small fraction of unity.

The formation of a random substitutional solid solution of B and A may be
accompanied by either an increase or a decrease in cell volume, depending on
whether the B atom is larger or smaller than the A atom. In continuous solid solu-

a A � nsAs � niAi

r �

1.66042a A
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tions of ionic salts, such as KCl-KBr, the lattice parameter of the solution is direct-
ly proportional to the atomic percent solute present.This relationship,Vegard’s law,
is not strictly obeyed by metallic solid solutions and, in fact, there is no reason why
it should be. However, it is often used as a sort of yardstick by which one solution
may be compared with another, particularly in ternary III-V compounds such as
AlGaAs or InGaAs used for microelectronics applications. Figure 6 shows both
positive and negative deviations from Vegard’s law among solutions of face-cen-
tered cubic metals, and even larger deviations have been found in hexagonal close-
packed solutions. In terminal and intermediate solid solutions, the lattice parame-
ter may or may not vary linearly with the atomic percent solute and, when the
variation is linear, the parameter found by extrapolating to 100 percent solute does
not usually correspond to the atom size deduced from the parameter of the pure
solute, even when allowance is made for a possible change in coordination number.

The density of a random substitutional solid solution with the factor being
given by

(2)

where n again refers to the number of atoms per cell and A to the atomic weight.
But here (nsolvent + nsolute) is a constant integer, equal to the total number of atoms
per cell. Whether a given solution is interstitial or substitutional may be decided by
determining whether the x-ray density calculated according to Eq. (1) or that cal-
culated according to Eq. (2) agrees with the directly measured density.

a A � nsolventAsolvent � nsoluteAsolute,

� A

Figure 6 Lattice parameters of
some continuous solid solutions.
Dot-dash lines indicate Vegard’s
law. Barrett.
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Defect substitutional solid solutions are ones in which some lattice sites, normal-
ly occupied by atoms at certain compositions, are simply vacant at other composi-
tions. Solutions of this type are rare among metals; the best-known example is the
intermediate solution in the nickel-aluminum system [p. 387, G.8]. A defect solu-
tion is disclosed by anomalies in the curves of density and lattice parameter vs. com-
position. Suppose, for example, that the solid solution of B in A is perfectly normal
up to x percent B, but beyond that point a defect lattice is formed; i.e., further
increases in B content are obtained, not by further substitution of B for A, but by
dropping A atoms from the lattice to leave vacant sites. Under these circumstances,
the density and lattice parameter curves will show sudden changes in slope, or even
maxima or minima, at the composition x. Furthermore, the x-ray density calculated
according to Eq. (2) will no longer agree with the direct density simply because Eq.
(2), as usually used, applies only to normal solutions where all lattice sites are occu-
pied. The actual structure of a defect solid solution, including the proportion of
vacant lattice sites at any given composition, can be determined by a comparison of
the direct density with the x-ray density, calculated according to Eq. (2), and an
analysis of the diffracted intensities.

b

4 DETERMINATION OF SOLVUS CURVES (DISAPPEARING-PHASE METHOD)

To return to the main subject of this chapter, consider the methods used for deter-
mining the position of a solvus curve (solid solubility curve) on a phase diagram.
Such a curve forms the boundary between a single-phase solid region and a two-
phase solid region, and the single-phase solid may be a primary or intermediate
solid solution.

One method of locating such curves is based on the “lever rule.” This rule, with
reference to Fig. 7 for example, states that the relative proportions of and in an
alloy of composition z in equilibrium at temperature T1 is given by the relative
lengths of the lines zy and zx, or that

(3)Wa1z 	 x2 � Wb1y 	 z2,
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Figure 7 Lever-rule construction for finding the rela-
tive amounts of two phases in a two-phase field.
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4 The reasons for nonlinearity are beyond the scope of this chapter.

where and denote the relative weights of and if x, y, and z are expressed
in weight percent. It follows from Eq. (3) that the weight fraction of in the alloy
varies linearly with composition from 0 at point x to 1 at point y. The intensity of
any diffraction line from the phase also varies from zero at x to a maximum at y,
but the variation with weight percent B is not generally linear.4 Nevertheless, this
variation may be used to locate the point x. A series of alloys in the two-phase
region is brought to equilibrium at temperature T1 and quenched. From diffraction
patterns made at room temperature, the ratio of the intensity of a prominent line
of the phase to the intensity of a prominent line of the phase is plotted as a
function of weight percent B. The composition at which the ratio extrapolates
to zero is taken as the point x. (Use of the ratio rather than alone eliminates
the effect of any change which may occur in the intensity of the incident beam from
one diffraction pattern to another. However, this ratio also varies nonlinearly with
weight percent B.) Other points on the solvus curve are located by similar experi-
ments on alloys quenched from other temperatures.This method is known, for obvi-
ous reasons, as the disappearing-phase method.

Since the curve of vs. weight percent B is not linear, high accuracy in the
extrapolation depends on having several experimental points close to the phase
boundary which is being determined. The accuracy of the disappearing-phase
method is therefore governed by the sensitivity of the x-ray method in detecting
small amounts of a second phase in a mixture, and this sensitivity varies widely from
one alloy system to another. The intensity of a diffraction line depends on, among
other things, the atomic scattering factor f, which in turn is almost directly propor-
tional to the atomic number Z. Therefore, if A and B have nearly the same atomic
number, the and phases will consist of atoms having almost the same scattering
powers, and the intensities of the and diffraction patterns will also be roughly
equal when the two phases are present in equal amounts. Under favorable circum-
stances such as these, an x-ray pattern can reveal the presence of less than 1 percent
of a second phase. On the other hand, if the atomic number of B is considerably less
than that of A, the intensity of the pattern may be so much lower than that of the

pattern that a relatively large amount of in a two-phase mixture will go com-
pletely undetected.This amount may exceed 50 percent in extreme cases, where the
atomic numbers of A and B differ by some 70 or 80 units. Under such circum-
stances, the disappearing-phase x-ray method is practically worthless. On the whole,
the microscope is superior to x-rays when the disappearing-phase method is used,
inasmuch as the sensitivity of the microscope in detecting the presence of a second
phase is generally very high and independent of the atomic numbers of the ele-
ments involved. However, this sensitivity does depend on the particle size of the
second phase, and if this is very small, as it often is at low temperatures, the second
phase may not be detectable under the optical microscope. Hence the method of
microscopic examination is not particularly accurate for the determination of
solvus curves at low temperatures. In some cases, TEM is particularly valuable.
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Whichever technique is used to detect the second phase, the accuracy of the dis-
appearing-phase method increases as the width of the two-phase region decreases.
If the region is only a few percent wide, then the relative amounts of and

will vary rapidly with slight changes in the total composition of the alloy, and this
rapid variation of will enable the phase boundary to be fixed quite precise-
ly. This is true, for the x-ray method, even if the atomic numbers of A and B are
widely different, because, if the region is narrow, the compositions of and

do not differ very much and neither do their x-ray scattering powers.b

a1a � b2

Wa>Wb
b

a1a � b2

5 DETERMINATION OF SOLVUS CURVES (PARAMETRIC METHOD)

As was just seen, the disappearing-phase method of locating the boundary of the 
field is based on a determination of the composition at which the phase just dis-
appears from a series of alloys. The parametric method, on the other hand,
is based on observations of the solid solution itself. This method depends on the
fact, previously mentioned, that the lattice parameter of a solid solution generally
changes with composition up to the saturation limit, and then remains constant
beyond that point.

Suppose the exact location of the solvus curve shown in Fig. 8(a) is to be deter-
mined. A series of alloys, 1 to 7, is brought to equilibrium at temperature T1, where
the field is thought to have almost its maximum width, and quenched to room
temperature. The lattice parameter of is measured for each alloy and plotted
against alloy composition, resulting in a curve such as that shown in Fig. 8(b). This
curve has two branches: an inclined branch bc, which shows how the parameter of

varies with the composition of , and a horizontal branch de, which shows that the
phase in alloys 6 and 7 is saturated, because its lattice parameter does not change

with change in alloy composition. In fact, alloys 6 and 7 are in a two-phase region
a

aa
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a

1a � b2
b

a

Figure 8 Parametric method for determining a solvus curve.
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at temperature T1, and the only difference between them is in the amounts of satu-
rated they contain. The limit of the field at temperature T1 is therefore given by
the intersection of the two branches of the parameter curve. This locates one point
on the solvus curve, namely x percent B at T1.

Other points could be found in a similar manner. For example, if the same series
of alloys were equilibrated at temperature T2, a parameter curve similar to
Fig. 8(b) would be obtained, but its inclined branch would be shorter and its hori-
zontal branch lower. But heat treatments and parameter measurements on all these
alloys are unnecessary, once the parameter-composition curve of the solid solution
has been established. Only one two-phase alloy is needed to determine the rest of
the solvus. Thus, if alloy 6 is equilibrated at T2 and then quenched, it will contain 
saturated at that temperature. Suppose the measured parameter of in this alloy is
ay. Then, from the parameter-composition curve, parameter ay, indicates that con-
tains y percent B. This fixes a point on the solvus at temperature T2. Points on the
solvus at other temperatures may be found by equilibrating the same alloy, alloy 6,
at various temperatures, quenching, and measuring the lattice parameter of the con-
tained .

The parameter-composition curve, branch bc of Fig. 8(b), thus serves as a sort of
master curve for the determination of the whole solvus. For a given precision of lat-
tice parameter measurement, the accuracy with which the solvus can be located
depends markedly on the slope of the parameter-composition curve. If this curve is
nearly flat, i.e., if changes in the composition of the solid solution produce very
small changes in parameter, then the composition, as determined from the param-
eter, will be subject to considerable error and so will the location of the solvus.
However, if the curve is steep, just the opposite is true, and relatively crude param-
eter measurements may suffice to fix the location of the solvus quite accurately. In
the parametric method, precision in parameter measurement is more important
than accuracy.

Figure 9 illustrates the use of the parametric method in determining the solid sol-
ubility of antimony in copper as a function of temperature. The sloping curve in (a)
was found from parameter measurements made on a series of alloys, containing
from 0 to about 12 weight percent Sb, equilibrated at 630°C. The horizontal lines
represent the parameters of two-phase alloys, containing about 12 weight percent
Sb, equilibrated at the temperatures indicated. The solvus curve constructed from
these data is given in (b), together with adjoining portions of the phase diagram.

In most cases, the parametric method is more accurate than the disappearing-
phase method, whether based on x-ray measurements or microscopic examination,
in the determination of solvus curves at low temperatures. As mentioned earlier,
both x-ray diffraction and microscopic examination may fail to disclose the pres-
ence of small amounts of a second phase, although for different reasons. When this
occurs, the disappearing-phase method always results in a measured extent of solu-
bility higher than the actual extent. But the parametric method, since it is based on
measurements made on the phase whose range of solubility is being determined
(the phase), is not influenced by any property of the second phase (the phase).ba
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Figure 9 Solvus curve determination in the copper-antimony system by the parametric method: (a)
parameter versus composition curve; (b) solubility versus temperature curve. Mertz and Mathewson [2].
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The phase may have an x-ray scattering power much higher or lower than that of
the phase, and the phase may precipitate in the form of large particles or small
ones, without affecting the parameter measurements and do on the phase.

Note that the parametric method is not confined to determining the extent of
primary solid solutions, as in the examples given above. It may also be used to
determine the solvus curves which bound an intermediate solid solution on the
phase diagram. Note also that the parametric method may be employed even when
the crystal structure of the phase is so complex that its diffraction lines cannot be
indexed. In this case, the plane spacing d corresponding to some high-angle line or,
even more directly, the value of the line, is plotted against composition and the
resulting curve used in exactly the same way as a parameter-composition curve. In
fact, the “parametric” method could be based on the management of any property
of the solid solution which changes with the composition of the solid solution, e.g.,
its electric resistivity.
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PROBLEMS

*1 Metals A and B form a terminal solid solution , cubic in structure.The variation
of the lattice parameter of with composition, determined by quenching single-
phase alloys from an elevated temperature, is found to be linear, the parameter
varying from 3.6060 Å for pure A to 3.6140 Å in containing 4.0 weight percent B.
The solvus curve is to be determined by quenching a two-phase alloy containing 5.0
weight percent B from a series of temperatures and measuring the parameter of the
contained . How precisely must the parameter be measured if the solvus curve is
to be located within ± 0.1 weight percent B at any temperature?
2 The two-phase alloy mentioned in Prob. 1, after being quenched from a series of
temperatures, contains having the following measured parameters:

Temperature Parameter

100ºC 3.6082Å
200 3.6086
300 3.6091
400 3.6098
500 3.6106
600 3.6118

Plot the solvus curve over this temperature range. What is the solubility of B in A
at 440°C?

REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.8 Strukturbericht (Leipzig: Akademische Verlagsgesellschaft, 1931-1943.
Also available from Ann Arbor, MI.: Edwards Brothers, 1943). A series of
seven volumes describing crystal structures whose solutions were pub-
lished in the years 1913 to 1939, inclusive. Continued by: Structure Reports
(Utrecdht. Oosthoek, 1951 to date). Sponsored by the International Union
of Crystallography. The volume numbers begin with Vol. 8, where
Strukturbericht left off. The results of structure determinations are usually
given in sufficient detail that the reader has no need to consult the original
paper.
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Quantitative Phase

Analysis
1 INTRODUCTION

Within fifteen years of the discovery of diffraction of x-rays by crystals and ten
years of the publication of diffraction patterns of polycrystalline materials, x-ray
diffraction was being used for phase quantification [1]. By 1936, the internal stan-
dard method was in use [2]. Use of the various quantitative methods, however,
requires impeccable technique and careful calibration, and this probably has limit-
ed the extent this technique has been applied [G.25]. Nonetheless, retained austen-
ite content in steel [3] has been quantified by x-ray diffraction with an uncertainty
better than 1%; in the same study point counting (optical microscopy) and mag-
netic susceptibility measurements yielded virtually identical compositions, with the
uncertainty in the susceptibility method being comparable, with that of diffraction
and that of the microscopy method being somewhat larger. Information beyond
that appearing below can be found elsewhere [G.17, G.25, G.29].

2 CHEMICAL ANALYSIS BY PARAMETER MEASUREMENT

The lattice parameter of a binary solid solution of B in A depends only on the per-
centage of B in the alloy, as long as the solution is unsaturated. This fact can be
made the basis for chemical analysis by parameter measurement. All that is need-
ed is a parameter vs. composition curve, such as curve bc, which can be established
by measuring the lattice parameter of a series of previously analyzed alloys. This
method has been used in diffusion studies to measure the change in concentration
of a solution with distance from the original interface. Its accuracy depends entire-
ly on the slope of the parameter-composition curve. In alpha brasses, which can con-
tain from 0 to about 40 percent zinc in copper, an accuracy of percent zinc can
be achieved without difficulty. Methods for obtaining the highest precision in lattice
parameter determination are beyond the scope of this chapter.

;1

From Chapter 12 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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One source of data on lattice parameters is Pearson’s compilation [G.9].
Applications of the parameter method are described by Zwell and Danko [4].

This method is applicable only to binary alloys. In ternary solid solutions, for
example, the percentage of two components can be independently varied. The
result is that two ternary solutions of quite different compositions can have the
same lattice parameter.

3 BASIC PRINCIPLES OF MULTIPHASE QUANTITATIVE ANALYSIS

1 A digression on names and symbols is in order here. The quantity I0 in Eq. (1) is a true intensity, i.e.,
energy per unit area per unit time (joules m-2 sec-1), and I0A is the power of the incident beam. This
means that I is the power per unit length of diffraction line in the diffracted beam. If this beam is then
incident on a film or detector for a certain time t, then the response of the film or detector is a measure
of the energy It in unit length of the diffraction line. This is the quantity commonly called integrated
intensity. A more descriptive term would be “total diffracted energy,” but the term “integrated intensi-
ty,” symbolized by I, has been too long entrenched in the vocabulary of x-ray diffraction to be changed
now.

Quantitative analysis by diffraction is based on the fact that the intensity of the dif-
fraction pattern of a particular phase in a mixture of phases depends on the concen-
tration of that phase in the mixture. The relation between intensity and
concentration is not generally linear, because the diffracted intensity depends
markedly on the absorption coefficient of the mixture and this itself varies with the
concentration.

To find the relation between diffracted intensity and concentration, the basic
equation for the intensity diffracted by a powder specimen must be the starting
point. The form of this equation depends on the kind of apparatus used, namely,
camera or diffractometer; consider only the diffractometer here. The exact expres-
sion for the intensity diffracted by a single-phase powder specimen in a diffrac-
tometer is

(1)

Here Ihkl = integrated intensity per unit length of diffraction line (joules sec-1 m-1),
I0 intensity of incident beam (joules sec-1 m-2), A = cross-sectional area of incident
beam (m2), of incident beam (m), r = radius of diffractometer cir-
cle (m), , e = charge on electron (C), m = mass of electron
(kg), of unit cell (m3), Fhkl = structure factor for reflection hkl, p = mul-
tiplicity factor, , = temperature factor, and = linear absorp-
tion coefficient (m-1), which enters as the absorption factor .1

The derivation of this equation can be found in various advanced texts, for exam-
ple, those of Warren [G.20] and James [G.19]. It applies to a polycrystalline speci-
men, made up of randomly oriented grains, in the form of a flat plate of effectively
infinite thickness, making equal angles with the incident and diffracted beams and
completely filling the incident beam at all angles . The second factor in squareu

1>2m
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brackets, containing F, p, and , will be recognized, the approximate equation for
relative line intensities in a Hull/Debye–Scherrer pattern.2

As Eq. (1) stands, it applies only to a pure substance. But suppose the goal is to
analyze a mixture of two phases, and . Then Eq (1) can be rewritten in terms of
one particular line of the phase. I(hkl) now becomes the intensity of the selected
line of the phase, and the right side of the equation must be multiplied by

, the volume fraction of in the mixture, to allow for the fact that the diffracting
volume of in the mixture is less than it would be if the specimen were pure .
Finally, substitute for , where is the linear absorption coefficient of the mix-
ture, and combine all factors that are constant and independent of the concentra-
tion of , and this yields

(2)

where K1 is a constant. The value of K1 is unknown, because I0 is generally
unknown, but this is unimportant if the ratio of to the intensity of some standard
reference line is formed. The concentration of can then be found from this ratio.

The three main methods of analysis differ in what is used as a reference line: (1)
external standard method (a line from pure ), (2) direct comparison method (a line
from another phase in the mixture), and (3) internal standard method (a line from
a foreign material mixed with the specimen).

In all methods, the absorption coefficient of the mixture is itself a function of
and can have a large effect on the measured intensity . Alexander and Klug [5]

were the first to clearly recognize this effect and to work out the equations needed
in analysis.

Iaca
mm

a

a

Ia

Ia �
K1ca
mm

,

a

mmmmm

aa

aca
Ia1hkl2a

a

ba

u

4 EXTERNAL STANDARD METHOD

2 For the sake of brevity, the indices hkl will not be explicitly written after this point in the text, unless,
they are required for clarity.

To put Eq. (2) in a useful form, needs to be expressed in terms of the concen-
tration.

(3)

where w denotes the weight fraction and the density. Consider a unit volume of
the mixture. Its weight is and the weight of contained is . Therefore, the
volume of is , which equals and a similar expression holds for .
Equation (3) then becomes

� ca1ma � mb2 � mb;

mm � cama � cbmb � cama � 11 � ca2mb
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(4)

This equation relates the intensity of a diffraction line from one phase to the vol-
ume fraction of that phase and the linear absorption coefficients of both phases.

To put Eq. (4) on a weight basis, consider a unit mass of the mixture. The volume
of the contained is and the volume of is . Therefore,

(5)

(6)

Combining Eqs. (4) and (6) and simplifying yields

(7)

For the pure phase, either Eq. (2) or (7) gives, for the same line,

(8)

where the subscript denotes diffraction from the pure phase. Division of
Eq. (7) by Eq. (8) eliminates the unknown constant K1 and gives

(9)

This equation permits quantitative analysis of a two-phase mixture, provided that
the mass absorption coefficients of each phase are known. If they are not known, a
calibration curve can be prepared by using mixtures of known composition. In each
case, a specimen of pure must be available as a reference material, and the meas-
urements of and must be made under identical conditions.

In general, the variation of the intensity ratio with is not linear, as shown
by the curves of Fig. 1.The experimental points were obtained by measurements on
synthetic binary mixtures of powdered quartz, cristobalite, beryllium oxide, and
potassium chloride; the curves were calculated by Eq. (9). The agreement is excel-
lent. The line obtained for the quartz-cristobalite mixture is straight because these
substances are two allotropic forms of silica and hence have identical mass absorp-
tion coefficients. When the mass absorption coefficients of the two phases are
equal, Eq. (9) becomes simply
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Figure 1 Diffractometer measurements made with
radiation on binary mixtures. IQ is the inten-

sity of the reflection from the d = 3.34 Å  planes of
quartz in a mixture. IQ is the intensity of the same
reflection from pure quartz. Alexander and Klug
[5].
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Fig. 1 illustrates very clearly how the intensity of a particular diffraction line from
one phase depends on the absorption coefficient of the other phase. For 
radiation, the mass absorption coefficient of BeO is 8.6, of SiO2 is 34.9, and of KCl
is 124 cm2/g.

Cu Ka

Ia
Iap

� wa.

5 DIRECT COMPARISON METHOD

This method does not require a sample of the pure phase whose composition is
being determined because the required reference line comes from another phase in
the mixture.

The direct comparison method is of great interest because it can be applied
directly to polycrystalline aggregates. Since its development by Averbach and
Cohen [6], it has been widely used for measuring the amount of retained austenite
in hardened steel and will be described here in terms of that specific problem,
although the method itself is quite general.

The hardening of steel requires two operations: (1) heating to a high tempera-
ture to form a homogeneous, face-centered-cubic solid solution called austenite,
and (2) quenching the austenite to room temperature to transform it to a hard,
metastable, body-centered-tetragonal solid solution called martensite. In practice,
the quenched steel may contain some undissolved carbides and, because of incom-
plete transformation, some austenite is often retained at room temperature. The
effect of this austenite on the service behavior of the steel is usually detrimental,
but sometimes beneficial. At any rate there is considerable interest in methods of
determining the exact amount of austenite present. Quantitative microscopic exam-
ination is fairly satisfactory as long as the austenite content is fairly high, but
becomes unreliable below about 15 percent austenite in many steels. The x-ray
method, on the other hand, is quite accurate in this low-austenite range, often the
range of greatest practical interest.
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3 Recalling the earlier discussion of the disappearing-phase x-ray method of locating a solvus line, the
intensity ratio is not a linear function of the volume fraction , or, for that matter, of the weight
fraction .wg

cgIg>Ia

Assume that a hardened steel contains only two phases, martensite and austen-
ite.The problem is to determine the composition of the mixture, when the two phas-
es have the same composition but different crystal structure. The external standard
method cannot be used, because it is usually impossible to obtain a reference sam-
ple of pure austenite, or of known austenite content, of the same chemical compo-
sition as the austenite in the unknown. Instead, proceed as follows. In the basic
intensity equation, Eq. (1), put

and

(10)

The diffracted intensity is then given by

(11)

where K2 is a constant, independent of the kind and amount of the diffracting sub-
stance, and R depends on , hkl, and the kind of substance. Designating austenite by
the subscript and martensite by the subscript , Eq. (11) for a particular diffrac-
tion line of each phase becomes:

Division of these equations yields

(12)

The value of can therefore be obtained from a measurement of and a cal-
culation of and (Note that the calculation of R values requires a knowledge
of the crystal structures and lattice parameters of both phases.) Once is found,
the value of can be obtained from the additional relationship:

Thus, an absolute measurement of the austenite content of the steel is obtained
by direct comparison of the integrated intensity of an austenite line with the inte-
grated intensity of a martensite line.3 By comparing several pairs of austenite-
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martensite lines, several independent determinations of the austenite content
result.

If the steel contains a third phase, namely, Fe3C (cementite), the cementite con-
centration can be determined either by quantitative microscopic examination or by
diffraction. By measuring Ic, the integrated intensity of a particular cementite line,
and calculating Rc, an equation similar of Eq. (12) allows to be obtained. The
value of is then found from the relation

In choosing diffraction lines to measure, overlapping or closely adjacent lines
from different phases must be avoided, while such lines can be deconvoluted, the
uncertainties involved warrant choosing well-resolved lines. Figure 2 shows the cal-
culated patterns of austenite and martensite in a 1.0 percent carbon steel, made
with radiation. Unfortunately, the strong 111 austenite line is too close to the
101-110 martensite line for separate measurement of its integrated intensity.
Suitable austenite lines are the 200 and 220; these may be compared with the 002-
200 and 12–11 martensite doublets.These “doublets,” due to the tetragonality of the
martensite unit cell are not usually resolved into separate lines because all lines are
usually quite broad, both from the martensite and austenite, as shown by the pat-
tern in Fig. 3. (The unresolved martensite lines are then indexed as a cubic line; for
example, the 002-200 doublet is called the 200 line.) The line broadening is due to
the nonuniform microstrain in both phases of the quenched steel and, very often,
the fine grain size.

If substantial amounts of carbide are present, as in some tool steels, carbide lines
may overlap and lines and cause difficulties in measurement. Durnin and Ridal
[3] list the and lines that do or do not overlap the lines of Fe3C and six alloy car-
bides.

While chromium radiation is the most popular, shorter wavelengths such as
, , and will increase the number of lines on the pattern and

thus provide more measurable pairs. The low resolution of energy-dispersive dif-
fractometry is no hindrance here, because the diffraction lines of steel are well sep-
arated, and Voskamp has described the application of that technique to austenite
measurement.

In calculating the value of R for a particular diffraction line, various factors
should be kept in mind. The unit cell volume v is calculated from the measured lat-
tice parameters, which are a function of carbon and alloy content. When the
martensite doublets are unresolved, the structure factor and multiplicity of the
martensite are calculated on the basis of a body-centered cubic cell; this procedure,
in effect, adds together the integrated intensities of the two lines of the doublet,
which is exactly what is done experimentally when the integrated intensity of an
unresolved doublet is measured. For greatest accuracy in the calculation of F, the
atomic scattering factor f should be corrected for anomalous scattering by an
amount , particularly when radiation is used. The value of the tempera-
ture factor e–2M can be taken from the curve.

Co Ka¢f

Mo KaCo KaFe Ka

ga

ga
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Figure 3 Partial diffractometer pattern of an oil-quenched Ni-V steel, containing about 30 volume per-
cent austenite . Chromium radiation, V filter.1g2
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Figure 2 Calculated powder patterns of austenite and martensite, each containing 1.0 percent carbon in
solution. radiation.Cr Ka
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Specimen preparation involves wet grinding to remove the surface layer, which
may be decarburized or otherwise nonrepresentative of the bulk of the specimen,
followed by standard metallographic polishing and etching. This procedure ensures
a flat, reproducible surface for the x-ray examination, and allows a preliminary
examination of the specimen to be made with the microscope. In grinding and pol-
ishing, care should be taken not to produce excessive heat or plastic deformation
which would cause partial decomposition of both the martensite and austenite.

In the measurement of diffraction line intensity, it is essential that the integrated
intensity, not the maximum intensity, be measured. Large variation in line shape can
occur because of variations in microstrain and grain size. These variations in line
shape will not affect the integrated intensity, but they can make the values of max-
imum intensity absolutely meaningless.

The sensitivity of the x-ray method in determining small amounts of retained
austenite is limited chiefly by the intensity of the continuous background present.
The lower the background, the easier it is to detect and measure weak austenite
lines.With filtered radiation the minimum detectible amount is about 2 volume per-
cent austenite, and with crystal-monochromated radiation probably about 0.2 per-
cent. The error in the austenite content, originating in the calculation of R and the
measurement of I, is probably about 5 percent of the amount present, in the
absence of preferred orientation (Sec. 7).

In 1971 the National Bureau of Standards (NBS, now NIST) issued a standard
reference material (SRM-485) containing a specified amount of austenite [7].
In 1987 NIST listed four ferrous x-ray diffraction standards (SRM 485a-488), and
as recently as 1995 SRM 487 and 488 were still in NIST’s catalog. Such standard
materials are useful to the investigator who wishes to check his or her experimen-
tal and computational technique.

Other analytical problems to which the direct comparison method has been
applied include the determination of mixed iron oxides in the oxide scale on steel
[8], the beta phase in titanium alloys [9], and mixed uranium and plutonium car-
bides [10].

6 INTERNAL STANDARD METHOD

In this method a diffraction line from the phase being determined is compared with
a line from a standard substance mixed with the sample in known proportions. The
internal standard method is therefore restricted to samples in powder form.

Suppose the amount of phase A must be determined in a mixture of phases
, where the relative amounts of the other phases present ( )

may vary from sample to sample. With a known amount of original sample, mix a
known amount of a standard substance S to form a new composite sample. Let 
and be the volume fractions of phase A in the original and composite samples,
respectively, and let cs be the volume fraction of S in the composite sample. If a dif-

c¿A

cA

B, C, D, pA, B, C, p
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fraction pattern is now prepared from the composite sample, then from Eq. (2) the
intensity of a particular line from phase A is given by

and the intensity of a particular line from the standard S by

Division of one expression by the other gives

(13)

(Note that the linear absorption coefficient of the mixture and an unknown
quantity, drops out. Physically, this means that variations in absorption, due to vari-
ations in the relative amounts of , have no effect on the ratio IA/IS since
they affect IA and IS in the same proportion.)

By extending Eq. (5) to a number of components,

and a similar expression exists for cS. Therefore,

Substitution of this relation into Eq. (13) gives

(14)

if ws is kept constant in all the composite samples. The relation between the weight
fractions of A in the original and composite samples is:

(15)

Combination of Eqs. (14) and (15) gives

(16)

The intensity ratio of a line from phase A and a line from the standard S is there-
fore a linear function of WA, the weight fraction of A in the original sample. A cal-
ibration curve can be prepared from measurements on a set of synthetic samples,
containing known concentrations of A and a constant concentration of a suitable
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Figure 4 Calibration curve for quartz analysis,
with fluorite as internal standard. Io is the inten-
sity of the d = 3.34 Å line of quartz, and IF is the
intensity of the d = 3.16 Å line of fluorite.
Alexander and Klug [5].
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standard. Once the calibration curve is established, the concentration of A in an
unknown sample is obtained simply by measuring the ratio IA/IS for a composite
sample containing the unknown and the same proportion of standard as was used
in the calibration.

The internal standard method has been widely used for the measurement of the
quartz content of industrial dusts. In this analysis, fluorite (CaF2) has been found to
be a suitable internal standard. Figure 4 shows a calibration curve prepared from
mixtures of quartz and calcium carbonate, of known composition, each mixed with
enough fluorite to make the weight fraction of fluorite in each composite sample
equal to 0.20. The curve is linear and through the origin as predicted by Eq. (16).
Bumsted [11] describes the determination of quartz in dust by this method, with
particular attention to the problems posed by very small samples. Note that sys-
tematic errors which vary with wS would not be detected in a calibration employing
Eq. 16. Both microabsorption and preferred orientation can be dependent on wS
[12] (see Sec. 8).

Strictly speaking, Eq. (16) is valid only for integrated intensities, and the same is
true of all other intensity equations in this chapter. Yet it has been found possible
to determine the quartz content of dusts with satisfactory accuracy by simply meas-
uring maximum intensities. This short cut is permissible here only because the
shape of the diffraction lines is found to be essentially constant from sample to sam-
ple. There is therefore a constant proportionality between maximum and integrat-
ed intensity and, as long as all patterns are made under identical experimental con-
ditions, the measurement of maximum intensities gives satisfactory results. Quite
erroneous results would be obtained by this procedure if the particle size of the
samples were very small and variable, since then a variable amount of line broad-
ening would occur, and this would cause a variation in maximum intensity inde-
pendent of sample composition.

369
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Other applications of the internal standard method include the analysis of
cement [13], the analysis of clay minerals [14], and the determination of chrysotile
asbestos in airborne dust [15].

7 OTHER METHODS

The International Centre for Diffraction Data has generalized the internal stan-
dard method by comparing the strongest line on the pattern of a large number of
substances with the strongest line from a single standard reference material. The
material chosen was , a synthetic corundum commercially available as
“Linde A” powder. Values of I/Icor, where I is the maximum intensity of the
strongest line from the compound, Icor the same quantity for the corundum, and
I/Icor was determined from a mixture, of equal parts by weight, of the compound and
corundum, are available in the Powder Diffraction File for many, although far from
all, phases. The value of I/Icor, which is reported to two significant figures, for any
particular compound A establishes a single point on the calibration curve, like Fig.
4, of compound A; if an equi-weight mixture of corundum and the unknown is then
made, the weight fraction of A in the unknown is given simply by one half the ratio
of IA/Icor for the unknown-corundum mixture to the tabulated value IA/Icor for the
A-corundum mixture. This method is fast, because the calibration has already been
done, but its accuracy is probably low, in view of the use of maximum, rather than
integrated, intensities.Variations in line broadening would be expected to introduce
errors.

The ratio I/Ic provides one type of reference intensity for quantitative phase
determinations. Reference phases other than corundum, reflections other than
those with maximum intensity and arbitrary concentrations can be used, and this
leads to a more general definition of Reference Intensity Ratio (RIR) for the phase
of interest and the reference phase [12,16]:

(17)

where hkl and h k l represent specific reflections from and phases, respective-
ly, and Ij

rel(mno) denotes the intensity of phase j’s mno peak relative to the 100%
line of that phase. Rearranging this equation yields, for the internal standard
method

(18)

Careful calibration via the normal internal standards approach may be used to
fix the RIR value, or derivation from other RIR’s may be used, e.g.,
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Better accuracy and greater insulation from the effects of texture (as will be dis-
cussed in Sec. 8) can be obtained by using multiple peaks of each phase for the
quantification process. It is necessary to normalize each peak relative to the other
peaks in the mixture so that a meaningful average is obtained, and one way of prop-
erly weighting intensities of the different peaks is to normalize each peak’s intensi-
ty by the relative intensities measured (by the investigator under the same condi-
tions) in the pure phase. Generally, the data from the PDF card of that phase is not
reliable enough for this purpose. For each peak n in the phase of interest p in the
unknown, the ratio of the observed intensity (in counts) is made with the relative
intensity of peak n in pure phase p, and the average ratio for the N peaks of phase
p is:

(20)

Another approach to quantitative phase analysis involves fitting the entire pat-
tern, not just selected peaks, or even all of the peak intensities, but the peak shapes
and background between peaks [e.g., 17]. The Rietveld method is particularly well-
suited to determining the amounts of different phases in complex mixtures.

8 PRACTICAL DIFFICULTIES

In any method involving powders, accurate sampling and homogeneous mixing can
present problems. They are not trivial, and errors in these operations can produce
large errors in the final result. Such matters are discussed by Klug and Alexander
[G.17], Jenkins and Snyder [G.25] and Zevin and Vimmel [G.29].

Certain effects can cause great difficulty in quantitative analysis because they
cause observed intensities to depart widely from the theoretical. The most impor-
tant of these complicating factors are:

1. Preferred orientation. The basic intensity equation, Eq. (1), is derived on
the premise of random orientation of the constituent crystals in the sample
and is not valid if any preferred orientation exists. It follows that, in the
preparation of powder samples for the diffractometer, every effort should
be made to avoid preferred orientation. If the sample is a solid polycrys-
talline aggregate, the analyst has no control over the distribution of orien-
tations in it, but he or she should at least be aware of the possibility of error
due to preferred orientation (texture). The texture problem has probably
received most attention in connection with determining austenite in steel
by the direct comparison method. Here there is a direct check on texture,
because the calculated R values for one phase are simply the theoretical
line intensities, in arbitrary units, for that phase in the absence of texture. If
the measured intensities of the various lines of a particular phase, say , are
not in the same ratio as their R values, then texture exists; the austenite

a
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content determined from a particular pair of and lines will then differ
from the value found from another pair. Two approaches have been made
to the problem of measuring austenite in the presence of texture:

a) Averaging intensities [18-22]. The basic idea here is simple. If cer-
tain lines from, say, austenite are abnormally weak because of tex-
ture, then other austenite lines will be abnormally strong. Only by
measuring all the lines and averaging them in a particular way is
valid data obtained This method, here crudely termed “intensity
averaging,” has had considerable success, at the cost of increased
measurement and computation time. The number of diffraction
lines required for the analysis increases with the degree of texture.
For strongly textured materials radiation is needed to pro-
vide enough lines.

b) Averaging orientations [23, 24]. Here the specimen is rotated in
particular ways during the measurement of line intensity in order
to present more crystal orientations to the incident beam.

2. Microabsorption. Consider diffraction from a given crystal of in a mix-
ture of and crystals. The incident beam passes through both and 
crystals on its way to a particular diffracting crystal, and so does the dif-
fracted beam on its way out of the sample. Both beams are decreased in
intensity by absorption, and the decrease can be calculated from the total
path length and , the linear absorption coefficient of the mixture. But a
small part of the total path lies entirely within the diffracting crystal, and
for this portion is the applicable absorption coefficient. If is much
larger than , or if the particle size of is much larger than that of , then
the total intensity of the beam diffracted by the crystals will be much less
than that calculated, since the effect of microabsorption in each diffracting

crystal is not included in the basic intensity equation. Evidently, the
microabsorption effect is negligible when and both phases have
the same particle size, or when the particle size of both phases is very small.
Powder samples should therefore be finely ground before analysis.

3. Extinction.This effect produces a reduction in diffracted intensity as a crys-
tal becomes more nearly perfect. Equation (1) is derived for the ideally
imperfect crystal, one in which extinction is absent. Samples for chemical
analysis should therefore be free of extinction, and this can be accom-
plished, for powder samples, by grinding or filing. If a solid aggregate must
be analyzed directly, the possibility of some extinction in the individual
grains of the aggregate should be kept in mind.

Microabsorption and extinction, if present, can seriously decrease the accuracy
of the direct comparison method, because this is an absolute method. Fortunately,
both effects are negligible in the case of hardened steel. Inasmuch as both the
austenite and martensite have the same composition and only a 4 percent differ-
ence in density, their linear absorption coefficients are practically identical. Their
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average particle sizes are also roughly the same. Therefore, microabsorption does
not occur. Extinction is absent because of the very nature of hardened steel. The
change in specific volume accompanying the transformation of austenite to marten-
site sets up nonuniform strains in both phases so severe that both kinds of crystals
can be considered highly imperfect. If these fortunate circumstances do not exist,
and they do not in most other alloy systems, the direct comparison method should
be used with caution and checked by some independent method.

On the other hand, the presence of microabsorption and extinction does not
invalidate the internal standard method, provided these effects are constant from
sample to sample, including the calibration samples. Microabsorption and extinc-
tion affect only the values of the constants K3 and K4 in Eq. (13), and therefore the
constant K6 in Eq. (16), and the latter constant determines only the slope of the cal-
ibration curve. Therefore, microabsorption and extinction, if present, will have no
effect on the accuracy of the internal standard method as long as the crystals of the
phase being determined, and those of the standard substance, do not vary in degree
of perfection or particle size from one sample to another.

PROBLEMS

1 Microscopic examination of a hardened 1.0 percent carbon steel shows no undis-
solved carbides. X-ray examination of this steel in a diffractometer with filtered
cobalt radiation shows that the integrated intensity of the 311 austenite line is 2.33
and the integrated intensity of the unresolved 112-211 martensite doublet is 16.32,
both in arbitrary units. Calculate the volume percent austenite in the steel.
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Precise Parameter

Measurements
1 INTRODUCTION

Many applications of x-ray diffraction require precise knowledge of the lattice
parameter (or parameters) of the material under study. In the main, these applica-
tions involve solid solutions; since the lattice parameter of a solid solution varies
with the concentration of the solute, the composition of a given solution can be
determined from a measurement of its lattice parameter. Thermal expansion co-
efficients can also be determined, without a dilatometer, by measurements of lattice
parameter as a function of temperature in a high-temperature camera or diffrac-
tometer. Since, in general, a change in solute concentration or temperature pro-
duces only a small change in lattice parameter, rather precise parameter measure-
ments must be made in order to measure these quantities with any accuracy. This
chapter concentrates on the methods used to obtain high precision with polycrys-
talline samples, leaving the various applications to be discussed elsewhere. Cubic
substances will be covered first, because they are the simplest, but the general con-
clusions will also be valid for noncubic materials, which will be discussed in
detail later.

The process of measuring a lattice parameter is a very indirect one, and is fortu-
nately of such a nature that high precision is fairly easily obtained. The parameter
a of a cubic substance is directly proportional to the spacing d of any particular set
of Bragg planes. Measuring the Bragg angle for hkl and using Bragg’s law to
determine d allows calculation of a. But it is , not , which appears in Bragg’s
law. Precision in d, or a, therefore depends on precision in , a derived quantity,
and not on precision in , the measured quantity.This is fortunate because the value
of changes very slowly with in the neighborhood of 90°, as inspection of
Fig. 1 or a table of sines will show. For this reason, a very accurate value of can
be obtained from a measurement of which is itself not particularly precise, pro-
vided that is near 90°. For example, an error in of 1° leads to an error in ofsin  uuu

u

sin  u
usin  u

u

sin  u
usin  u

u

From Chapter 13 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 1 The variation of with . The error in
caused by a given error in decreases as 

increases ( exaggerated).¢u
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1.7 percent at but only 0.15 percent at . Stated in another way, the
angular position of a diffracted beam is much more sensitive to a given change in
plane spacing when is large than when it is small.

The same result follows directly from differentiation of Bragg’s law with respect
to :

. (1)

Neglecting yields

. (2)

In the cubic system,

.

Therefore

. (3)

Since approaches zero as approaches 90°, , the fractional error in a
caused by a given error in , also approaches zero as approaches 90°, or as 
approaches 180°. The key to precision in parameter measurements therefore lies in
the use of back reflected beams having values as near to 180° as possible.

Although the parameter error disappears as approaches 180°, diffracted
beams cannot be observed at this angle. Because the values of a calculated for the
various lines on the pattern approach the true value more closely as increases,
the true value of a should be found simply by plotting the measured values against

and extrapolating to . Unfortunately, this curve is not linear and the2u � 180o2u
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extrapolation of a nonlinear curve is not accurate. If the measured values of a are
plotted against certain functions of , however, rather than against or directly,
the resulting curve is a straight line which may be extrapolated with confidence.The
bulk of this chapter is devoted to showing how these functions can be derived and
used. Because the exact form of the function depends on the geometry of the appa-
ratus used to record the diffraction pattern, the nature and functional dependence
of systematic errors must be examined before extrapolation procedures can be dis-
cussed.

Prior to developing such a mathematical understanding, it is important to appre-
ciate what sort of precision is possible. Without any extrapolation or any particular
attention to good experimental technique, simply by selection of the parameter cal-
culated for the highest-angle line on the pattern, a precision of 0.01 Å usually
results. Since the lattice parameters of many engineering materials are in the neigh-
borhood of 3 to 4 Å, this represents a precision of about 0.3 percent. With good
experimental technique and the use of the proper extrapolation function, this pre-
cision can be increased to 0.001 Å, or 0.03 percent, without much difficulty. Finally,
about the best precision that can be expected is 0.0001 Å, or 0.003 percent, but this
can be obtained only by the expenditure of considerable effort, both experimental
and computational.

In work of high precision it is imperative that the units in which the measured
parameter is expressed, kX or Å, be correctly stated. In order to avoid confusion on
this point, the reader is advised to review the discussion of these units “Diffraction
I: Geometry.” The actual numerical value of the wavelength or wavelengths used in
the determination of the parameter should be explicitly stated.

Methods of determining lattice parameters with high precision are reviewed by
Barrett and Massalski [G.10], Klug and Alexander [G.17], Parrish and Wilson
[G.13], Azaroff and Buerger [G.33], and Jenkins and Snyder [G.25]

2uuu

2 DIFFRACTOMETERS

The general approach in finding an extrapolation function is to consider the vari-
ous effects which can lead to errors in the measured values of , and to find out how
these errors in vary with the angle itself. The diffractometer is a complex appa-
ratus and therefore subject to misalignment of its component parts. A further diffi-
culty with most commercial diffractometers is the impossibility of observing the
same back-reflected cone of radiation on both sides of the incident beam. Thus, the
experimenter has no automatic check on the accuracy of the angular scale of the
instrument or the precision of its alignment.

When a diffractometer is used to measure d-spacings, the more important
sources of systematic error in d are the following:

1. Misalignment of the instrument. In particular, the center of the incident
beam must intersect the diffractometer axis and the 0° position of the
detector slit.

uu

u
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Figure 2. Illustration of shift of peak position as a function of sample displacement.¢2u
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2. Use of a flat specimen instead of a specimen curved to conform to the
focusing circle. This error is minimized, with loss of intensity, by decreasing
the irradiated width of the specimen by means of an incident beam of small
horizontal divergence.

3. Absorption in the specimen. Specimens of low absorption should be made
as thin as possible.

4. Displacement of the specimen from the diffractometer axis (Fig. 2) This is
usually the largest single source of error. It causes an error in d given by

(4)

where D is the specimen displacement parallel to the diffraction-plane nor-
mal (positive when the displacement is in front of the axis) and R is the dif-
fractometer radius (Problem 6).

5. Vertical divergence of the incident beam. This error is minimized, with loss
of intensity, by decreasing the vertical opening of the detector slit.

The functional forms of the various systematic errors in peak position are sum-
marized elsewhere [G.26], but no single extrapolation function can be completely
satisfactory, because varies as for errors (2) and (3) but as 
for error (4). Often the effect of (5) is included in the extrapolation function so that

varies as . The sum in the brackets is termed the
Nelson-Riley function and is used primarily for data collected with
Hull/Debye–Scherrer camera (Sec. 3). Extrapolation against is often termedcos2 u

3cos2 u>sin u � cos2 u>u 4¢d>d
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the Bradley-Jay method and is valid only for diffraction peaks with   .
Presumably the function that gives the better straight line will disclose what error
is predominant.

The suggested procedure is therefore:

a) Carefully align the component parts of the instrument in accordance with
the manufacturer’s instructions.

b) Adjust the specimen surface to coincide as closely as possible with the dif-
fractometer axis.

c) Extrapolate the calculated parameters against or to a
value of .

For a cubic crystal with a lattice parameter a0 and an extrapolation based on dis-
placement error,

, (5)

and, after rearranging terms, the apparent lattice parameter a is

. (6)

If a Nelson-Riley extrapolation function is appropriate,

(7)

which converts to

. (8)

A similar equation applies for the Bradley-Jay function. Note that all of these
extrapolation functions yield at .

Every effort should, of course, be made to measure line positions precisely. To
achieve a precision of 3 parts in 100,000, equivalent to Å in the lattice
parameter, Eq. (2) shows that the position of a line at must be meas-
ured to within 0.02° and lower angle lines even more closely. Recording peaks with
ratemeter output and continuous scanning can be problematic, and step scanning
should be used. Before computerized diffractometers were available it was cus-
tomary to take the value of the peak’s maximum intensity as the line position;
now peak centroids or more sophisticated methods for establishing peak position
(which are standard in the field of stress measurement are recommended.)
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Noncubic crystals present additional difficulties, regardless of the particular
extrapolation function chosen. Consider, for example, hexagonal and tetragonal
crystals. The difficulty is simply this: the position of a line which has indices hkl is
determined by two parameters, a and c, and it is impossible to calculate both of
them from the observed value of that line alone. One way of avoiding this dif-
ficulty is to ignore the hkl lines and divide the remainder into two groups, those
with indices hk0 and those with indices 00l. A value of a is calculated for each hk0
line and a value of c from each 00l line; two separate extrapolations are then made
to find a0 and c0. Since there are usually very few hk0 and 00l lines in the back-
reflection region, the extrapolations necessarily will be less accurate. Instead, it is
better to use Cohen’s analytical method (Sec. 7) for noncubic substances.

Extrapolation should be done with least squares fitting of the data and the
extrapolation function chosen to represent the systematic errors. Use of least
squares eliminates the variability in how different individuals assign a straight line
through the same set of points, and most pocket calculators and computer spread-
sheet programs have built-in routines for least squares fitting of data.

It should be noted that the least-squares fitting is not a way of finding the best
curve to fit a given set of observations. The investigator must know at the outset,
from an understanding of the phenomenon involved, the kind of relation (linear,
parabolic, exponential, etc.) the two quantities x and y are supposed to obey.All the
least-squares method can do is to give the best values of the constants in the equa-
tion selected, but it does this in a quite objective and unbiased manner.

To conclude this section, a few general remarks on the nature of errors may not
be amiss. In the measurement of a lattice parameter, as in many other physical
observations, two kinds of error are involved, systematic and random. A systematic
error is one which varies in a regular manner with some particular parameter.
Further, a systematic error is always of the same sign. Random errors, on the other
hand, are the ordinary chance errors involved in any direct observation; they may
be positive or negative and do not vary in any regular manner with the position
of the diffraction line.

Systematic errors in a approach zero as approaches 90° and may be eliminated
by use of the proper extrapolation function. The magnitude of these errors is pro-
portional to the slope of the extrapolation line and, if these errors are small, the line
will be quite flat. If the systematic errors were increased on purpose, say, by dis-
placing the sample from the diffractometer axis, the slope of the line will increase
but the extrapolated value of a0 will remain the same. The random errors involved
in measuring line positions show up as random errors in a, and are responsible for
the deviation of the various points from the extrapolation line. The random errors
in a also decrease in magnitude as increases, due essentially to the slow variation
of with at large angles.

These various effects are summarized graphically in Fig. 3. In (a) the calculated
points conform quite closely to the line, indicating small random errors, but the line
itself is quite steep because of large systematic errors. The opposite situation is
shown in (b): here the systematic error is small, but the wide scatter of the points

usin u
u

u

2u

sin2 u
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Figure 3 Extreme forms of extrapolation curves (schematic): (a) large systematic errors, small random
errors; (b) small systematic errors, large random errors.

shows that large random errors have been made. Inasmuch as the uncertainty in a
regression line increases with the degree of scatter, it is obvious that every possible
effort should be made to minimize random errors at the start.

3 HULL/DEBYE–SCHERRER CAMERAS

Historically, extrapolation methods were developed for the Hull/Debye–Scherrer
camera, and, even though this method normally would not be chosen today for lat-
tice parameter measurements, it is instructive to go through some of the geometry
leading to the extrapolation functions.

For a Hull/Debye–Scherrer camera, the chief sources of error in are the fol-
lowing:

1. Film shrinkage.
2. Incorrect camera radius.
3. Off-centering of specimen.
4. Absorption in specimen.

Since only the back-reflection region is suitable for precise measurements, con-
sider these various errors in terms of the quantities S´ and , defined in Fig. 4. S´ is
the distance on the film between two corresponding back-reflection lines; is the
supplement of , i.e., . These quantities are related to the camera
radius R by the equation

. (9)

Shrinkage of the film, caused by processing and drying, causes an error in the
quantity S´. The camera radius may also be in error by an amount . The effects¢R

¢S¿

f �
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Figure 4

of these two errors on the value of may be found by writing Eq. (9) in logarith-
mic form:

. (10)

Differentiation then gives

. (11)

The error in due to shrinkage and the radius error is therefore given by

. (12)

The shrinkage error can be minimized by loading the film so that the incident beam
enters through a hole in the film, since corresponding back-reflection lines are then
only a short distance apart on the film, and their separation S´ is little affected by
film shrinkage. The method of film loading is not at all suitable for precise meas-
urements. Instead, methods (b) or (c) should be used. Method (c), the unsymmetri-
cal or Staumanis method of film loading, is particularly recommended since no
knowledge of the camera radius is required.

An off-center specimen also leads to an error in . Whatever the displacement of
the specimen from the camera center, this displacement can always be broken up
into two components, one parallel to the incident beam and the other at
right angles to the incident beam. The effect of the parallel displacement is illus-
trated in Fig. 5(a). Instead of being at the camera center C´, the specimen is dis-
placed a distance to the point O. The diffraction lines are registered at D and C
instead of at A and B, the line positions for a properly centered specimen.The error
in S´ is then (AC + DB) = 2DB, which is approximately equal to 2ON, or

. (13)¢S¿ � 2ON � 2¢x  sin  2f
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Figure 5 Effect of specimen displacement on line positions.
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The effect of a specimen displacement at right angles to the incident beam
[Fig. 5(b)] is to shift the lines from A to C and from B to D. When is small, AC
is very nearly equal to BD and so, to a good approximation, no error in S´ is intro-
duced by a right-angle displacement.

The total error in S´ due to specimen displacement in some direction inclined to
the incident beam is therefore given by Eq. (13). This error in S´ causes an error in
the computed value of . Inasmuch as the various errors one at a time, are being
considered the radius error can be set equal to zero, so that Eq. (11) becomes

, (14)

which shows how an error in S´ alone affects the value of . By combining
Eqs. (9), (13) and (14); the error in due to the fact that the specimen is off center
is given by

. (15)

It should not be assumed that the centering error is removed when the specimen is
so adjusted, relative to the rotating shaft of the camera, that no perceptible wobble
can be detected when the shaft is rotated.This sort of adjustment is taken for grant-
ed in this discussion. The off-center error refers to the possibility that the axis of
rotation of the shaft is not located at the center of the camera, due to improper con-
struction of the camera.

Absorption in the specimen also causes an error in .This effect, often the largest
single cause of error in parameter measurements, is unfortunately very difficult to
calculate with any accuracy. But back-reflected rays come almost entirely from that
side of the specimen which faces the collimator. Therefore, to a rough approxima-
tion, the effect of a centered, highly absorbing specimen is the same as that of a non-
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absorbing specimen displaced from the camera center in the manner shown in Fig.
9(a). Consequently if is reasonable to assume that the error in due to absorption,

, is included in the centering error given by Eq. (13).
Thus, the overall error in due to film shrinkage, radius error, centering error,

and absorption, is given by the sum of Eqs. (12) and (15):

. (16)

But

.

Therefore Eq. (3) becomes

(17)

and

. (18)

In the back-reflection region, is small and may be replaced, in the first term of Eq.
(18), by , since and , for small values of . Then,

(19)

The bracketed terms are constant for any one film, so that

, (20)

where K is a constant. Accordingly, the important result is that the fractional errors
in d are directly proportional to cos2 �, and therefore approach zero as cos2 �
approaches zero or as � approaches 90°. In the cubic system,

, (21)

and

. (22)

Hence, for cubic substances, if the value of a computed for each line on the pattern
is plotted against , a straight line should result, and a0, the true value of a, can
be found by extrapolating this line to . (Or, since , thesin2 u � 1 � cos2 ucos2 u � 0
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various values of a may be plotted against , and the line extrapolated to
. As noted in the previous section, this extrapolation function is some-

times called the Bradley-Jay function.
From the various approximations involved in the derivation of Eq. (22), it is clear

that this equation is true only for large values of (small values of ). Therefore,
only lines having values greater than about 60° should be used in the extrapola-
tion, and the more lines there are with greater than 80°, the more precise is the
value of a0 obtained. To increase the number of lines in the back-reflection region,
it is common practice to employ unfiltered radiation so that as well as can
be diffracted. If the x-ray tube is demountable, special alloy targets can also be used
to increase the number of lines; or two exposures can be made on the same film
with different characteristic radiations. In any case, it must never be assumed that
the process of extrapolation can automatically produce a precise value of a0 from
careless measurements made on a film of poor quality. For high precision, the lines
must be sharp and the doublets well resolved at high angles, which means in
turn that the individual particles of the specimen must be strain-free and not too
fine. The line positions must be determined carefully, and it is best to measure each
one two or three times and average the results. In computing a for each line, the
proper wavelength must be assigned to each component of the doublet when
that line is resolved, and when it is not resolved, the weighted mean wavelength
should be used.

Other functions of, besides or , may be used as a basis for extrapola-
tion. For example, replacing in Eq. (18) by , instead of replacing by

, yields

. (23).

Therefore, a plot of a against will also be linear and will extrapolate to a0 at
. In practice, there is not much difference between an extrapolation

against and one against (or ), and either will give satisfactory
results. Nelson and Riley [2] and Taylor and Sinclair [3] analyzed the various
sources of error, particularly absorption, more rigorously than is done above and
showed that Eq. 7 and 8, the Nelson–Riley function, holds quite accurately down to
very low values of and not just at high angles. The values of a0 can be found by
plotting a against the Nelson–Riley function, which approaches zero as approach-
es 90°. Although it is doubtful whether any advantage results from using the
Nelson-Riley function instead of in the back-reflection region, the greater
range of linearity of the Nelson–Riley function is an advantage when there are only
a few lines in the high-angle region.
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4 BACK–REFLECTION FOCUSING CAMERAS

A camera of this kind is preferred over Hull/Debye–Scherrer cameras for work of
the highest precision, since the position of a diffraction line on the film is twice as
sensitive to small changes in plane spacing with this camera as it is with a
Hull/Debye–Scherrer camera of the same diameter. It is, of course, not free from
sources of systematic error. The most important of these are the following:

1. Film shrinkage.
2. Incorrect camera radius.
3. Displacement of specimen from camera circumference.
4. Absorption in specimen. (If the specimen has very low absorption, many of

the diffracted rays will originate at points outside the camera circumfer-
ence even though the specimen surface coincides with the circumference).

A detailed analysis of these various sources of error shows that they produce
fractional errors in d which are very closely proportional to , where is
again equal to ( ). This function is therefore the one to use in extrapolating
lattice parameters measured with this camera.

90o � u
ff tan f

5 PINHOLE CAMERAS

The pinhole camera, used in back reflection, is not really an instrument of high pre-
cision in the measurement of lattice parameters, but it is mentioned here because
of its very great utility in work on highly-textued on samples which cannot, for
whatever reason, be reduced to powder. This method has became interestingly
attractive as two-dimensional detectors have found increasing application. Since
both the film and the specimen surface are flat, no focusing of the diffracted rays
occurs, and the result is that the diffraction lines are much broader than is normal-
ly desirable for precise measurement of their positions. The chief sources of sys-
tematic error are the following:

1. Film shrinkage (when photographic emulsions are used)
2. Incorrect specimen-to-film distance.
3. Absorption in the specimen.

In this case it may be shown that the fractional error in d is proportional to
, or to the equivalent expression , where

. With either of these extrapolation functions a fairly precise value of
the lattice parameter can be obtained; in addition, the back-reflection pinhole cam-
era has the particular advantage that mounted metallographic specimens may be
examined directly. This means that a parameter determination can be made on the
same part of a specimen as that examined under the microscope. A dual examina-
tion of this kind is quite valuable in many problems, especially in the determination
of phase diagrams.

f � 190o � u2
cos2 u 12 cos2 u � 12sin 4f tan f
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6 EXAMPLE

The example in this section illustrates how well extrapolation methods can com-
pensate for systematic errors, even if they are substantial. This example provides a
series of controlled (and known) errors and illustrates extrapolation procedures
used with diffractometry.The reader should not regard extrapolation procedures as
a quick fix for poor sample preparation, data collection or data analysis technique.
Quality, precise measurement of lattice parameters follows the ancient adage:
“Garbage in, garbage out.”

Several diffraction patterns of a solid copper sample displaced from the correct
position in a - diffractometer serve to illustrate how well extrapolation methods
can correct systematic errors. The sample used in this illustration was a copper disk
formed by packing copper particles into a cylindrical mold, infiltrating with epoxy
and metallographically polishing the end of the cylinder. Four diffraction patterns
were recorded with the top of the sample displaced 0, 4, 8 or 16 thicknesses of
household aluminum foil (nominally thick) from the reference surface. Note
that the reference surface presumably coincided with the exact center of the sam-
ple rotation axis and the center of the detector rotation axis, i.e., tangent to the
focussing circle. Data for each of the four scans were recorded on a diffractometer
equipped with a copper x-ray tube, a post-sample monochromator and a variable
width divergence slit set to irradiate a constant 10 mm length of the sample surface.
The diffraction patterns were recorded using a step size of , rather too
coarse for this type of work, and a constant counting time of 1 sec per step. Software
provided by the diffractometer’s manufacturer determined peak positions using the
centroid for intensities having a second derivative with respect to angle which were
less than zero. For the peaks with an unresolved and doublet, the weighted
average of the and wavelengths was used to calculate the d-spacing; when
the doublet could be resolved the peak and its wavelength were used.

The columns of Table 1 show the and corresponding lattice parameters for all
reflections measured from the diffraction patterns of the 0, 100, 200, and 
displacements of the sample. The last column gives the value of the extrapolation
function for the eight diffraction peaks of the undisplaced sample.The last two rows
give the arithmetic mean of the measurements and the extrapolated value of the
lattice parameter a0, respectively. Clearly, simple averaging is inappropriate, and use
of the value of the lattice parameter for the highest line is inadvisable.
Extrapolation to gives lattice parameters for the four scans which differ
only in the fourth decimal place (Fig. 6). Before quoting four decimal places for a
lattice parameter, it is important to realize the effect of uncontrolled temperature
variation: thermal expansion will change the lattice parameter. For pure copper at
25°C, the linear thermal expansion coefficient is about °C [4], and this
is large enough to cause a change in the fourth decimal place for temperature
changes as small as 1°C. The diffractometer used for these measurements is in a
small radiation shielding box which also surrounds the x-ray tube (which becomes
warm to the touch during operation); the entire instrument, including electronics, is

�116.6 � 10�6

u � 90o
2u

400 mm
2u

Ka1

Ka2Ka1

Ka2Ka1

0.05o 2u

25 mm

2uu
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* Measurements made for resolved K�l peaks.

Line hkl a (Å)

displacements (m)

0 100 200 400

1 111 2� 43.39 43.28 43.24 43.08 2.335

a 3.610 3.618 3.622 3.634

2 200 2� 50.50 50.41 50.37 50.21 1.918

a 3.612 3.618 3.620 3.632

3 220 2� 74.14 74.06 74.02 73.87 1.056

a 3.615 3.618 3.620 3.626

4* 311 2� 89.94 89.87 89.83 89.72 0.708

a 3.615 3.618 3.618 3.622

5* 222 2� 95.16 95.08 95.05 94.93 0.616

a 3.617 3.617 3.618 3.620

6* 400 2� 116.86 116.86 116.84 116.73 0.322

a 3.616 3.616 3.617 3.619

7* 331 2� 136.49 136.44 136.44 136.38 0.148

a 3.615 3.616 3.616 3.617

8* 420 2� 144.70 144.62 144.60 144.63 0.096

a 3.615 3.616 3.616 3.616

3.614 3.617 3.618 3.623

a0 3.6150 3.6148 3.6148 3.6145

2θ°
θ2cos( ) θsin( )⁄

a

TABLE 1

in a cabinet surrounding the radiation shielding box. Gradual warming of several
°C could be anticipated for these closely confined instruments; similar thermal drift
in more open instruments, even in air conditioned rooms, should also be expected.

7 COHEN’S METHOD

In preceding sections the most accurate value of the lattice parameter of a cubic
substance was found by plotting the value of a calculated for each reflection against
a particular function, which depends on the apparatus used, and extrapolating to a
value a0 at .Two different things are accomplished by this procedure: (a) sys-
tematic errors are eliminated by selection of the proper extrapolation function, and

u � 90o
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Figure 6 Plots of the apparent lattice parameter as a functional of the displacement extrapolation fac-
tor. The data is for a polycrystalline copper sample and was recorded with radiation. The dia-
monds, squares, triangles and x’s show the data for 0, 100, 200 and 400 m sample displacements, respec-
tively.

m

Cu Ka

0 0.5 1 1.5 2 2.5

3.640

3.630

3.620

3.610

la
tt

ic
e 

pa
ra

. (
A

ng
.)

(cos2 �)�(sin �)

(b) random errors are reduced using the least-squares method devised by Cohen
[5].

Cubic system

Suppose a cubic substance is being examined in a Hull/Debye–Scherrer camera.
Then Eq. (21), namely,

, (21)

defines one possible extrapolation function. Instead of using the least-squares
method to find the best straight line on a plot of against , Cohen applied the
method to the observed values directly. Squaring Bragg’s law and taking log-
arithms of each side produces

. (24)

Differentiation then gives

. (25)

By substituting this into Eq. (20), the error in varies with as:usin2 u

¢  sin2 u

sin2 u
� �

2¢d
d

ln sin2 u � lna
l2

4
b � 2 ln d

sin2 u

cos2 ua

¢d
d

�
¢a
a

� K  cos2 u
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1In linear regression, the variable yi is assumed to be related approximately linearly to the variables x1j,
x2j, by coefficients via

where j is the error in each measurement [6]. The general linear model is treated most conveniently
using matrices where

.

y � ≥

y1

y2

o

yn

¥ ,  X � ≥

1 x11 x21
p xn1

1 x12 x22
p xn2

o

1 x1n x2n
p xnn

¥ , B � E

b0

b1

b2

o

bn

U

B � EY � X
e

yj � b0 � bj x1j � b2x2j � p � bhxhj � ej, j � 1, 2, p , n n � h � 1

b0, b1, b2, pp

, (26)

where D is a new constant. [This equation is valid only when the extrapola-
tion function is valid. If some other extrapolation function is used, Eq. (26) must be
modified accordingly.] A plot of vs (observed). Now the true value of
sin2 � for any diffraction line is given by

, (27)

where a0, the true value of the lattice parameter, is the quantity sought. But

(28)

where

.

(The factor 10 is introduced into the definitions of the quantities A and solely to
make the coefficients of the various terms in the normal equations of the same
order of magnitude.)

The experimental values of , , and are now substituted into Eq. (28) for
each of the n back-reflection lines used in the determination. This gives n equations
in the unknown constants C and A, and these equations can be solved for the most
probable values of C and A by the method of least squares.1 Once C is found, a0 can
be calculated directly from the relation given above; the constant A is related to the
amount of systematic error involved and is constant for any one film, but varies
slightly from one film to another.

If lines from three different wavelengths ( , , and ) are to be
used in the analysis, the data must be “normalized” to any one wavelength by use

Cu KbCu Ka2Cu Ka1

dasin2 u

d

C �
l2

4a0
2
, a � 1h2 � k2 � l22, A �

D
10

, and d � 10  sin2 2u

sin2 u � Ca � Ad,

sin2 u �
l2

4a0
2
1h2 � k2 � l22 � D sin2 2u,

sin2 u 1observed2 � sin2 u 1true2 � ¢sin2 u,

sin2 u 1true2 �
l2

4a0
2
 1h2 � k2 � l22

sin2 u¢ sin2 u

cos2 u

¢  sin2 u � �2K sin2 u cos2 u � D sin2 2u
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and the errors are 

The least squares estimator b for the regression coefficients is that which satisfies and

. Here the superscript “T” denotes the
transpose of the matrix in question, a single underline a vector, a double underline a matrix and the
superscript “-1” denotes the inverse matrix.

b � 1xTx2�1xTy0

0b 3 1y � X b2T1y � X b2 4 � 0 and 1xTX2b � xTy
b

E � ≥

E1

E2

o

En

¥ .

of the proper multiplying factor. For example suppose all lines were to be normal-
ized to the wavelength. Then for a particular, line formed by radiation, for
instance,

, (29)

(30)

From Bragg’s law,

(31)

Therefore,

(32)

where is a normalized . Equation (32) now refers only to the 
wavelength, i.e., it gives the position, in terms of , that a line would have
if it were formed by radiation. Lines due to radiation can be normalized in
a similar manner. The values of the two normalizing factors, for copper radiation,
are

(33)

Cohen’s method of determining lattice parameters is even more valuable when
applied to noncubic substances, since, there is more than one lattice parameter

l2
Kb

l2
Ka1

� 0.816688 and 
l2

Kb

l2
Ka2

� 0.812644.

Ka2Kb
Ka1cos2 f

Kbd1l2
Kb>l

2
Ka1
2dKa1

cos2 fKb � a
l2

Kb

4a2
0

b a � Aa
l2

Kb

l2
Ka1

b dKa1
,

a
l2

Kb

l2
Ka1

b cos2 fKa1
� cos2 fKb

a
l2

Kb

l2
Ka1

b cos2 fKa1
� a
l2

Kb

l2
Ka1

b a
l2

Ka1

4a2
0

ba � a
l2

Kb

l2
Ka1

bAdKa1

cos2 fKa1
�
lKa1

2

4a0
2
a � AdKa1

Ka1Kb
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involved. Cohen’s method, provides a direct means of determining these parame-
ters, although the equations are naturally more complex than those needed for
cubic substances. For example, suppose that the substance involved is hexagonal.
Then

(34)

and

, (35)

if the pattern is made in a Hull/Debye–Scherrer camera. Rearranging this equation
and introducing new symbols yields.

, (36)

where

The values of C, B, and A, of which only the first two are really needed, are found
from the three normal equations:

The solution for these equations comes from the matrix equation

(37)

For diffractometer data, the equations need to be modified for the different extrap-
olation factor. Instead of Eq. (35), one has

(38)sin2 u �
l2

3a0
2
 1h2 � hk � k22 �

l2

4c0
1l22 �

2D

R
 cos2 u 

 sin  u

≥

�a2 �ag �ad
�ag �g2 �gd
�ad �dg �d2

¥

�1

≥

�a sin2 u

�g sin2 u

�d sin2 u

¥ � ≥

A
B
C
¥ .

�d sin2 u � C �ad � B �dg � A �d2,

�g sin2 u � C �ag � B �g2 � A �gd,

�a sin2 u � C �a2 � B �ag � A �ad,

A �
D
10

,   and d � 10  sin2 2u.

C �
l2

3a0
2
,    a � 1h2 � hk � k22,    B �

l2

4c0
2
,    g � l2,

sin2 u � Ca � Bg � Ad

sin2 u �
l2

3a0
2
1h2 � hk � k22 �

l2

4c0
2
1l22 � D  sin2 2u

sin2 u1true2 �
l2

4
�

4
3

�
h2 � hk � k2
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where R is the radius of the diffractometer and D is the sample displacement; , C,
B and have the same values as before and

The normal equations are given in Eq. (36) above.
As an example consider the data obtained for titanium (PDF card 5-682 which

lists a0 = 2.950 Å and c0 = 4.686 Å). A total of seven diffraction peaks were record-
ed using  radiation, 40 kV and 30 mA, a variable slit diffractometer equipped
with a post-sample monochromator, a step size of and counting time of 1 sec
per point. Note that the step size is a bit larger than ideal. Table 2 lists the data used
in this example; peak positions were determined using a centroid second derivative
method. The resulting matrices yield

(39)

and

The differences from the values on the PDF card are

.
¢a
a

� 0.5% and 
¢c
c

� 0.02%

a0 �
B
a

1.5404
3C

b
2

� 2.965 and c0 �
B
a

1.5404
4B

b
2

� 4.687

≥

A
B
C
¥ � ≥

38 30 51.32
30 131 82.90

51.32 82.90 96.72
¥

�1

≥

4.280
6.319
6.946

¥ � ≥

0.09
0.027

5.07 � 10�4

¥

0.04o2u
Cu Ka

A � 2D> 110R2 and d � 10 cos2u sin u.

g

a

peak d(Å) hkl � � �

1 35.368 2.536 111 1 0 2.756

2 38.695 2.325 002 0 4 2.949

3 40.365 2.233 101 1 1 3.039

4 53.728 1.705 102 1 4 3.596

5 63.050 1.473 110 3 0 3.799

6 71.095 1.325 103 1 9 3.849

7 76.202 1.248 112 3 4 3.821

2θ°

TABLE 2
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8 GENERAL

This chapter has dealt with powder methods exclusively. But there is also interest
in measuring the lattice parameters of single crystals. Bond devised a method capa-
ble of very high precision, provided the crystal specimen is of sufficiently high qual-
ity [7, 8]. With this method Baker et al. [9] were able to measure the thermal expan-
sion coefficient of an MgO crystal over a temperature interval of only 1.0°C, and
these investigators have attained a precision of one part in ten million in parame-
ter measurements.

Multiple beam, multiple axis diffractometry allows lattice parameter changes to
be detected down to one part per billion [10]. The variation of lattice parameters in
the population of Si crystals serving as references was surveyed by NIST using this
type of comparator; variations of on the order of 10-8 were found [11]. Triple
axis diffractometry with a reference crystal of known lattice parameter mounted
next to the sample is being increasingly used for lattice parameter determinations.
Recently a double axis procedure, also using a reference crystal, has produced 
values better than [12, 13].

In work of the highest precision a small correction for refraction is sometimes
applied (see, for example, [1]). The index of refraction for x-rays in matter differs
very slightly from unity, so that an x-ray has slightly different wavelengths in air and
in a crystal. The correction to a lattice parameter is less than 0.0001 Å. Again, in
work of the highest precision, it is necessary to control and report the temperature
of the specimen during the parameter determination (Problem 1).

Investigators who wish to check their measurement techniques against those of
a standardizing laboratory can buy a sample of silicon powder from the U.S. Bureau
of Standards. These samples, known as Standard Reference Material 640, were
made available in 1974 [14]. The Bureau states the weighted average of the lattice
parameter of this material to be 5.43088 Å, with an estimated standard error of

Å.
In 1983 a new batch of Si was certified [15] (SRM 640a), and other reference

materials include SRM 675 fluorophlogopite, a synthetic mica with a significant
peak below ; SRM 674, a series of five crystalline phases (Al2O3 corundum,
ZnO, TiO2 rutile, Cr2O3 and CeO2) for intensity standardization; SRM 640b of Si;
LaB6, a line profile as well as a lattice parameter standard and others [16].
Recent work may lead to silver behenate being adopted as a low angle diffraction
standard [17]; its lowest angle diffraction peak is at approximately for 
radiation.

In the measurement of any physical quantity one should always be aware of the
distinction between precision and accuracy:

a) Precision is reproducibility.
b) Accuracy is the approach to the “true” value.

Cu Ka1.5o2u

10o2u

3.5 � 10�5

5 � 10�5
¢a>a

da>a
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It is therefore quite possible to make highly precise but inaccurate measurements
through the use, for example, of improperly calibrated instruments or because of
inadequate correction for systematic errors. Even careful investigators usually
overestimate the accuracy of their measurements, probably misled by their high
precision.

For example, in the late 1950s the International Union of Crystallography dis-
tributed samples of a single lot of silicon powder to fifteen laboratories interested
in precision parameter measurements [18]. The mean of the reported parameter
values was 5.43054 Å at 25°C, referred to the same wavelength scale and corrected
for refraction. The average precision claimed by the participating laboratories was

Å (2 parts per 100,000), but the spread in reported parameters (highest
minus lowest) was 0.00067 Å (12 parts per 100,000). If the mean value of the param-
eter is taken as the true value for this lot of material, then some laboratories are
about three times as inaccurate as their precision might suggest.

This result is not an isolated example. Similar interlaboratory comparisons have
been made with respect to other physical measurements, sometimes on the same
specimen, with similar results. We all think we are better than we are.

PROBLEMS

*1 The lattice parameter of copper is to be determined to a precision of    
Å at 20°C. Within what limits must the temperature of the specimen be controlled
if errors due to thermal expansion are to be avoided? The linear coefficient of ther-
mal expansion of copper is per °C.
2 The following data were obtained from a Hull/Debye–Scherrer pattern of a sim-
ple cubic substance, made with copper radiation. The given values are for the

lines only.
Determine the lattice parameter , accurate to four significant figures, by graphi-
cal extrapolation of against .
*3 From the data given in Prob. 2, determine the lattice parameter to four signifi-
cant figures by Cohen’s method.
4 From the data given below, determine the lattice parameter of tungsten to five sig-
nificant figures by graphical extrapolation of against .f tan  fa

cos2 ua

ao

Ka1

sin2 u

16.6 � 10�6

;0.0001

;0.00011
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*5 If the fractional error in the plane spacing d is accurately proportional to the
function ( ) over the whole range of , show that a plot of

against has a maximum, as illustrated for a particular case. At approx-
imately what value of does the maximum occur?
6 Derive Eq. (4).

u
sin2 u¢  sin2 u

ucos2 u>sin  u � cos2 u>u
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Line hkl � � 


Observed Normalized to K�

� �

1 321 K�1 14 24.518* 0.82779 3.2 0.67606 2.6

2 321 K�2 14 24.193 0.83205 3.2 0.67616 2.6

3 411, 330 K� 18 21.167 0.85962 2.5 0.86962 2.5

4 400 K�1 16 13.302 0.94706 1.0 0.77345 0.8

5 400 K�2 16 12.667 0.95191 1.0 0.77356 0.8

6 420 K� 20 10.454 0.96708 0.7 0.96708 0.7

φ2cos φ2cos
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1 INTRODUCTION

The normal way in which metals ceramics and other crystalline materials are pro-
duced and used is in the form of polycrystalline aggregates, composed of a great
many individual crystals usually of microscopic size. Because the properties of such
aggregates are of great technological importance, they have been intensively stud-
ied in many ways. In such studies the two most useful techniques are microscopic
examination and x-ray diffraction, and the wise investigator will use them both; one
complements the other, and both together can provide a great deal of information
about the structure of an aggregate.

The properties (mechanical, electrical, chemical, etc.) of a single-phase aggregate
are determined by two factors:

1) the properties of a single crystal of the material, and
2) the way in which the single crystals are put together to form the composite

mass.

In this chapter the focus in on the second factor, namely, the structure of the
aggregate, using this term in its broadest sense to mean the relative size, quality, and
orientation of the grains making up the aggregate. Whether these grains are large
or small, strained or unstrained, oriented at random or in some particular way, fre-
quently has very important effects on the properties of the material.

If the aggregate contains more than one phase, its properties naturally depend
on the properties of each phase considered separately and on the way these phas-
es occur in the aggregate. Such a material offers wide structural possibilities since,

Structure of Polycrystalline

Aggregates

From Chapter 14 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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in general, the size, quality, and orientation of the grains of one phase may differ
from those of the other phase or phases.

This chapter is divided into two parts. The first covers crystal size and crystal
quality and the techniques for separating these contributions to line broadening.
The second part deals with the orientation of the crystals within solids, i.e., with tex-
ture; techniques for texture qualification are covered.

CRYSTAL SIZE AND QUALITY

2 GRAIN SIZE

1 In this context “photograph” can mean a two-dimensional diffraction pattern recorded on a photo-
graphic emulsion, a two-dimensional wire detector, a CCD (charge-coupled device) camera or an image
plate. The advantages and disadvantages of each type of detector are summarized.

The size of the grains in a polycrystalline material has pronounced effects on many
of its properties, the best known being the increase in strength and hardness of a
metal or alloy which accompanies a decrease in grain size.This dependence of prop-
erties on grain size makes the measurement of grain size a matter of some impor-
tance in the control of most metal forming operations.

The grain sizes encountered in engineering materials range from about 1000 to
.These limits are, of course, arbitrary and represent rather extreme values; typ-

ical values fall into a much narrower range, namely, about 100 to . The most
accurate method of measuring grain size in this range is by microscopic examina-
tion; the usual procedure is to determine the average number of grains per unit area
of the polished section and report this in terms of an “index number” established
by ASTM. The equation 

relates n, the number of grains per square inch when viewed at a magnification of
, and N, the ASTM “index number” or “grain-size number.” Grain-size num-

bers of 4 and 8, for example, correspond to grain diameters of 90 and , respec-
tively.

Although x-ray diffraction is decidedly inferior to microscopic examination in
the accurate measurement of grain size, one diffraction photograph1 can yield semi-
quantitative information about grain size, together with information about crystal
quality and orientation. A transmission or back-reflection pinhole photograph
made with filtered radiation is often used, but a focussing monochromator placed
between the x-ray tube and the sample can also be used. If the back-reflection
method is used, the surface of the specimen (which need not be polished) should be
etched to remove any disturbed surface layer which might be present, because most
of the diffracted radiation originates in a thin surface layer (see Secs. 4 and 5).

22 mm
100 �

n � 2N�1

10 mm
1 mm
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Figure 1 Back-reflection pinhole patterns of recrystallized aluminum specimens; grain size decreases in
the order (a), (b), (c), (d). Filtered copper radiation.

(a) (b)

(c) (d)

The nature of the changes produced in pinhole photographs by progressive
reductions in specimen grain size is illustrated in Fig. 1. The governing effect here is
the number of grains which take part in diffraction. This number is in turn related
to the cross-sectional area of the incident beam, and its depth of penetration (in
back reflection) or the specimen thickness (in transmission). When the grain size is
quite coarse, as in Fig. 1(a), only a few crystals diffract and the photograph consists
of a set of superimposed Laue patterns, one from each crystal, due to the white radi-
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ation present. A somewhat finer grain size increases the number of Laue spots, and
those which lie on potential Debye rings generally are more intense than the
remainder, because they are formed by the strong characteristic component of the
incident radiation. Thus, the suggestion of Debye rings begins to appear, as in (b).
When the grain size is further reduced, the Laue spots merge into a general back-
ground and only Debye rings are visible, as in (c). These rings are spotty, however,
since not enough crystals are present in the irradiated volume of the specimen to
reflect to all parts of the ring. A still finer grain size produces the smooth, continu-
ous Debye rings shown in (d).

Several methods have been proposed for the estimation of grain size purely in
terms of various geometrical factors. For example, an equation may be derived
which relates the observed number of spots on a Debye ring to the grain size and
other such variables as incident-beam diameter, multiplicity of the reflection, and
specimen-film distance. However, many approximations are involved and the
resulting equation is not very accurate. The best way to estimate grain size by dif-
fraction is to obtain a set of specimens having known ASTM grain-size numbers,
and to prepare from these a standard set of photographs of the kind shown in Fig.
1. The grain-size number of an unknown specimen of the same material is then
obtained simply by matching its diffraction pattern with one of the standard pho-
tographs, provided both are made under identical conditions.

When the grain size reaches a value somewhere in the range 10 to , the
exact value depending on experimental conditions, the Debye rings lose their spot-
ty character and become continuous. Between this value and (1000 Å), no
change occurs in the diffraction pattern. At about the first signs of line
broadening, due to small crystal size, begin to be detectable. There is therefore a
size range, from 10 (or 1) to , where x-ray diffraction is quite insensitive to
variations in grain size, at least for an incident beam of normal size. With
microbeam techniques, x-ray lines remain spotty down to smaller grain sizes than
are mentioned above, allowing spots from individual grains to be observed and
counted.

0.1 mm

0.1 mm
0.1 mm

1 mm

3 CRYSTALLITE SIZE 

When the size of the individual crystals is less than about (1000 Å), the term
“particle size” is usually used, but the term “crystallite size” is more precise. Crystals
in this size range cause broadening of the Debye rings, the extent of the broaden-
ing being given by:

where B = FWHM (full width at half maximum) of the broadened diffraction line
on the scale (radians) and t = diameter of the crystallites. All diffraction lines
have a measurable breadth, even when the crystallite size exceeds 1000 Å, due to

2u

B �
0.9l

t  cos  u

0.1 mm
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such causes as divergence of the incident beam and size of the sample (in Debye
cameras) and width of the x-ray source (in diffractometers). The breadth B refers,
however, to the extra breadth, or broadening, due to the crystallite-size effect alone.
In other words, B is essentially zero when the crystallite size exceeds about 1000 Å.

Some investigators prefer to determine the integral breadth of a diffraction line
rather than the FWHM. The integral breadth is given by the integrated intensity
divided by the maximum intensity, i.e., it is the width of a rectangle having the same
area and height as the observed line.

The experimental difficulties involved in measuring crystallite size from line
broadening increase with the size of the crystallite measured. Roughly speaking,
relatively crude measurements suffice in the range 0-500 Å, but very good experi-
mental technique is needed in the range 500-1000 Å. With the diffractometer, the
upper limit can approach 2000 Å. Very careful work is required and back-reflection
lines are employed, since such lines exhibit the largest crystallite-size broadening.

Application to loose powders is straight-forward, but applying it to the broad-
ened diffraction lines from very fine-grained metal specimens so as to determine
the size of the individual grains is not very reliable. The individual grains of such a
material are often nonuniformly strained, and this can also broaden the diffraction
lines; an uncertainty therefore exists as to the exact cause of the observed broad-
ening. On the other hand, the individual crystals which make up a loose powder of
fine particle size can often be assumed to be strain-free, provided the material
involved is a brittle (nonplastic) one and all the observed broadening can be
ascribed confidently to the crystallite size effects. In such powders, the individual
crystallites may be much smaller than the particle size since agglomeration of crys-
tallites often occurs. (But note that loose, unannealed metal powders, produced by
filing, grinding, ball milling, etc., almost always contain nonuniform strain.)
Scherrer’s equation has been applied to the measurement of the crystallite size of
such materials as carbon blacks, catalysts, and industrial dusts.

Figure 2 shows diffractometer scans (top) of a nanocrystalline composite con-
sisting of a very small concentration of platinum nanocrystals in a matrix of amor-
phous carbon [1] and (bottom) of a poly crystalline sheet of platinum. A summary
of data from this scan appears in Table 1, and the consistent crystallite size deter-
mined for each peak, as will be seen in Sec. 5, indicates that crystallite size is the
major contribution to broadening in this sample.

Another x-ray method of measuring the size of small particles deserves some
mention, although a complete description is beyond the scope of this book. This is
the method of small-angle scattering. It is a form of diffuse scattering very near the
undeviated transmitted beam, i.e., at angles ranging from 0º up to roughly 2 or
3º. From the observed variation of the scattered intensity vs. angle , the size, and
to some extent the shape, of small particles can be determined, whether they are
amorphous or crystalline [G.34, G.35, 2]. Small-angle scattering has also been

2u
2u
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Figure 2 Comparison of - diffraction patterns for platinum nanoparticles in a silica matrix [1] (top)
and rolled platinum sheet showing strong preferred orientation (bottom).
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used to study precipitation effects in metallic solid solutions.

4 CRYSTAL QUALITY (MICROSTRAIN) 

Nonuniform strain is characteristic of the cold-worked state of metals and alloys
and has been observed in ceramics and semiconductors. When a polycrystalline
piece of metal is plastically deformed, for example by rolling, slip occurs in each
grain and the grain changes its shape, becoming flattened and elongated in the
direction of rolling. The change in shape of any one grain is determined not only by
the forces applied to the piece as a whole, but also by the fact that each grain retains

hkl FWHM (�2�) t (Å)

111 1.9 50

200 1.7 55

220 2.1 50

311 2.5 45-50

TABLE 1
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contact on its boundary surfaces with all its neighbors. Because of this interaction
between grains, a single grain in a polycrystalline mass is not free to deform in the
same way as an isolated crystal would, if subjected to the same deformation by
rolling. As a result of this constraint by its neighbors, a plastically deformed grain in
a solid aggregate usually has regions of its lattice left in an elastically bent or twist-
ed condition or, more rarely, in a state of uniform tension or compression. The
metal is then said to contain residual stress. (Such stress is often called “internal
stress” but the term is not very informative since all stresses, residual or externally
imposed, are internal. The term “residual stress” emphasizes the fact that the stress
remains after all external forces are removed.)

When an annealed metal or alloy is cold worked, its diffraction lines become
broader. This is a well-established, easily verified experimental fact, but its expla-
nation was for many years a matter of controversy. Some investigators felt that the
chief effect of cold work was to fragment the grains to a point where their small size
alone was sufficient to account for all the observed broadening. Others concluded
that the nonuniformity of strain produced by cold work was the major cause of
broadening, with grain fragmentation possibly a minor contributing cause.This con-
troversy revolved around the measurement of line widths and their interpretation
in terms of either “particle-size broadening,” according to “strain broadening”.

In 1949, however, Warren pointed out that there was important information
about the state of a cold-worked metal in the shape of its diffraction lines, and that
to base conclusions only on line width was to use only part of the experimental evi-
dence. If the observed line profiles, corrected for instrumental broadening, are
expressed as Fourier series, then an analysis of the Fourier coefficients discloses
both particle size and strain, without the necessity for any prior assumption as to
the existence of either [G.17, G.20]. Warren and Averbach [4] made the first meas-
urements of this kind, on brass filings, and many similar studies followed [5].
Somewhat later, Paterson [6] showed that the Fourier coefficients of the line pro-
file could also disclose the presence of stacking faults caused by cold work. (In FCC
metals and alloys, for example, slip on {111} planes can here and there alter the nor-
mal stacking sequence ABCABC of these planes to the faulted sequence
ABCBCA .) Thus three causes of line broadening are now recognized: small
crystallite size, nonuniform strain, and stacking faults.

These studies of line shape showed that it was impossible to generalize about the
causes of line broadening in cold-worked metals and alloys. In some materials all
three causes contribute, in others only one.

The broadening of a diffraction line by deformation cannot always be observed
by simple inspection of a photograph or a diffractometer scan unless some standard
is available for comparison. However, the separation of the doublet furnishes a
very good “internal standard.” In the back-reflection region, a relatively strain-free
material produces a well-resolved doublet, one component due to radiation
and the other to . For a given set of experimental conditions, the separation of
this doublet is constant and independent of the amount of microstrain. But as the

Ka2

Ka1

Ka

p

p
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amount of deformation is increased, the broadening increases, until finally the two
components of the doublet overlap to such an extent that they appear as one unre-
solved line. An unresolved doublet can therefore be taken as evidence of cold
work, if the same doublet is resolved when the material is in the annealed or strain-
free condition.

With this background, consider some of the diffraction effects associated with
the processes of recovery, recrystallization, and grain growth. When a cold-worked
metal or alloy is annealed at a low temperature, recovery takes place; at a somewhat
higher temperature, recrystallization; and at a still higher temperature, grain
growth. Or at a sufficiently high constant temperature, these processes may be
regarded as occurring consecutively in time. During recovery, both macro- and
micro-residual stress are reduced in magnitude, but strength and hardness remain
high; much of this stress relief appears to be due to polygonization, which can occur
in the individual grains of an aggregate just as in a single crystal. During recrystal-
lization, new grains form, residual stress is practically eliminated, and strength and
hardness decrease rather abruptly. During grain growth some grains grow larger by
swallowing neighboring grains.

Because the nonuniform strain due to residual microstress is the major cause of
deformation-induced line broadening, the broad diffraction lines characteristic of
cold-worked metal partially sharpen during recovery. When recrystallization
occurs, the lines attain their maximum sharpness. During grain growth, the lines
become increasingly spotty as the grain size increases.

The hardness curve and diffraction patterns of Fig. 3 illustrate these changes for
an alpha brass, a solid solution of zinc in copper, containing 30 percent zinc by
weight. The hardness remains practically constant, for an annealing period of one
hour, until a temperature of 200ºC is exceeded, and then decreases rapidly with
increasing temperature, as shown in (a). The diffraction pattern in (b) exhibits the
broad diffuse Debye lines produced by the cold-rolled, unannealed alloy. These
lines become somewhat narrower for specimens annealed at 100º and 200ºC, and
the doublet becomes partially resolved at 250ºC. At 250ºC, therefore, the recov-
ery process appears to be substantially complete in one hour and recrystallization
is just beginning, as evidenced by the drop in Rockwell B hardness from 98 to 90.
At 300ºC the diffraction lines are quite sharp, and the doublets are completely
resolved, as shown in (c). Annealing at temperatures above 300ºC causes the lines
to become increasingly spotty, indicating that the newly recrystallized grains are
increasing in size. The pattern of a specimen annealed at 450ºC, when the hardness
had dropped to 37 Rockwell B, appears in (d).

Diffractometer measurements made on the same specimens disclose both more,
and less, information. Some automatically recorded profiles of the 331 line, the
outer ring of the patterns shown in Fig. 3, are reproduced in Fig. 4. It is much easi-
er to follow changes in line shape by means of these curves than by inspection of
pinhole photographs. Thus the slight sharpening of the line at 200ºC is clearly evi-
dent in the diffractometer record, and so is the doublet resolution which occurs at
250ºC. But note that the diffractometer cannot “see” the spotty diffraction lines

Ka

Ka
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Figure 3 Changes in hardness and diffraction lines of 70 Cu-30 Zn specimens, reduced in thickness by
90 percent by cold rolling, and annealed for 1 hour at the temperatures indicated in (a), (b), (c), and (d)
are portions of back-reflection pinhole patterns of specimens annealed at the temperatures stated 
(filtered copper radiation).

(b) As rolled (c) 1 hour at 330˚C

(d) 1 hour at 450˚C(a) Hardness curve
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caused by coarse grains.There is nothing in the diffractometer records made at 300º
and 450ºC which would immediately suggest that the specimen annealed at 450ºC
had the coarser grain size, but this fact is quite evident in the pinhole patterns
shown in Figs. 3(c) and (d).
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Figure 4 Diffractometer traces of the 331 line of the cold-rolled and annealed 70-30 brass specimens
described in Fig.3. Filtered copper radiation. Logarithmic intensity scale. All curves displaced vertically
by arbitrary amounts.
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2 Even if no photographic work is done in the x-ray laboratory in which one is working, and hence no
developing and fixing solutions are on hand, it is possible to use a small amount of  developer and fixer
from a TEM darkroom or from a darkroom for printing positives from microscopy negatives.

If an x-ray camera or two-dimensional detector are not available, a piece of den-
tal film can be placed just in front of the detector slit of the diffractometer can dis-
close whether or not the diffraction lines are spotty. (Dental x-ray film, available
from dental supply houses, comes in the form of a single piece of film, typically
about , enclosed in a thin envelope of light-tight plastic.2) If a diffraction
line is spotty on a photograph, the grain size of the specimen is too large for accu-
rate intensity measurements with the diffractometer.

Figures 3 and 4 illustrate line sharpening by annealing. Conversely, when an
annealed metal is progressively deformed, the x-ray lines progressively broaden
and the hardness increases. In fact, the hardness of a particular metal or alloy can
be rather accurately measured from the breadth of its diffraction lines. The relation
between line breadth and hardness is not general, but must be determined experi-
mentally for each particular material. (Very slight degrees of deformation can be
detected by observation of the doublet. Rather than attempting to measure a
slight increase in line width, one measures the ratio of the height of the “valley”
between and to the height of . This ratio increases rapidly as the lines
broaden.) 

When steel is hardened by quenching, the x-ray lines become very broad because
of the microstrains due to the formation of martensite. Subsequent tempering caus-
es progressive softening and line sharpening. Here again, a useful relation can be
established experimentally between line width and hardness, applicable to a partic-
ular type of steel.

Line-width observations are often made in back reflection, whether by a photo-
graphic technique (Fig. 3) or by the diffractometer (Fig. 4). It is then necessary to
remember that the observation applies only to a thin surface layer of the specimen.
For example, Fig. 5(a) was obtained from a piece of copper and exhibits unresolved
doublets in the high-angle region. The inexperienced observer might conclude that
this material was highly cold worked. What the x-ray “sees” is cold worked, but it
sees only to a limited depth. Actually, the bulk of this specimen is in the annealed
condition, but the surface from which the x-ray pattern was made had had 
removed by grinding on a belt sander after annealing. This treatment cold worked
the surface to a considerable depth. By successive etching treatments and diffrac-
tion patterns made after each etch, the change in structure of the cold-worked layer
could be followed as a function of depth below the ground surface. Not until a total
of had been removed did the diffraction pattern become characteristic of the
bulk of the material; see Fig. 5(b), where the spotty lines indicate a coarse-grained,
recrystallized structure.

75 mm

50 mm

Ka2Ka2Ka1

Ka

4 � 5 cm

Structure of Polycrystalline Aggregates

409
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Figure 5 Back-reflection pinhole patterns of coarse-grained recrystallized copper. Unfiltered copper
radiation: (a) from surface ground on a belt sander; (b) after removal of 0.003 in. from this sur-
face by etching.

175 mm2

(a) (b)

5 DEPTH OF X-RAY PENETRATION

Observations of this kind suggest that it might be well to consider in some detail the
general problem of x-ray penetration. Most metallurgical specimens strongly
absorb x-rays, and the intensity of the incident beam is reduced almost to zero in a
very short distance below the surface. The diffracted beams therefore originate
chiefly in a thin surface layer whenever a reflection technique, as opposed to a
transmission technique, is used, i.e., whenever a diffraction pattern is obtained in a
back-reflection camera of any kind, a Seemann-Bohlin camera, or a diffractometer
as normally used. The example of Fig. 5 just showed how a back-reflection pinhole
photograph of a ground surface discloses the cold-worked condition of a thin sur-
face layer and gives no information whatever about the bulk of the material below
that layer.

These circumstances naturally pose the following question: what is the effective
depth of x-ray penetration? Or, stated in a more useful manner, to what depth of the
specimen does the information in such a diffraction pattern apply? This question has
no precise answer because the intensity of the incident beam does not suddenly
become zero at any one depth but rather decreases exponentially with distance
below the surface. Building on the results, one can express the intensity diffracted by
the layer at depth as a fraction of the total integrated intensity diffracted by a spec-
imen of infinite thickness (a few thousandths of an inch for most metals). Call this
fraction Gx. Then

a
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(3)

permits calculatation of the fraction Gx of the total diffracted intensity which is con-
tributed by a surface layer of depth x. Suppose that a contribution from this surface
layer of 95 percent (or 99 or 99.9 percent) of the total is enough so that the contri-
bution from the material below that layer can be ignored then x is the effective
depth of penetration.The information recorded on the diffraction pattern (or, more
precisely, 95 percent of the information) then refers to the layer of depth x and not
to the material below it. As was seen before for the parafocusing diffractometer,

, and Eq. (3) reduces to

(4)

which shows that the effective depth of penetration decreases as decreases and
therefore varies from one diffraction line to another. In back-reflection cameras,

, and

(5)

where .
For example, the conditions applicable to the outer diffraction ring of Fig. 5 are

and º. By using Eq. (5), Gx can be determined as function
of x (Fig. 6). Note that 95 percent of the information on the diffraction pattern
refers to a depth of only about . It is therefore not surprising that the pattern
of Fig. 5(a) discloses only the presence of cold-worked metal, since repeated etch-
ing treatments showed that the depth of the cold-worked layer was about .
Of course, the information recorded on the pattern is heavily weighted in terms of
material just below the surface; thus 95 percent of the recorded information applies
to a depth of , but 50 percent of that information originates in the first .
(Note that an effective penetration of means that a surface layer only one
grain thick is effectively contributing to the diffraction pattern if the specimen has
an ASTM grain-size number of 8.This layer contains some 300,000 reflecting lattice
planes for the 331 diffraction line considered here.)

Equation (4) can be put into the following form, which is more suitable for cal-
culation:

[Diffractometer]x �
Kx sin  u

2m
.

2mx

sin  u
� ln a

1
1 � Gx

b � Kx,

25 mm
25 mm25 mm

75 mm

25 mm

2u � 136.7m � 473 cm�1

b � 2u � 90°

Gx � 31 � e�mx11�1>sin b2 4 ,

g � 90°

u

Gx � 11 � e�2mx>sinu2,

g � b � u

Gx �

�
x�x

x�0
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�
x�q

x�0
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Figure 6 The fraction of the total diffracted intensity contributed by a surface layer of depth x, for
, , and normal incidence.2u � 136.7om � 473 cm�1

Gx

Similarly, Eq. (5) becomes

. [Back-reflection camera]

Values of Kx for various assumed values of Gx are given in Table 2.
Calculations of the effective depth of penetration can be valuable in many appli-

cations of x-ray diffraction. The effective depth of penetration must be made as
large as possible in some applications. Then and in Eq. (3) must be as large as
possible, indicating the use of high-angle lines, and as small as possible, indicating
short-wavelength radiation. Other applications may demand very little penetration,
as when information, e.g., chemical composition or lattice parameter, is needed
from a very thin surface layer. Then must be made large, by using radiation whichm

m

bg

x �
Kx sin  b

m11 � sin  b2

mx a1 �
1

sin b
b � ln a

1
1 � Gx

b � Kx,

Gx 0.50 0.75 0.90 0.95 0.99 0.999

Kx 0.69 1.39 2.30 3.00 4.61 6.91

TABLE 2
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3 Some of these requirements may be contradictory. For example, in measuring the lattice parameter of
a thin surface layer with a diffractometer, a compromise must be found between the low value of 
required for shallow penetration and the high value of required for precise parameter measurements.u

u

is highly absorbed, and and small, by using a diffractometer at low values of . 3

By these means the depth of penetration can often be made surprisingly small. For
instance, if a steel specimen is examined in a diffractometer with radiation,
95 percent of the information afforded by the lowest angle line of ferrite (the 110
line at ) applies to a depth of only . There are limits, of course, to
reducing the depth of x-ray penetration, and when information is required from
very thin surface films, electron diffraction, glancing angle diffraction, or x-ray
reflectivity are far more suitable tools.

Although the diffracted beam in any reflection method comes only from a very
thin surface layer, it must not be supposed that the  information on a diffraction
pattern obtained by a transmission method is truly representative of the entire
cross section of the specimen. Calculations such as those given above show that a
greater proportion of the total diffracted energy originates in a layer of given thick-
ness on the back side of the specimen (the side from which the transmitted beam
leaves) than in a layer of equal thickness on the front side. If the specimen is high-
ly absorbing, a transmission method can be almost as nonrepresentative of the
entire specimen as a back-reflection method, in that most of the diffracted energy
will originate in a thin surface layer. See Problem 5.

2 mm2u � 45o

Cu Ka

2ubg

6 SIZE AND STRAIN SEPARATION

As indicated in Sec. 4, separating the different contributions to line broadening, if
present, requires use of multiple diffraction peaks and analysis of the peaks’ shapes.
The quality of the diffraction pattern, or more specifically the diffraction peaks and
their tails, must be very high if the somewhat involved Fourier analysis pioneered
by Warren is to be worthwhile [e.g., 3-6]. Other simpler approaches using peak
widths have their place in analyzing size and strain broadening.

It is important to realize that crystallite sizes obtained from peak width meas-
urements give volume-average sizes whereas those from peak shape analysis give
number-averages. This can be seen by comparing a histogram of average crystallite
diameters observed with TEM (Fig. 7) with the  average diameter determined
from diffractometry and the Scherrer equation [7]. The sample was a dilute mix-
ture of platinum nanoparticles in an amorphous silica matrix, the diffraction pat-
tern of the sample appears in Fig. 2 and Table 1 lists the crystallite sizes obtained
from the x-ray diffraction peaks and Scherrer’s equation. The crystallite size aver-
aged 38 Å from TEM and 50 Å from the FWHM of the x-ray diffraction peaks. A
small number of very large crystallites were noted during TEM of the samples,
and simulation of the diffraction peaks [8] produced by a small number of large
crystallites mixed with a much larger number of 35-40 Å crystallites reveals 
that this is the probable origin of the difference between TEM and X-ray FWHM
sizes.
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Figure 7 Histogram of Pt nanocluster size as observed by TEM in a Pt/silica xerogel nanocomposite
[10].

Contributions from crystallite size, micro strain and instrumental effects can be
separated in a straight-forward fashion if the peaks are Lorentzian- or Gaussian-
shaped. If

Bexp is the experimentally measured FWHM,
Bsize is the FWHM due to crystallite size,
Bstrain is the FWHM due to micro strain and
Binst is the FWHM due to the instrument,

then for Lorentzian peaks

(8)

and for Gaussian peaks

. (9)

Correction for the instrumental width in either case can be obtained by recording
a diffraction pattern, under identical conditions, of the same substance but in a well-
annealed, large-grained condition.

Separation of size and strain components can be done by plotting B as 
a function of (Fig. 8); this type of plot is known as a Williamson-Hall plot [9]
and implicitly assumes that peak shapes are Lorentzian. Rearranging the terms 
produces

(10)B cos u � 0.9l>t

sin u
cos u

Bexp
2 � Bsize

2 � Bstrain
2 � Binst

2

Bexp � Bsize � Bstrain � Binst
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Figure 8 Williamson-Hall plot for MgO and Al2O3, curves (A) ball milled for 2 hours and (B) ball milled
for 2 hours, then annealed for 2 hours at . After Lewis and Lindley [10].1350� C

. (11)

If size broadening is the only significant contribution to peak width, then 
is a constant for all peaks (i.e., its Williamson-Hall plot is a horizontal line). If strain
broadening is the important contribution, is a linear function of .
Figure 8 shows data for two oxide ceramics in two conditions: after ball milling and
ball milling followed by annealing at 1350 C for 2 hr [10]. As one would expect, ball
milling produces less microstrain in Al2O3, a substance which is often used to pol-
ish solid samples prior to optical microscopy, and the crystallite size of the two

sin uBexp cos u

Bexp cos u

b cos u � �21¢d>d2 sin u
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oxides is similar. The crystallite size remained constant after annealing, but virtual-
ly all of the strain was relieved.

CRYSTAL ORIENTATION

7 GENERAL

Each grain in a polycrystalline aggregate normally has a crystallographic orienta-
tion different from that of its neighbors. Considered as a whole, the orientations of
all the grains may be randomly distributed in relation to some selected frame of ref-
erence, or they may tend to cluster, to a greater or lesser degree, about some par-
ticular orientation or orientations. Any aggregate characterized by the latter condi-
tion is said to have a preferred orientation, or texture, which may be defined simply
as a condition in which the distribution of crystal orientations is nonrandom
Preferred orientation can have a profound effect on diffracted intensities measured
by diffractometry.

Preferred orientation is a very common condition. Among metals and alloys it is
most evident in wire and sheet, and the kinds of texture found in these products are
treated below. The preferred orientation that is produced by the forming process
itself (wire drawing or sheet rolling) is called a deformation texture. It is due to the
tendency of the grains in a polycrystalline aggregate to rotate during plastic defor-
mation; each grain undergoes slip and rotation in a complex way that is determined
by the imposed forces and by the slip and rotation of adjoining grains; the result is
a preferred, nonrandom orientation. When the cold-worked metal, possessed of a
deformation texture, is recrystallized by annealing, the new grain structure usually
has a preferred orientation too, often different from that of the cold-worked mate-
rial. This is called a recrystallization texture or annealing texture. It is due to the
influence which the texture of the cold-worked matrix has on the nucleation and/or
growth of the new grains in that matrix.

Preferred orientation is not confined to metallurgical products. It also exists in
rocks, in ceramics, in semiconductor thin films and other coatings and in both natu-
ral and artificial polymeric fibers and sheets. In fact, preferred orientation is gener-
ally the rule, not the exception, and the preparation of an aggregate with completely
random crystal orientations is a difficult matter.

The industrial importance of preferred orientation lies in the effect, often very
marked, which it has on the overall, macroscopic properties of materials. Given the
fact that all single crystals are anisotropic, i.e., have different properties in different
directions, it follows that an aggregate having preferred orientation must also have
directional properties to a greater or lesser degree. Such properties may or may not
be beneficial, depending on the intended use of the material. For example, sheet
steel for the cores of small electric motors should have, for magnetic reasons, all
grains oriented with their {100} planes parallel to the sheet surface. But this texture
would not be satisfactory if the steel were to be formed into a cup by deep draw-
ing: here a texture with {111} planes parallel to the surface would make the steel less
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4 See the next section for one exception to this statement.

likely to crack during the severe deformation of deep drawing; however, if the part
to be formed by deep drawing has an unsymmetrical shape, a still different texture,
or none at all, might yield better results. Some control of texture is possible by the
proper choice of production variables such as degree of deformation and annealing
temperature, but metallurgists do not yet understand texture formation well
enough to produce any desired texture in any particular metal at will.

Because of its technological importance, the literature on observed textures and
an texture prediction is extensive. For information on deformation and recrystal-
lization textures observed in specific materials in wire and sheet form, the reader
should consult Barrett and Massalski [G.10] and Dillamore and Roberts [11]. Here
the focus is on the nature of textures and with their determination by x-ray meth-
ods. Detailed coverage of the various techniques, special experimental methods and
computational techniques appears elsewhere [G.36 and G.37].

As was noted before in this book, a pinhole photograph made of a polycrys-
talline specimen with characteristic radiation consists of concentric Debye rings.
The implicit assumption has been that these rings are always continuous and of con-
stant intensity around their circumference, but actually such rings are not formed
unless the individual crystals in the specimen have completely random orienta-
tions.4 If the specimen exhibits preferred orientation, the Debye rings are of
nonuniform intensity around their circumference (if the preferred orientation is
slight), or actually discontinuous (if there is a high degree of preferred orientation).
In the latter case, certain portions of the Debye ring are missing because the orien-
tations which would diffract to those parts of the ring are simply not present in the
specimen. Nonuniform Debye rings can therefore be taken as conclusive evidence
for preferred orientation, and analyzing the nonuniformity allows determination of
the kind and degree of preferred orientation present. (This nonuniformity is evi-
dent even in some Hull/Debye–Scherrer patterns: if a wire having preferred orien-
tation is examined in a Hull/Debye–Scherrer camera, the nonuniformity of Debye
rings is usually apparent even though such a camera records only a portion of
the rings.)

Fiber Texture

The individual crystals in wire are so oriented that the same crystallographic direc-
tion [ ] in most of the grains is parallel or nearly parallel to the wire axis.
Because a similar texture occurs in natural and artificial fibers, it is called a fiber tex-
ture and the axis of the wire is called the fiber axis. Materials having a fiber texture
have rotational symmetry about an axis: all crystal orientations about this axis are
equally probable, like those of beads on a string. A fiber texture is therefore to be
expected in any material formed by forces that have rotational symmetry about an
axis, for example, in wire and rod formed by drawing, swaging, or extrusion. Less
common examples of fiber texture are sometimes found in sheet formed by simple

uyw
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compression, in coatings formed by hot dipping, electroplating, and evaporation,
and in castings among the columnar crystals next to the mold wall. The fiber axis in
these is perpendicular to the plane of the sheet or coating, and parallel to the axis
of the columnar crystals.

Fiber textures vary in perfection, i.e., in the scatter of the direction [ ] about
the fiber axis, and both single and double fiber textures have been observed. Thus,
cold-drawn aluminum wire has almost a single [111] texture, but copper, also FCC,
has a double [111] + [100] texture; i.e., in drawn copper wire there are two sets of
grains, the fiber axis of one set being [111] and that of the other set [100].

Sheet Texture

In its simplest, most highly developed form, the texture of sheet is such that most of
the grains are oriented with a certain crystallographic plane (hkl) roughly parallel
to the sheet surface, and a certain direction [ ] in that plane roughly parallel to
the direction in which the sheet was rolled. Such a texture is described by the short-
hand notation (hkl)[ ]. In an ideal texture of this kind, the grain orientations in
the sheet are fixed with respect to axes in the sheet; there is none of the rotational
freedom of grain orientation possessed by a fiber texture.

The notation (hkl)[ ] specifies what is called an ideal orientation. Some met-
als and alloys have sheet textures so sharp that they can be adequately described by
stating the ideal orientation to which the grains of the sheet closely conform. Most
sheet textures, however, have so much scatter that they can be approximated sym-
bolically only by the sum of a number of ideal orientations or texture components,
and even such a description is inadequate. Thus, the deformation texture of brass
sheet (70 Cu-30 Zn) is very near the ideal orientation (110)[ ]. But both the
deformation and recrystallization textures of low-carbon sheet steel have so much
scatter that the grain orientations present can be represented accurately only by a
graphical description, such as a pole figure.

Pole Figures

A pole figure is a stereographic projection, with a specified orientation relative to
the specimen, that shows the variation of pole density with pole orientation for a
selected set of crystal planes. This method of describing textures was first used by
the German metallurgist Wever in 1924 [12], and its meaning can best be illustrat-
ed by the following example. Suppose a very coarse-grained sheet of a cubic metal
contains only 10 grains, and the orientation of each of these 10 grains has been
determined by one of the Laue methods. The orientations of all of these grains can
be summarized by plotting the positions of their {100} poles on a single stereo-
graphic projection, with the projection plane parallel to the sheet surface. Since
each grain has three {100} poles, there will be a total of poles plotted
on the projection. If the grains have a completely random orientation, these poles

3 � 10 � 30

112
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(a) (b)

T.D. T.D. T.D.T.D.

R.D. R.D.

Figure 9 (100) pole figures for sheet material, illustrating (a) random orientation and (b) preferred ori-
entation. R.D. (rolling direction) and T.D. (transverse direction) are reference directions in the plane of
the sheet.

5 If the orientation is random, there will be equal numbers of poles in equal areas on the surface of a ref-
erence sphere centered on the specimen. There will not be equal numbers, however, on equal areas of
the pole figure, since the stereographic projection is not area-true. This results, for randomly oriented
grains, in an apparent clustering of poles at the center of the pole figure, since distances representing
equal angles are much smaller in this central region than in other parts of the pole figure.

will be distributed uniformly5 over the projection, as indicated in Fig. 9(a). But if
preferred orientation is present, the poles will tend to cluster is certain areas of the
projection, leaving other areas virtually unoccupied. For example, this clustering
might take the particular form shown in Fig. 9(b). This is called the “cube texture,”
because each grain is oriented with its (100) planes nearly parallel to the sheet sur-
face and the [001] direction in these planes nearly parallel to the rolling direction.
(This simple texture, which may be described by the shorthand notation (100)[001],
actually forms as a recrystallization texture in many face-centered cubic metals and
alloys under suitable conditions.) If a (111) pole figure were constructed by plotting
only {111} poles, the resulting pole figure would look entirely different from 
Fig. 9(b) for the same preferred orientation; in fact, it would consist of four “high-
intensity” areas, one near the center of each quadrant. This illustrates the fact that
the appearance of a pole figure depends on the indices of the poles plotted, and that
the choice of indices depends on which aspect of the texture one wishes to show
most clearly. For example, if the plastic deformation of a certain face-centered cubic
material in sheet form were of concern, a (111) pole figure would be plotted
because it would show at a glance the orientation of the {111} slip planes. Similarly,
if the magnetic behavior of iron sheet is of interest, a (100) pole figure would be
preferred, because the directions of high magnetic permeability in iron are 
directions.

The pole figure of a fiber texture necessarily has rotational symmetry about the
fiber axis (Fig. 10).The degree of scatter of this texture is given by the angular width

H100I
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F.A.

N

�

Figure 10 (111) pole figure for an imperfect [100] fiber texture.
F.A. = fiber axis. Cross-hatched areas are areas of high (111)
pole density.

6 The term “area detector” has been substituted here for the earlier designation of “photographic.”
Before the development of modern x-ray detectors, photographic emulsions were the only such detec-
tors. Now image plates, CCD detectors or multiwire detectors would be used in place of film, and the
more inclusive “area detector” seems more appropriate.

of the bands that show where (111) poles are located. The angle is the angle
between the fiber axis and the general position N of any pole being considered. For
the texture shown the bands are centered on values, measured from the top and
bottom of the projection, of , because this is the angle between the [100] fiber
axis and the (111) poles being displayed.

Because of its rotational symmetry a pole figure of a fiber texture displays
redundant information, in the sense that the pole density along any longitude line
(meridian) is the same as along any other. Thus a plot of pole density vs. angle 
between 0 and is a simpler description of the texture; for the texture shown in
Fig. 10, such a plot would show a single maximum at 54.7°.

When the grain size of the specimen is small, as it normally is, separate determi-
nation of the orientations of a representative number of grains, as suggested by
Fig. 9, is out of the question. Instead, x-ray methods are used in which the diffrac-
tion effects from thousands of grains are automatically averaged.The (hkl) pole fig-
ure of a fine-grained material is constructed by analyzing the distribution of inten-
sity around the circumference of the corresponding hkl Debye ring. Two methods
of doing this are available, the area detector6 and the diffractometer method, and
both are time consuming.

Although only a pole figure can provide a complete description of preferred
orientation, some information can be obtained fairly quickly by a comparison of
calculated diffraction line intensities with those observed on an ordinary diffrac-
tometer scan. As stated relative line intensities are given accurately only when
the crystals of the specimen have completely random orientations. Therefore any
radical disagreement between observed and calculated intensities is immediate
evidence of preferred orientation in the specimen, and, from the nature of the
disagreement, certain limited conclusions can usually be drawn concerning the

900
f

54.7o
f

f
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nature of the texture. For example, if a sheet specimen is examined in the diffrac-
tometer in the usual way (the specimen making equal angles with the incident and
diffracted beams the parafocusing geometry), then the only grains which can con-
tribute to the hkl reflection are those whose (hkl) planes are parallel to the sheet
surface. If the texture is such that there are very few such grains, the intensity of the
hkl reflection will be abnormally low. In another case, a given reflection may have
abnormally high intensity, which would indicate that the corresponding planes were
preferentially oriented parallel or nearly parallel to the sheet surface. As an illus-
tration, the 200 diffractometer reflection from a specimen having the cube texture
is abnormally high, and from this fact alone it is possible to conclude that there is a
preferred orientation of (100) planes parallel to the sheet surface. The bottom dif-
fractometer scan of Fig. 2 shows a platinum sheet with cube texture. However, no
conclusion is possible as to whether or not there is a preferred direction in the (100)
plane parallel to some reference direction on the sheet surface. Such information
can be obtained only by making a pole figure.

8 THE TEXTURE OF WIRE (AREA DETECTOR METHOD)

The chief problem presented by a fiber texture is the identification of the fiber axis
[uvw]. This can be done fairly easily with a single two-dimensional pinhole diffrac-
tion pattern, and the procedure is described in this section. If, in addition, the
amount of scatter in the texture must be determined, a diffractometer method is
preferable (Sec. 10) although image plates appear to provide a convenient alterna-
tive [13, 14].

The wire is examined in a transmission pinhole camera with filtered or crystal-
monochromatized radiation and with the wire axis vertical, parallel to one edge of
the flat area detector. The problem of finding the indices [uvw] of the fiber axis is
best approached by considering the diffraction effects associated with an ideal case,
for example, that of a wire of a cubic material having a perfect [100] fiber texture.
Consider the 111 reflection. In Fig. 11, the wire specimen is at C with its axis along
NS, normal to the incident beam IC. CP is the normal to a set of (111) planes.
Diffraction from (111) can occur only when they are inclined to the incident beam
at an angle which satisfies Bragg’s law, and this requires that the (111) pole lie
somewhere on the circle PUQV, since then the angle PCI between the plane nor-
mal and the incident beam will always be 90º–0. For this reason, PUQV is called the
reflection circle. If the grains of the wire had completely random orientations, then
(111) poles would lie at all positions on the sphere surface and therefore at all posi-
tions on the reflection circle, and the 111 reflection would consist of the complete
Debye ring indicated in the drawing. But if the wire has a perfect [100] fiber tex-
ture, then the diffraction pattern produced by a stationary specimen is identical
with that obtained from a single crystal rotated about the axis [100], because of the
rotational symmetry of the wire. During this rotation, the (111) pole is confined to
the small circle PAQB, all points of which make a constant angle º with the
[100] direction N. Therefore, the only (111) planes in the specimen that are able to

f � 54.7
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Figure 11 Geometry of diffraction from material having a fiber texture. F.A. = fiber axis.

diffract are those with poles at the intersections of the reflection circle and the cir-
cle PAQB. These intersections are located at P and Q, and the corresponding dif-
fraction spots at R and T, at an azimuthal angle from a vertical line through the
center of the film. Two other spots, not shown, are located in symmetrical positions
on the lower half of the film. If the texture is not perfect, each of these spots will
broaden peripherally into an arc whose length is a function of the degree of scatter
in the texture.

By solving the spherical triangle IPN, results the following general relation
results between the angles , and :

(8)

These angles are shown stereographically in Fig. 12, projected on a plane normal to
the incident beam. The (111) pole figure in (a) consists simply of two arcs which are
the paths traced out by {111} poles during rotation of a single crystal about [100]. In
(b), this pole figure has been superimposed on a projection of the reflection circle
in order to find the locations of the diffraction plane normals. Radii drawn through
these points (P, Q, P´, and Q´) then enable the angle to be measured and the
appearance of the diffraction pattern to be predicted.

An unknown fiber axis is identified by measuring the angle on the film or area
detector and obtaining from Eq. (8). When this is done for a number of different
hkl reflections, a set of values is obtained from which the indices [uvw] of thef

f

d

d

cos  f � cos  u  cos  d
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Figure 12 Perfect [100] fiber texture (a) (111) pole figure; (b) location of reflecting plane normals.

fiber axis can be determined.The procedure will be illustrated with reference to the
diffraction pattern of drawn aluminum wire shown in Fig. 13, which has the incom-
plete Debye rings typical of a pronounced texture. The first step is to index the
Debye rings. Values of for each ring are calculated from measurements of ring
diameter, and hkl indices are assigned by the use “Appendix: Quadratic Forms of
Miller Indices.” In this way the inner ring is identified as a 111 reflection and the
outer one as 200. The angle is then measured from a vertical line through the cen-
ter of the film to the center of each strong Debye arc. The average values of these
angles are given below, together with the calculated values of :f

d

u

Figure 13 Transmission pinhole pattern of
cold-drawn aluminum wire, wire axis vertical.
Filtered copper radiation. (The radial streaks
near the center are formed by the white radi-
ation in the incident beam.)
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Line hkl �� �� 
�

Inner 111 69 19.3 70
Outer 200 52 22.3 55

The normals to the (111) and (200) planes therefore make angles of 70º and 55º,
respectively, with the fiber axis. The indices [uvw] of this axis are determined either
by the graphical construction by inspection of a table of interplanar angles. In this
case, shows that [uvw] must be [111], since the angle between and is 70.5
and that between and is 54.7º, and these values agree with the values of

given above within experimental error. The fiber axis of drawn aluminum wire is
therefore [111]. There is some scatter of the [111] direction about the wire axis,
however, inasmuch as the reflections on the film are short arcs rather than sharp
spots. This can be taken into account by measuring the angular range of for each
arc and calculating the corresponding range of . A (111) pole figure of the wire
would then resemble Fig. 10.

Close inspection of Fig. 13 reveals a weak maximum on the outer ring (200
reflection) at the equator º), indicating a weak [100] component in the tex-
ture; there is also evidence of this component on the inner 111 ring.This wire there-
fore has a double fiber texture: [111] strong and [100] weak. The relative amounts
of these components can be measured from the output of as area detector or with
a diffractometer (Sec. 10).

If a coating, such as an electrodeposit, on a flat sheet has a fiber texture with the
fiber axis [uvw] normal to the sheet, then the (hkl) planes normal to [uvw] will be
parallel, or nearly parallel, to the sheet surface. Unusual diffraction effects can then
occur:

1. Parafocusing diffractometer. The incident and diffracted beams make the
same angle with the sheet surface, so that the hkl reflection is abnormally
strong and all others weak or absent.

2. Back-reflection pinhole camera. If the incident beam is normal to the sheet
specimen and therefore parallel to the fiber axis, and a projection like that
shown in Fig. 12(b) is made (projection plane parallel to sheet), then both
the incident beam and the fiber axis coincide with the center of the projec-
tion. If the texture is ideally sharp, the (hkl) pole figure will consist of one
or more concentric circles centered on the center of the projection, and the
chance that one of these pole circles will coincide with the concentric
reflection circle is essentially zero; no reflection will occur. But if the tex-
ture has enough scatter, one of the pole circles will broaden into a band
wide enough to touch the reflection circle at all points; a Debye ring of uni-
form intensity will be formed. Thus a uniform Debye ring is not always evi-
dence for randomly oriented grains.

1d � 90
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9 THE TEXTURE OF SHEET (DIFFRACTOMETER METHODS)

Prior to about 1950, the texture of sheet materials was determined by a photo-
graphic method, in which diffracted x-ray intensities were visually estimated from
the degree of film blackening on a series of photographs. The resulting pole figures
were qualitative; they were divided by contour lines into areas in which the pole
density was designated by terms such as low, medium, and high.

Once the photographic method was regarded as obsolete, because the diffrac-
tometer permited direct measurement of diffracted intensities and yielded quanti-
tative pole figures. With the advent of the new area detectors, however, this method
many regain its importance.

The essential difference between the area detectors and diffractometer methods
can be understood by comparing Figs. 13 and 14. To analyze the information given
in Fig. 13, the degree of film blackening, is estimated at points around the Debye
ring. With a diffractometer (Fig. 14) the same nonuniform Debye ring exists in
space, but the detector cannot be moved around the ring to explore the variation in
intensity. Instead, the detector is fixed and the specimen is rotated. If the sheet spec-
imen is rotated in its own plane, for example, the Debye ring rotates with it, and the
high- and low-intensity regions are successively brought into a position where they
can be measured by the detector.At each specimen position the intensity of the dif-
fracted beam is taken to be proportional to the volume of grains then oriented to
diffract that beam, except for corrections that may be necessary; this volume is in
turn proportional to pole density.

To determine an (hkl) pole figure, the detector is fixed at the proper angle to
receive the hkl reflection and the sheet specimen is rotated in particular ways
described below. The pole figure is a projection made on a plane parallel to the
sheet surface and therefore rotates with the sheet. But, whatever the orientation of
the sheet, the normal N to the diffraction planes (hkl) remains fixed in space, bisect-
ing the angle between the incident and diffracted beams. Therefore N can be imag-
ined as moving over a fixed projection plane. The position of N on the pole figure

2u

Debye
ring

specimen
normal

diffractometer
axis

specimen

detector

��

�2

Figure 14 Transmission method for pole-figure
determination. After Geisler [15].
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7For simplicity, the method is described here only in terms of a vertical-axis diffractometer.
8 The chart shown in skeleton form in Fig. 15(b) is useful for this purpose. It is called a polar stereo-
graphic net, because it shows the latitude lines (circles) and longitude lines (radii) of a ruled globe pro-
jected on a plane normal to the polar NS-axis. In the absence of such a net, the equator or central merid-
ian of a Wulff net can be used to measure the angle .a

is derived from the specimen rotation performed and at each position of N the pole
density derived from the detector measurement of x-ray intensity can be plotted.

The ideal diffractometer specimen would be a small sphere cut out of the sheet,
because a sphere presents the same aspect to the incident beam whatever its orien-
tation. Normally, however, the sheet is examined directly, and then the paths of inci-
dent and diffracted beams within the sheet change with sheet orientation. It is then
necessary to correct the measured intensities for these geometrical effects or to
design the x-ray optics so that corrections are not required.

There is not one, but several, diffractometer methods for measuring sheet tex-
ture. They fall into two groups, transmission and reflection, both being normally
necessary for complete coverage of the pole figure.

Transmission Methods

The two methods described below both require a specimen for which is of the
order of 1, where is the linear absorption coefficient and t the thickness. This
means a thickness of the order of for iron examined with radiation
or for aluminum with . Thicker sheet has to be thinned by grinding
and etching.

The method of Decker, Asp, and Harker [16] was the first application of the dif-
fractometer to texture measurements. The sheet specimen, in a special holder, is
positioned initially with the rolling direction vertical and coincident with the dif-
fractometer axis,7 and with the plane of the specimen bisecting the angle between
incident and diffracted beams (Figs. 14 and 15). The specimen holder allows rota-
tion of the sheet in its own plane and about the diffractometer axis.

Figure 15 shows how to plot the pole N of the diffraction plane hkl. The angle 
measures the amount of rotation about the diffractometer axis, positive when
clockwise; is zero when the sheet bisects the angle between incident and diffract-
ed beams. The angle measures the amount by which the sheet is rotated in its own
plane and is zero when the transverse direction is horizontal. (Note that other writ-
ers often have different symbols and definitions for these angles.) The pole N of the
diffraction plane coincides initially, when and are both zero, with the left trans-
verse direction. A rotation of the specimen by degrees in its own plane then
moves the pole of hkl degrees around the circumference of the pole figure, and a
rotation of degrees about the diffractometer axis then moves it degrees from
the circumference along a radius. To explore the pole figure, it is convenient to
make intensity readings at intervals of 5º or 10º of for a fixed value of : the pole
figure is thus mapped out along a series of radii.8 By this procedure the entire pole
figure can be determined except for a region at the center extending from about
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Figure 15 Angular relations in the transmission method, (a) in space, with and (b) on the pro-
jection, with the diffraction plane normal N at . R.D. = rolling direction, T.D. = transverse
direction.

a � d � 30o
a � d � u

º to º; in this region not only does the absorption correction become
inaccurate but the frame of the specimen holder obstructs the diffracted x-ray
beam; the practical maximum value of is thus reached before the theoretical,
which is 90º .

An absorption correction is necessary in this method because variations in 
cause variations in both the volume of diffracting material and the path length of
the x-rays within the specimen. Variations in have no effect. The incident beam in
Fig. 16 has intensity I0 (ergs/cm2/sec) and is 1 cm square in cross section. It is inci-
dent on a sheet specimen of thickness t and linear absorption coefficient , and the
individual grains of this specimen are assumed to have a completely random orien-
tation. Let a be the volume fraction of the specimen containing grains correctly ori-
ented for diffraction of the incident beam, and b the fraction of the incident ener-
gy diffracted by a unit volume. Then the total energy per second in the diffracted
beam outside the specimen, originating in a layer of thickness dx located at a depth
x, is given by 

(9)

where

.DB �
1

cos 1u � a2
,    AB �

x
cos 1u � a2

,  and  BC �
1 � x

cos 1u � a2

dID � ab1DB2Ioe
�m1AB�BC2dx    1ergs>see2,

m

d

a

� u2
a

a � 90a � 50
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Figure 16 Path length and irradiated volume in
the transmission method.

9 Consider that the diffracted beams in any transmission method were of maximum intensity when the
thickness of the specimen was made equal to . This result follows from Eq. (11). If , then
the primary beam will be incident on the specimen at right angles (sec Fig. 16), as in the usual transmis-
sion pinhole method, and the result will apply approximately to diffracted beams formed at small angles

. The intensity of such a beam is given by 
.

Differentiating this expression with respect to t and setting the result equal to zero shows  that ID is a
maximum when .t � 1>m

ID � abtI0e
�mt

2u

u � a � 01>m

By substitution,

(10)

If is substituted into Eq. (10) and the integration from x = 0 to x = t is per-
formed, the total diffracted energy per second, the integrated intensity, for this posi-
tion of the specimen is:9

. (11)

When is not zero, the same integration gives 

. (12)

The ratio of these two integrated intensities is needed for the absorption correction
and is:

(13)R �
ID1a � a2

ID1a � 02
�

cos u 3e�mt>cos 1u�a2 � e�mt>cos 1u�a2 4

mte�mt>cos u5 3cos 1u � a2>cos 1u � a2 4 � 16
.

ID1a � a2 �
abIo 3e

�mt>cos 1u�a2 � e�mt>cos 1u�a2 4

m5 3cos 1u � a2>cos 1u � a2 4 � 16

a

ID1a � 02 �
abtIo

cos u
 e�mt>cos u

a � 0

dID �
abIo

cos 1u � a2
 e�mt>cos 1u�a2r e�mx 31>cos 1u�a2�1>cos 1u�a24 dx.
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Figure 17 Variation of the correction factor R with
for clockwise rotation from the zero position.

, .u � 19.25omt � 1.0
a

A plot of R vs. is given in Fig. 17 for typical values involved in the 111 reflection
from aluminum with radiation, namely, and . Figure 17
shows that the integrated intensity of the reflection decreases as increases in the
clockwise direction from zero, even for a specimen containing randomly oriented
grains. In the measurement of preferred orientation, it is therefore necessary to
divide each measured intensity by the appropriate value of the correction factor R
in order to arrive at a figure proportional to the pole density. From the way in which
the correction factor R was derived, it follows that the integrated intensity of the dif-
fracted beam must be measured. To do this with a fixed detector, the detector slits
must be as wide as the diffracted beam for all values of so that the whole width
of the beam can enter the detector.The ideal incident beam for this method is a par-
allel one. However, a divergent beam may be used without too much error, provid-
ed the divergence is not too great. There is no question of focusing here: if the inci-
dent beam is divergent, the diffracted beam will diverge also and very wide detec-
tor slits will be required to admit its entire width. Clockwise rotation of the speci-
men about the diffractometer axis makes the diffracted beam narrower and is
therefore preferred to counterclockwise rotation.

The value of used in Eq. (13) must be obtained by direct measurement, since
it is not sufficiently accurate to use a tabulated value of together with the meas-
ured thickness t of the specimen.To determine use a strong diffracted beam from
any convenient material and measure its intensity when the sheet specimen is
inserted in the diffracted beam and again when it is not. The value of is then
obtained from the absorption equation, , where Io and It are the intensi-
ties incident on and transmitted by the sheet specimen, respectively.

The Schulz transmission method [17] uses a divergent, rather than a parallel, inci-
dent beam and a slit narrow enough to intercept only the central portion of the dif-
fracted beam. For these conditions Schulz derived an equation, analogous to Eq.
(12), relating the intensity diffracted by a random specimen (for brevity “random
specimen” will be written for “specimen with randomly oriented grains”) to the
angular setting . He also showed that the intensity diffracted by a random speci-
men was constant within a few percent up to an value of about 30º for a suffi-
ciently thin specimen and small values of (less than about 20º);
under these conditions the correction equation is not needed.

u1mt � 0.4 to 0.72
a

a

It � Ioe
�mt

mt

mt
m

mt
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u � 19.25omt � 1.0Cu Ka
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In tests of the correction equations by means of random specimens, Newkirk and
Bruce [18] found good agreement with Eq. (13) of Decker,Asp, and Harker. On the
other hand, the data of Aoki et al. [19] show better agreement between experiment
and theory for the Schulz method than that of Decker et al. However, in judging the
validity of correction equations one must always keep in mind the necessity not
only of a truly random specimen, but also of a close match between the actual x-ray
optics (nature of incident beam and width of detector slit) and those assumed in the
derivation of the equations.

Reflection Methods

The central region of the pole figure is inaccessible to any transmission method and
can be explored only by a reflection technique. The specimen must be of effective-
ly infinite thickness or extra corrections will be required.

The most popular is the Schulz reflection method [20]. It requires a special spec-
imen holder which allows rotation of the specimen in its own plane about an axis
normal to its surface and about a horizontal axis; these axes are shown as BB´ and
AA´ in Fig. 18. The horizontal axis AA´ lies in the specimen surface and is initially
adjusted, by rotation about the diffractometer axis, to make equal angles with the
incident and diffracted beams. After this is done, no further rotation about the dif-
fractometer axis is made. Since the axis AA´ remains in a fixed position during the
other rotations of the specimen, the irradiated surface of the specimen is always
tangent to a focusing circle passing through the x-ray source and detector slit. A
divergent beam may therefore be used since the diffracted beam will converge to a
focus at the detector.

detector

source

A

A�

B�

B

N

D

C

T.D.

R.D.

diffractometer
axis



�

Figure 18 Schulz reflection method.
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10 Designating the rotation angles as and distinguishes the reflection method from the transmission
method where the angles are devoted and , respectively.da

fx

When the specimen is rotated about the axis AA´ , the axis BB´ normal to the
specimen surface rotates in a vertical plane, but CN, the diffraction plane normal
remains fixed in a horizontal position normal to AA´. The rotation angles and 
are shown in Fig. 18.10 The angle is zero when the sheet is horizontal and has a
value of 90º when the sheet is in the vertical position shown in the drawing. In this
position of the specimen, the diffraction plane normal is at the center of the pro-
jection. The angle measures the amount by which the rolling direction is rotated
away from the left end of the axis AA´ and has a value of +90º for the position illus-
trated. With these conventions the angles and may be plotted on the pole fig-
ure in the same way as and in the transmission method [Fig. 15(b)].

The great virtue of the Schulz method is that no absorption correction is
required for values of between 90º and about 40º, i.e., up to about 50º from the
center of the pole figure. In other words, a random specimen can be rotated over
this range of values without any change in the measured intensity of the diffract-
ed beam, provided the specimen has effectively infinite thickness. Under these cir-
cumstances, the intensity of the diffracted beam is directly proportional to the pole
density in the specimen, without any correction. The constancy of the absorption
factor is due essentially to the narrow horizontal slit placed in the primary beam at
D (Fig. 18), close to the specimen. The vertical opening in this slit is only about 
0.5 mm, which means that the specimen is irradiated only over a long narrow rec-
tangle centered on the fixed axis AA´. It can be shown [20] that a change in absorp-
tion does occur, as the specimen is rotated about AA´, but it is exactly canceled by
a change in the volume of diffracting material, the net result being a constant dif-
fracted intensity for a random specimen when lies between 90º and about 40º. To
achieve this condition, the reflecting surface of the specimen must be adjusted to
accurately coincide with the axis AA´ for all values of and . This adjustment is
extremely important.

When the specimen is rotated out of the vertical position º) in the sense
shown in Fig. 18, the top part moves behind, and the bottom in front of, the focus-
ing circle. The diffracted beam therefore widens at the detector slit and the meas-
ured diffracted intensity from a random specimen may decrease as departs from

.This effect is called the defocusing error. It may be minimized by slit adjustment
(widening the detector slit and decreasing the vertical opening in slit D) or cor-
rected by calculation [21, 22].

Figure 19 shows a specimen holder suitable for either transmission method and
for the Schulz reflection method.

The Field and Merchant reflection method [23] is designed for a parallel incident
beam, shown simply as a single line in Fig. 20. The specimen is placed initially with
the rolling direction vertical, coincident with the diffractometer axis, the transverse
direction horizontal, and the plane of the sheet equally inclined to the incident and

90o
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1x 6 90
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x-ray
tube

specimen

counter

Figure 19 Pole-figure goniometer. The specimen shown is positioned for measurements by the trans-
mission method, and a simple change in the orientation of the specimen holder allows measurements by
the Schulz reflection method. The x-ray tube is seen here end-on. This instrument is designed for auto-
matic operation. (Courtesy of Siemens Corporation.)

diffracted beams; the pole N of the diffraction planes is then at the center of the
projection º). Counterclockwise rotation of the specimen about the diffrac-
tometer axis, which incidentally will narrow the diffracted beam, moves N to the left
along the equator of the pole figure. The angle is changed by rotating the
specimen in its own plane.

d1d � 02

1a � 90

T.D.

R.D. and
diffractometer

axis

� 

�
�



(90� –   )

N

SFigure 20 Field and Merchant reflection
method. N = diffracting plane normal.
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Diffracted intensities must be corrected for change in absorption due to change
in . The angles and of incidence and reflection are the same as shown in
Fig. 20:

For counterclockwise rotation and . Making
these substitutions and integrating from x = 0 to , yields the integrated intensity:

. (14)

Only the ratio of this quantity to the same quantity for is of interest and it
is

. (15)

Diffracted intensities must be divided by S, which is independent of , to give val-
ues proportional to pole density. The correction is less severe (S closer to 1), the
larger the value of ; it is therefore advantageous to measure a higher order of the
hkl reflection measured in transmission. The specimen holder can be identical with
that used in the transmission method.

Plotting the Pole Figure

A transmission method yields pole densities covering the outer part of the pole fig-
ure, from to about 50º. A reflection method covers the inner part, from 
about 40º to 90º (i.e., 90º to 40º in the Schulz method). The pole densities are
in arbitrary units, either directly measured diffracted intensities or corrected inten-
sities, depending on the method used. Along those radii of the pole figure where
substantial pole density exists in the region of overlap of the two methods 40º
to 50º), a normalizing factor is found which will make the pole densities from the
transmission method agree with those from the reflection method.The match in the
overlap region is rarely perfect, but a substantial disagreement between normaliz-
ing factors for different radii points to experimental or computational errors.

Once one set of data is normalized to match the other set contour lines can be
constructed on the pole figure at selected levels to connect points of the same pole
density, and the result is a pole figure such as Fig. 21. Normally this is done using
computer programs such as popLA [25]. Vendor-supplied software or custom writ-
ten routines. Many, but not all, textures are symmetrical with respect to reflection
planes normal to the rolling and transverse directions, and many published pole fig-
ures have been determined from measurements made only in one quadrant, with
the other quadrants found by assuming symmetry, without supporting data.

1a �

x �
a �a � 0

u

m
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ID1a � a2

ID1a � 90°2
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Figure 21 (111) pole figure of alpha
brass sheet (70 Cu-30 Zn), cold rolled
to a reduction in thickness of 95 per-
cent. Pole densities in arbitrary units.
The outer parts of all four quadrants
were determined experimentally; the
inner parts of the upper right and
lower left quadrants were measured,
and the other two constructed by
reflection. The solid triangles show
the (110) [112] orientation. Hu,
Sperry, and Beck [24].

The deformation texture of brass sheet (Fig. 21) is fairly sharp, and it is then of
interest to know whether or not it can be approximated by an “ideal orientation.”
To find this orientation successively lay several standard projections over the pole
figure, looking for a match between (111) poles and high-density regions. The solid
triangles in Fig. 21 show such a match: they represent the (111) poles of a single
crystal oriented so that its (110) plane is parallel to the sheet and the [112] direc-
tion parallel to the rolling direction. Reflection of these poles in the symmetry
planes of the texture, which is equivalent to adding orientations like (110) , will
approximately account for all the high-density regions of the pole figure. This tex-
ture can therefore be represented by the ideal orientation {110} . It should be
emphasized that the pole figure itself is a far better description of the texture than
any bare statement of an ideal orientation, which says nothing about the scatter. A
quantitative pole figure has about the same relation to an ideal orientation as an
accurate contour map of a hill has to a statement of the height, width, and length of
the hill.

Pole densities in arbitrary units are not as informative as those expressed in mul-
tiples of the pole density of a random specimen, so called “times random” units.The
contour lines in Fig. 22 are marked with these units, and one can see at a glance
those regions of the pole figure that have a higher, or lower, pole density than ran-
dom; this pole figure, incidentally, was measured in all four quadrants. The texture
represented there, of considerable industrial interest, is messy and cannot be well
characterized by ideal orientations. It is approximately a fiber texture, with the
fiber axis normal to the plane of the sheet, containing {111} , called the “cube-
on-corner” texture, as its strongest single component [26, 27].

H110I
H111I

H112I

3112 4
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Figure 22 (110) pole figure of recrystallized commercial low-carbon (0.04 percent) sheet steel, alu-
minum killed, 0.9 mm thick. Pole densities in “times random” units. Determined by a reflection method
from composite specimens; see text under “General.” Bunge and Roberts [26].

Diffracted intensities, proportional to pole densities, may be put on a times-ran-
dom basis by comparing them with intensities diffracted by a random specimen
[28].The random specimen should be of the same material as the textured specimen
and, for a transmission method, it should have the same value of ; if not, a cor-
rection has to be made that will depend on the transmission method involved. The
random specimen itself is usually made by compressing and sintering a power [18,
19]. The randomness of grain orientation in this specimen must be checked by
determining its diffraction pattern with a diffractometer in the usual way; the meas-
ured integrated intensities of all lines should agree with those calculated.

mt
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General

The conditions for optimum specimen thickness in transmission and infinite thick-
ness in reflection are such that the same specimen can serve for both methods. The
penalty for exceeding the optimum thickness is not severe: a thickness of double the
optimum value for transmission at reduces the diffracted intensity by only 26
percent (Problem 8).

It may be difficult to make a thin specimen, particularly of a heavy metal, which
has the required low, and uniform, value of throughout. Some  investigators have
therefore avoided a transmission method altogether by determining only the cen-
tral portion of the pole figure by reflection; such partial pole figures are useful for
some purposes. Others have obtained a complete pole figure by reflecting x-rays
from a surface or surfaces inclined to the sheet surface. Several pieces of the sheet
are stacked with rolling directions parallel and a composite specimen made by
clamping or cementing the stack. If this specimen is cut to expose a surface whose
normal makes the same angle, of 54.7º, with the sheet normal and rolling and trans-
verse directions, then measurements on this surface by a reflection method will
cover one quadrant of the pole figure [29]. The pole figure of Fig. 22 was derived
from reflection measurements on the sheet plane and on sections normal to the
rolling and transverse directions.

Errors that can affect texture measurements include the following:

1. If the grain size is too large, as in some recrystallized specimens, the inci-
dent beam will not sample enough grains for good statistical accuracy. The
specimen holder should then include a mechanical device that will trans-
late the specimen back and forth in its own plane in order to expose more
grains to the incident beam.

2. The texture at the surface of a sheet can differ from that in the midplane
[24]. When such a texture gradient exists, it must be remembered that the
transmission and reflection methods preferentially sample different layers
of the same specimen and that the thicknesses of the layers so sampled
vary with in a systematic way.

3. The x-ray optics, particularly slit sizes, must conform to those required by
the x-ray method involved.Too narrow a detector slit will exclude a wanted
part of the diffraction line; too wide a slit will include some of the back-
ground. Too often the background is simply ignored, with the result that
measured intensities include both line and background; it would be highly
beneficial to eliminate or reduce the background by means of a crystal
monochromator, balanced filters, or a pulse-height analyzer. Errors from
these sources can be large. They can be almost entirely eliminated by com-
paring intensities from the textured specimen with intensities measured
under identical conditions from a truly random specimen, provided the two
specimens differ only in grain orientation. Such a random specimen can be
very hard to make. (Note, for example, that an annealed random specimen

a

mt

a � 0
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will have narrower diffraction lines than a cold-worked textured speci-
men.)

Because the manual determination of preferred orientation is rather tedious, the
process has been automated, and a variety of instruments are available from ven-
dors (Fig. 19). Under computer control, the angular settings and (or and    )
of the specimen are varied in a prescribed sequence by motor drive, and the dif-
fracted intensity at each setting is recorded, on disk.

The analysis of preferred orientation has now gone beyond pole figures, in the
direction of a more complete description of the texture. Establishing experimental-
ly that a certain crystal in a sheet has a (100) pole, for example, located at a point
on the pole figure specified by the angles and , does not fully specify the orien-
tation of the crystal. These two angles merely describe the orientation of the direc-
tion [100], and the crystal might have any rotational position about this axis.A third
angle is needed to fix the orientation of the crystal. A full description of the texture
would require the specification of three angles (called ) for each crystal in
the sheet. This information is contained in the crystal orientation distribution func-
tion or odf which is discussed in Sec. 11.

°, u, f

da

fxda

10 THE TEXTURE OF WIRE (DIFFRACTOMETER METHOD)

As mentioned in Sec. 7, if a wire or rod has a true fiber texture, its pole figure will
have rotational symmetry about the fiber axis and will resemble Fig. 10 Therefore
the pole density must be measured only along a single radius. The angle between
the pole N and the fiber axis F.A. is usually called when dealing with fiber tex-
tures.

The Field and Merchant method may be used to measure pole density, and two
specimens are required to cover the entire 90° range of :

1. Low- region. X-rays are diffracted from the cross section of the wire, as in
Fig. 23(a). The specimen is a bundle of wires, packed together and
cemented into a rectangular hole cut in a thick plastic disc; the wire ends
are then ground, polished, and etched. This cross section is made initially
parallel to the diffractometer axis and equally inclined to the incident and
diffracted beams. The angle measures the counterclockwise rotation of
the specimen about the diffractometer axis from this initial position. Next
define a new angle as the acute angle between the specimen surface and
the diffraction-plane normal N.The angle of Eq. (14) and Fig. 20 becomes

, so that

(16)W �
ID1r � r2

ID1r � 90°2
� 1 � cot  r  cot  u.

r � rL � 90o � f
a

r

f

f

f

f
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Figure 23 Diffraction from composite wire specimens. is angle between fiber axis F.A. and diffraction-
plane normal N. is angle between N and specimen surface.r

f

Diffracted intensities are to be divided by W to obtain numbers propor-
tional to pole density.

2. High- region. X-rays are diffracted from the side of the wire, as in Fig. 23
(b). The specimen is a set of wires glued to a grooved plate. Equation (16)
still applies, but now .

When the diffracted intensities ID given by each method have been divided by W
and normalized in the region of overlap, a set of numbers I is obtained which is pro-
portional to pole density. Figure 24 shows an I, curve obtained in this way for the
inside texture of cold-drawn aluminum wire. The peaks at are due to
the strong [111] component of the texture and the peak at to a weak [100] com-
ponent.

By analysis of an I, pole density curve the pole densities can be put on a times-
random basis and determine the relative amounts of the components in a double or
multiple fiber texture can be determined [31-33].

Imagine a reference sphere of unit radius centered on the wire (Fig. 25). The ele-
ment of area on the surface is . If I is the pole density, the number
of (hkl) poles in this area is , and the total number of
poles on the surface of a hemisphere is

. (17)

If Ir is the pole density of a random specimen, then n = Ir(2 ). Therefore

. (18)Ir � �
p>2

0

I  sin  f  d f

p

n � 2p�
p>2

0

I   sin  f df

dn � I dA � 2p I sin f df
dA � 2p sin f df

f
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Figure 24 (111) pole density I (full curve) and I (dashed) as a function of for a cold-drawn alu-
minum wire, reduced in area 95 percent by drawing, and etched to 80 percent of the as-drawn diameter.
Final specimen diameter 1.3 mm, radiation, 222 reflection. Freda et al. [30].Cr Ka

fsin f

This integral is simply the area under a curve of I vs. , and this area in turn
is equal to the average ordinate of the curve times . Therefore,

. (19)

This relation is valid whether the n poles are distributed randomly on the sphere or
in some preferred manner, and it allows determination of Ir from measurements on
a textured specimen. From experimental I, data construct a curve of I vs.

, shown dashed in Fig. 24, determine its average ordinate, and find Ir from Eq. 19.
Once Ir is known (3 units for this wire), the I, pole density curve can be put on
a times-random basis (right-hand ordinate). (Because the angular aperture of the
detector slit is not small relative to when is small, the true pole density I nearff
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Figure 25 Element of area on reference sphere.

can only be approximated [32]. Therefore extrapolate the I curve near
rather than extend it to zero, as is mathematically indicated.)

The amount of each component in a double texture is proportional to the area
under the peak(s) due to that component on a curve of I vs. ; knowledge of
the multiplicities involved can reduce the number of peaks that need be considered.
The multiplicity of {111} poles is 8 for a sphere and 4 for a hemisphere. In
Fig. 24 the [100] component puts four {111} poles per grain under the peak at 55º;
the [111] component, on the other hand, has one {111} pole at 0º and three at 70º.
Because of the uncertainty in the area of the peak at 0º, the area ascribed to the
[111] component can be taken as 4/3 times the area of the peak at 70º. Therefore,

.

For the aluminum wire, this calculation led to volume fractions of 0.85 for the [111]
component and 0.15 for the [100].

Note that this result was obtained without making any use of the measurements
made at values less than 40°. Thus a complete pole density curve is not necessary
for the evaluation of a texture, provided the texture is sharp enough to produce well
resolved peaks in the high- region. This is a fortunate circumstance, because high-

measurements require little or no specimen preparation.
Preferred orientation in wire does not always take the form of a pure fiber tex-

ture. For example, the deformation texture of iron wire is usually considered to be
a [110] fiber texture, but Leber [34] showed that a cylindrical texture was also pres-
ent. Such a texture may be regarded as a sheet texture, (100) [011] for iron, wrapped
around the wire axis. Thus at any point on the wire surface, a (100) plane is tangent
to the surface and a [011] direction parallel to the wire axis. The presence of a cylin-
drical component in a fiber texture is disclosed by anomalies in the I curve:sin f

f

f

f

Volume fraction of 3111 4  component

Volume fraction of 3100 4  component
�

a
4
3
b 1area of 70° peak2

1area of 55° peak2

fsin  f

f � 0
sin ff � 0
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the areas under the peaks ascribed to the fiber-texture component will not be in the
ratio to be expected from the multiplicities [35].

11 INVERSE POLE FIGURES

A pole figure shows the distribution of a selected crystallographic direction relative
to certain directions in the specimen. Texture data may also be presented in the
form of an inverse pole figure, which shows the distribution of a selected direction
in the specimen relative to the crystal axes. The projection plane for an inverse pole
figure is therefore a standard projection of the crystal, of which only the unit stere-
ographic triangle need be shown. Both wire and sheet textures may be represent-
ed.

Figure 26(a) is an inverse pole figure for the inside texture of an extruded alu-
minum rod, showing the density distribution of the rod axis on a times-random
basis. It was derived by a trial-and-error method [31] from pole density curves, as in
Fig. 24, for the (001), (111), and (113) poles. Note the concentrations of the rod axis
at [001] and [111], indicating a double fiber texture; the volume fractions of the
[001] and [111] components were estimated as 0.53 and 0.47, respectively. Note that
an inverse pole figure shows immediately the crystallographic “direction” of the
scatter. In this double texture, there is a larger scatter of each component toward
one another than toward [011].

Sheet textures require three separate inverse pole figures to show the distribu-
tion of the sheet normal, rolling direction, and transverse direction. Figure 26(b) is
such a projection for the normal direction of the steel sheet whose (110) pole fig-
ure was given in Fig. 22; it was calculated from the orientation distribution function
mentioned in Sec. 9. The distribution of the normal direction is also shown in (c),
for the same material, but this distribution was measured directly in the following
way.A powder pattern is made of the sheet in a diffractometer by the usual method,
with the sheet equally inclined to the incident and diffracted beams i.e., in the nor-
mal parafocusing geometry. The intensity of any hkl reflection, relative to that from
a random specimen, is then proportional to the volume fraction of grains having
their (hkl) planes parallel to the sheet surface, or to the volume fraction of grains
having the sheet normal parallel to the (hkl) normal. Stated another way, and with
specific reference to Fig. 26(c), the probability of the sheet normal in this steel being
parallel to [111] is 3.97 times normal. Similar data for the rolling direction, for
example, are obtained by diffracting x-rays from a surface normal to the rolling
direction, a surface exposed by sectioning a stack of sheets. This method produces
only as many data points in the stereographic triangle as there are lines on the pow-
der pattern and is therefore better suited to materials of low crystal symmetry than
to cubic materials.

The inverse pole figures of Figs. 2.6(b) and (c) both show a high density of (111)
poles parallel to the sheet normal and are therefore consistent with the [111] quasi-
fiber texture mentioned in Sec. 9.
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Figure 26 Inverse pole figures. (a) Distribution of axis of aluminum rod, extruded at 450°F to a reduc-
tion in area of 92 percent and a final diameter of 23 mm. Jetter, McHargue, and Williams [31]. (b) and
(c) show the distribution of the sheet normal for the steel sheet of Fig. 22. Bunge and Roberts [26].

The inverse pole figure is the best way to represent a fiber texture, but it offers
no advantage over a direct pole figure in the description of a sheet texture. Inverse
or direct, a pole figure is a two-dimensional plot that fixes, at a point, only a direc-
tion in space, be it crystal space or specimen space. Only the three-dimensional
“plot” afforded by the orientation distribution (see below) can completely describe
the orientations present, and this approach, being quite general, is just as applica-
ble to fiber textures as it is to sheet.
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12 ORIENTATION DISTRIBUTION FUNCTIONS

In Sec. 9, three angles were seen to be needed to uniquely fix the orientation of a
given crystal relative to the sample coordinate system (i.e., rolling direction, sheet
normal, etc.). Methods of calculating this orientation distribution function from
pole figures have been developed by Roe, Bunge, and Williams [36-39]. The math-
ematics involved are complex and the calculations extensive, but this approach is
powerful and of great generality.

The orientation distribution function for a cubic material in sheet form can be
calculated from any two experimental pole figures, for example, the (100) and
(110). Once the distribution is known, any other desired pole figure can be calcu-
lated, for example, the (111); it need not be measured. It is even possible to calcu-
late the orientation distribution from a set of partial pole figures, determined by a
reflection method out of 60° from the center of the pole figure [40]. The
orientation distribution function itself is usually presented in the form of crystal
density plots, in which the density is shown as a contour map, for example, in angle
space. One method uses spherical polar coordinates and to specify the direction
of the rotation axis relating the crystal axes to the sample coordinate system and
rotation angle about the axis. Euler angles and can also be used (Fig. 27).
A series of constant is typically used to present all of the information, and 
Fig. 28 gives an example for rolled brass [41].

�2

£�1, �2�

cu

1g � 30o2

ND
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�

Figure 27 Definition of orientation of crystal axes in terms of Euler angles , and defined relative
to the sample reference directions, here the rolling direction RD and the normal direction ND. After
[41].
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Figure 28 Orientation distribution function for brass cold-rolled 95%. Planes of constant spaced
every 5° are shown. The contours of equal density (times random) and orientations of and are
shown at the lower right. [41].
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13 AMORPHOUS AND SEMI-AMORPHOUS SOLIDS

14 SUMMARY

In this chapter various aspects of the structure of polycrystalline aggregates and the
quantitative effects of variations in crystal size, quality, and orientation on the dif-
fraction pattern have been examined. Although a complete investigation of the
structure of an aggregate requires a considerable amount of time and rather com-
plex apparatus, the very great utility of the simple pinhole photograph should not
be overlooked. It is surprising how much information an experienced observer can
obtain simply by inspection of a pinhole photograph, without making any meas-
urements on the film and without any knowledge of the specimen, i.e., without
knowing its chemical identity, crystal structure, or even whether it is amorphous or
crystalline. The latter point can be settled at a glance, since Debye rings indicate
crystallinity and broad haloes an amorphous condition. If the specimen is crys-
talline, the conclusions that can be drawn from the appearance of the lines are sum-
marized in Table 3.

This chapter has concentrated on crystalline materials. X-ray diffraction can also
furnish structural information about amorphous and semi-amorphous solids, even
though the “structure” is much more diffuse.

Most glasses are amorphous. They yield a pinhole pattern consisting only of a
broad, diffuse halo around the central spot, corresponding to the single maximum
in the scattering curve of crystalline solids, amorphous solids, liquids, and monatom-
ic gases. Analysis of this curve yields such information as average interatomic dis-
tances and average number of atoms around a given atom.The theory of diffraction
by amorphous substances is beyond the scope of this chapter and is treated in the
books of Guinier [G. 30] and Warren [G. 20].

Many polymeric materials are partly crystalline: They are composed of very long
molecules, generally in a state of great disarray but here and there organized into
ordered regions usually called “crystallites.” These regions, typically very small and
highly strained, produce very broad diffraction lines. By comparing the integrated
intensity of these lines with that of the broad halo due to the amorphous regions,
the volume fraction of crystallites, called the “degree of crystallinity” of the poly-
mer, can be estimated. X-ray diffraction can also disclose crystallite size, usually by
means of the Scherrer equation for line broadening and preferred orientation. The
latter condition is quite common in fibers and sheets and is studied by one or more
of the methods described in this chapter. In fact, the alignment of crystallites in nat-
ural fibers like cotton and silk has long been known and is the origin of the term
“fiber texture” to describe the preferred orientation found in metal wires. The par-
ticular applications of x-ray methods to the study of polymers is the subject of a
book by Alexander [42].
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(1) Best judged by noting whether or not the K doublet is resolved in back reflection.
(2) Or possibly presence of a fiber texture, if the incident beam is parallel to the fiber axis.

Appearance of diffraction lines Condition of specimen

Continuous Fine-grained (or coarse-grained and cold-
worked)

Spotty Coarse-grained

Narrow (1) Strain-free

Broad (1) Residual stress and possibly small particle size 
(if specimen is a solid aggregate) Small par-
ticle size (if specimen is a brittle powder)

Uniform intensity Random orientation (2)

Nonuniform intensity Preferred orientation

TABLE 3

PROBLEMS

1 Prove the statement made in Sec. 4-10 that the effective irradiated volume of a
flat plate specimen in a diffractometer is constant and independent of .
2 For given values of and , which results in a greater effective depth of x-ray pen-
etration, a back-reflection pinhole camera or a diffractometer?
3 Assume that the effective depth of penetration of an x-ray beam is that thickness
of material which contributes 99 percent of the total energy diffracted by an infi-
nitely thick specimen. Calculate the penetration depth in for a low-carbon steel
specimen under the following conditions:

a) Diffractometer; lowest-angle reflection; radiation.
b) Diffractometer; highest-angle reflection; radiation.
c) Diffractometer; highest-angle reflection; radiation.
d) Back-reflection pinhole camera; highest-angle reflection; radiation.

4 If the same hkl reflection from a given material is examined in a diffractometer
with successively different wavelengths, how does the penetration depth x vary with

? (Assume the wavelengths used lie on the same branch of the absorption curve
of the material.)
5 (a)A transmission pinhole photograph is made of a sheet specimen of thickness t
and linear absorption coefficient . Show that the fraction of the total diffracted
energy in any one reflection contributed by a layer of thickness w is given by

T �
e�m3x� 1t�x2>cos�2u4 3e�mw11�1>cos 2u2 � 1 4

e�mt � e�mt>cos  2u ,

m

l

Cr Ka
Cr Ka
Cu Ka

Cu Ka

mm

mu
u
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where x is the distance to the side of the layer involved, measured from the
side of the specimen on which the primary beam is incident.

b) A transmission pinhole photograph is made of a sheet of aluminum 0.5 mm
thick with radiation. Consider only the 111 reflection which occurs
at º. Imagine the sheet to be divided into four layers, the thickness
of each being equal to one-fourth of the total thickness. Calculate T for
each layer.

6 A transmission pinhole pattern is made with radiation of an iron wire hav-
ing an almost perfect [110] fiber texture. The wire axis is vertical. How many high-
intensity maxima will appear on the lowest-angle 110 Debye ring and what are their
azimuthal angles on the film?
7 An electroplated layer of copper on sheet steel is examined in a back-reflection
pinhole camera with radiation incident at right angles to the sheet surface.
Assume the copper has a fiber texture with the fiber axis [uvw] scattered by an
angle in every direction about the sheet normal. How large must be for the 420
Debye ring to appear on the film if the fiber axis [uvw] is (a) [110], (b) [100]?
8 Consider the diffraction geometry for in the transmission method for deter-
mining preferred orientation and for in the reflection method. Let tinf be the
infinite thickness required in the reflection method, and assume tinf is that thickness
which would diffract 99 percent of the intensity diffracted by a specimen of truly
infinite thickness. Let topt be the optimum thickness for the transmission method.

a) Show that 
b) If the thickness t of a transmission specimen is 2topt, by how much is the

diffracted intensity decreased?

9 On a stereographic projection parallel to the surface of a rolled sheet, show (a)
the positions of the (110) poles, represented by small ellipses, for the ideal orienta-
tion {111} , including the positions due to reflection symmetry, and (b) the lines
showing the positions of the (110) poles for a fiber texture, with the fiber axis
normal to the plane of the sheet. Compare your result with the experimental (110)
pole figure for low-carbon sheet steel in Fig. 22.

REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.10 Charles S. Barrett and T. B. Massalski. Structure of Metals, 3rd ed. (New
York: McGraw-Hill, 1966). A classic book on the crystallographic aspects
of physical metallurgy. Really two books in one, the first part dealing with
the theory and methods of diffraction of x-rays, electrons, and neutrons; the
second part with the structure of metals in the wider sense of the word.

H111I
H110I

tinf>topt � 2.30 tan u.

a � 90o
a � 0

bb

Cu Ka

Co Ka

2u � 38.4
Cu Ka

Structure of Polycrystalline Aggregates

447
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Very lucid account of stereographic projection. Stress measurement, phase
transformations, preferred orientation.

G.17 Harold P. Klug and Leroy E.Alexander. X-Ray Diffraction Procedures, 2nd
ed. (New York: Wiley, 1974). Contains a great deal of useful detail on the
theory and operation of powder cameras and diffractometers. Covers the
following topics in depth: chemical analysis by diffraction, parameter meas-
urement, line-broadening analysis, texture determination, stress measure-
ment, and studies of amorphous materials. Single-crystal methods are not
included

G.20 B. E. Warren. X-Ray Diffraction (Reading, MA: Addison-Wesley, 1969).
Excellent advanced treatment, in which the author takes pains to connect
theoretically derived results with experimentally observable quantities.
Stresses diffraction effects due to thermal vibration, order-disorder, imper-
fect crystals, and amorphous materials. Includes a treatment of the dynami-
cal theory of diffraction by a perfect crystal.

G.30 A. Guinier. X-Ray Diffraction in Crystals, Imperfect Crystals, and
Amorphous Bodies (San Francisco: W. H. Freeman, 1963 and reprinted by
Dover 1994). Largely theoretical and more advanced than [G.13].

G.34 Andr Guinier and Gerard Fournet. Small-Angle Scattering of X-Rays
(New York: Wiley, 1955). A full description of small-angle scattering phe-
nomena, including theory, experimental technique, interpretation of
results, and applications.

G.35 G. E. Bacon. Neutron Diffraction, 2nd ed. (Oxford: Clarendon Press, 1962).
Theory and practice of neutron diffraction, with applications to magnetic
materials, structure determination, small-angle scattering, and amorphous
materials.

G.36 Experimental Techniques of Texture Analysis, H. J. Bunge, ed. (Obervise,
Germany: Deutsche Gesellschaft, Metallkunde, 1986). A full description of
the various techniques.

G.37 Quantitative Texture Analysis, H. J. Bunge and C. Esling, eds. (Obervise,
Germany: Deutsche Gesellschaft, Metallkunde, 1986). Analysis of texture.

é

Structure of Polycrystalline Aggregates

448
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



ANSWERS TO SELECTED PROBLEMS

2. Diffractometer

5. b) 0.11, 0.17, 0.28, and 0.44, listed in the order in which the incident beam trav-
erses the layers

8. b) Decreased by 26 percent
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1 INTRODUCTION

When a polycrystalline piece of metal is deformed elastically in such a manner that
the strain is uniform over relatively large distances, the lattice plane spacings in the
constituent grains change from their stress-free value to some new value corre-
sponding to the magnitude of the applied stress, this new spacing being essentially
constant from one grain to another for any particular set of planes similarly orient-
ed with respect to the stress. This uniform macrostrain, causes a shift of the diffrac-
tion lines to new positions. On the other hand, if the metal is deformed plasti-
cally, the lattice planes usually become distorted in such a way that the spacing of
any particular (hkl) set varies from one grain to another or from one part of a grain
to another. This nonuniform microstrain causes a broadening of the corresponding
diffraction line. Actually, both kinds of strain are usually superimposed in plastical-
ly deformed crystalline materials, and diffraction lines are both shifted and broad-
ened, because not only do the plane spacings vary from grain to grain but their
mean value differs from that of the undeformed metal.

The focus here will be the line shift due to uniform strain. From this shift the
strain may be calculated and, knowing the strain, the stress can be determined,
either by a calculation involving the mechanically measured elastic constants of the
material, or by a calibration procedure involving measurement of the strains pro-
duced by known stresses. X-ray diffraction can therefore be used as a method of
“stress” measurement. Note, however, that stress is not measured directly by the x-
ray method or, for that matter, by any other method of “stress” measurement. It is
always d that is measured, and, if d0 is known, the strain: the stress is determined
indirectly, by calculation or calibration.

The various methods of “stress” measurement differ only in the kind of strain
gauge used. In the electric-resistance method for the measurement of applied stress,
the gauge is a short length of fine wire or foil cemented to the surface of the metal
being tested; any strain in the metal is shared by the gauge, and any extension or
contraction of the gauge is accompanied by a change in its resistance, which can

2u
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therefore be used as a measure of strain. In the x-ray method, the strain gauge is the
spacing of lattice planes.

In principle, the x-ray method is applicable to any crystalline material. While it
has had some application to stress measurement in ceramics and rocks, its major use
is the measurement of residual stress in metals and alloys, X-ray diffraction, for
example, has been used to measure stresses around a fatigue crack [1], in different
phases within a sample [2], and crystalline thin films used in microelectronics appli-
cations [3]. The availability of synchrotron x-ray microbeans with diameters below
1 m offers the possibility of measuring stresses as a function of position within
individual sub-grains, [4]. Neutron diffraction may also be used to great effect for
studying stresses nondestroctively in the interior of large components as can very
hard X-ray beams available at synchrotron radiation sources as APS.

X-ray method has been reviewed by Barrett and Massalski [G.16] and, by Klug
and Alexander [G.17].The monograph by Noyan and Coher [G.18] covers x-ray and
neutron diffraction techniques in great detail. Another source of papers on the cur-
rent state of the art is Advances in X-ray Analysis [G.39] which appears annually.

m

2 APPLIED STRESS AND RESIDUAL STRESS

Before the x-ray method is examined in any detail, it is advisable to consider first a
more general subject, namely, the difference between applied stress and residual
stress, and to gain a clear idea of what these terms mean. Consider a metal bar
deformed elastically, for example in uniform tension.The applied stress is given sim-
ply by the applied force per unit area of cross section. If the external force is
removed, the stress disappears, and the bar regains its initial stress-free dimensions.
On the other hand, there are certain operations that can be performed on a metal
part, which will leave it in a stressed condition even after all external forces have
been removed. This stress, which persists in the absence of external force, is called
residual stress.

For example, consider the assembly shown in Fig. 1(a). It consists of a hollow sec-
tion through which is passed a loosely fitting bolt with threaded ends. If nuts are
screwed on these ends and tightened, the sides of the assembly are compressed and
the bolt is placed in tension.The stresses present are residual, inasmuch as there are
no external forces acting on the assembly as a whole. Notice also that the tensile
stresses in one part of the assembly are balanced by compressive stresses in other
parts. This balance of opposing stresses, required by the fact that the assembly as a
whole is in equilibrium, is characteristic of all states of residual stress.

An exactly equivalent condition of residual stress can be produced by welding a
cross bar into an open section, as shown in Fig. 1(b). It is reasonable to assume that,
at the instant the second weld is completed, a substantial portion of the central bar
is hot but that the two side members are far enough from the heated zone to be at
room temperature. On cooling, the central bar tries to contract thermally but is
restrained by the side members. It does contract partially, but not as much as it
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Figure 1 Examples of residual stress. T
= tension, C = compression.
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would if it were free, and the end result is that the side members are placed in com-
pression and the central rod in tension when the whole assembly is at room tem-
perature. Residual stress is quite commonly found in welded structures, which are
often called weldments. Actually, the residual stress state in the weldment of  Fig.
1(b) is more complex than might at first appear. Across the section AA’ the stress

, is entirely tensile and constant. But on BB’, which crosses the weld itself, the
stress in the z direction varies both in magnitude and sign with the position y of
the point considered. Numerous studies of welds have shown that is tensile (pos-
itive) in the weld and compressive (negative) on either side.

Plastic flow can also set up residual stresses. The beam shown in Fig. 2(a) is sup-
ported at two points and loaded by two equal forces F applied near each end. At
any point between the two supports the stress in the outside fibers is constant, ten-
sile on the top of the beam and compressive on the bottom. These stresses are a
maximum on the outside surfaces and decrease to zero at the neutral axis, as indi-
cated by the stress diagram at the right of (a). This diagram shows how the longitu-
dinal stress varies across the section AA’, when all parts of the beam are below the
elastic limit. Suppose the load on the beam is now increased to the point where the
elastic limit is exceeded, not only in the outer fibers but to a considerable depth.
Then plastic flow will take place in the outer portions of the beam, indicated by
shading in (b), but there will be an inner region still only elastically strained,
because the stress there is still below the elastic limit. The stresses above the neu-
tral axis are still entirely tensile, both in the elastically and plastically strained por-
tions, and those below entirely compressive. If the load is now removed, these
stresses try to relieve themselves by straightening the beam. Under the action of
these internal forces, the beam does partially straighten itself, and to such an extent
that the stress in the outer regions is not only reduced to zero but is actually
changed in sign, as indicated in (c). The end result is that the unloaded beam con-
tains residual compressive stress in its top outside portion and residual tensile stress

sy

sx

s
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Figure 2 Residual stress induced
by plastic flow in bending: (a)
loaded below elastic limit; (b)
loaded beyond elastic limit; (c)
unloaded. Shaded regions have
been plastically strained.

in its lower outside portion. It is quite common to find residual stress in metal parts
which have been plastically deformed, not only by bending but by rolling, drawing,
machining, grinding, etc.

Note that the service stress in any loaded machine or structure is the algebraic
sum of the applied stress, due to the service load, and any residual stress that may
have existed before the service load was applied. If the residual stress is not known,
neither is the service stress. When the service stress reaches dangerous levels, fail-
ure occurs. Interest in residual stress stems mainly from the role it plays in three
kinds of metal failure: fatigue failure, brittle fractures in general, and stress-corro-
sion cracking.

Applied stress is easy to measure. An electric-resistance gauge is cemented to
the unloaded part, and gauge readings are made before and after the load is
applied. The difference in the gauge readings gives the strain, and multiplication of
the strain by Young’s modulus E gives the applied stress.

Residual stress is more difficult to measure, and there are only three practical
methods of doing it:

1. X-ray diffraction. This method is nondestructive for the measurement of
near-surface stress. If the stress is to be measured at some point below the
surface, (generally below depths of ) material must be removed down 
to that point to expose a new surface for x-ray examination; the x-ray
method then becomes destructive. Ordinarily, however, one is most inter-
ested in the stress in the near-surface volume of the material, where the
applied stress is usually highest and where failures usually originate.

2>m
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2. Neutron diffraction Because neutrons suffer much less attenuation than x-
rays in most materials, neutron diffraction can be used to measure nonde-
structively the stresses within large components. Neutron fluxes, however,
are much lower than those for x-rays, and the reactors used to generate the
neutrons are scarce.

3. Dissection (mechanical relaxation). This method is inherently destructive,
even for the measurement of surface stress, and slow. Part of the residually-
stressed object is removed, by cutting or some other method. This removal
upsets the pre-existing balance of forces, with the result that the remainder
of the object mechanically relaxes (strains) more or less completely. If this
strain is measured, the stress originally existing can be computed. For
example, suppose the stress in the side members of the weldment in
Fig. 1(b) must be measured. A gauge, to measure strain in the y direction is
fixed on one of these members. Cutting through the central rod along AA’
allows the side members, originally in compression, to elongate to their
stress-free length, and the gauge shows a strain of . Before the cut was 
made, the strain relative to the stress-free state must have been  , so
that the original stress , was . Similarly, the residual stress at various 
depths of the bent beam of Fig. 2(c) may be calculated from the change in
curvature that results from successive removal of layers parallel to the
neutral plane.

The x-ray and neutron methods, being nondestructive, have the great advantage
that repeated measurements are possible on the same specimen. For example, one
may measure stress before and after some treatment designed to produce or mod-
ify residual stress. Or one may measure residual stress on a machine component at
various stages in its service life.

Note also that the diffraction method measures the existing stress, whether it be
solely residual or the sum of residual and applied. It therefore has the capability of
measuring the actual service stress in a machine or structure under a service load.

Strictly speaking, neither stresses nor even strains are measured by diffraction.
Only changes in d-spacing are measured, and it is important to remember that con-
verting measured d values to strain and strains to stresses involves certain assump-
tions, and the conversion should never be treated as trivial.

�eyEs

�ey

�ey

3 GENERAL PRINCIPLES

The x-ray method is best approached by first considering the case of uniaxial stress,
where the stress acts only in a single direction, even though this condition is rare in
practice.The more general cases of biaxial and triaxial stresses will be covered later.

Consider a cylindrical rod of cross-sectional area A stressed elastically in tension
by a force F (Fig. 3). There is a stress in the y direction but none in the
x or z directions. (This stress is the only normal stress acting; there are also shear

sy � F>A
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F

F

D
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Figure 3 Bar in pure tension, with diffraction planes paral-
lel to axis.

stresses present, but these are not directly measurable by x-ray diffraction.) The
stress y, produces a strain y in the y direction given by

where Lo and Lf are the original and final lengths of the bar. This strain is related
to the stress by

(1)

The elongation of the bar is accompanied by a decrease in its diameter D. The
strains in the x and z directions are therefore given by

where Do and Df are the original and final diameters of the bar. If the material of
the bar is isotropic, these strains are related by the equation

(2)

where is Poisson’s ratio for the material of the bar. The value of ranges from
about 0.25 to about 0.45 for most metals and alloys.

To measure by x-rays would require diffraction from planes perpendicular to
the axis of the bar. Since this is usually physically impossible, the diffraction planes
parallel to the axis of the bar are used by making the back-reflection x-ray meas-
urement indicated in Fig. 3. (It is essential that a back-reflection technique be used,
in order to gain sufficient precision in the measurement of plane spacing. Even
quite large stresses cause only a very small change in d.) This provides a measure-
ment of the strain in the z direction since

ey

nn

ex � ez � ney,

ex � ez �
Df � Do

Do
,

sy � Eey.

ey �
¢L

L
�

Lf � Lo

Lo
,

es
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(3)

where dn is the spacing of the planes parallel to the bar axis under stress, and do is
the spacing of the same planes in the absence of stress. (The subscript n describes
the fact that the diffraction plane normal is normal to the specimen surface.)
Combining Eqs. (1), (2), and (3) produces

(4)

which gives the required stress.
It should be noted that only a particular set of grains contributes to a particular

hkl reflection in the parafocusing geometry.These are grains whose (hkl) planes are
parallel to the surface of the bar, as indicated in Fig. 4, and which are compressed
by the applied stress, that is, dn is less than do. Grains whose (hkl) planes are normal
to the surface have these planes extended, as shown in an exaggerated fashion in
the drawing.

The variation of dhkl with orientation of the normal of (hkl) is shown in polar
coordinates in Fig. 5(a).The length and direction of any vector in this diagram show
the spacing and plane-normal direction, respectively, of any selected (hkl) set of
planes. If the specimen were unstressed, the end of the do vector would describe the
dashed circle shown, because plane spacing is then independent of plane orienta-
tion. This is not true when stress is present; if the stress is tensile, di increases with

along the curve shown by the full line. Figures 5(b) and (c) show the orientations
of the x-ray beam required to measure dn and di. The spacing dhkl therefore varies
with crystal orientation, and there is thus no possibility of using any of the 

c

c

sy � � 
E
n
a

dn � do

do
b ,

ez �
dn � do

do

Np

Np

S0

surface

�y

�y

Figure 4 Diffraction from strained aggregate, tension
axis vertical. Lattice planes shown belong to the same
(hkl) set. Np = diffraction-plane normal.
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unstressed

di

d0
O

3

(a) Vector diagram of plane spacings d for a tensile stress   ��

��

Figure 5 (a) Plane-spacing diagram. (b) and (c) Orientations of x-ray beams relative to specimen. Ns =
normal to specimen surface, Np = normal to diffraction planes.

extrapolation procedures to measure dhkl accurately. Instead this spacing must be
determined from the position of a single diffraction line.

Equation (4) shows that knowledge of do is required. If the specimen contains
only applied stress, do can be obtained from a measurement on the unloaded spec-
imen. (Such a stress measurement is rarely made, and then only for certain research
purposes; it is far easier to measure applied stress with an electric-resistance gauge.)
If the specimen contains residual stress, do must be measured on a small stress-free
portion cut out of the specimen; the method then becomes destructive and of no
interest.

Note that the value of do cannot be obtained from measurements on a “similar”
stress-free material. If the specimen is iron, for example, it is not sufficiently accu-
rate to look up the lattice parameter of “iron” in a handbook and calculate do from
that parameter. The specimen may contain more or less impurities than the materi-
al for which the parameter is given, and impurities can change the parameter.

Equation (4) is therefore not a practical basis for the measurement of residual
stress. At least two measurements of plane spacing on the stressed specimen are
required for a nondestructive determination of stress.

2u
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4 ELASTICITY

In a bar subject to pure tension the normal stress acts only in a single direction. But
in general there will be stress components in two or three directions at right angles
to one another, forming so-called biaxial or triaxial stress systems. While it is true
that, the stress at right angles to a free surface is always zero at that surface and that
only two normal stress components can exist at the surface, x-rays penetrate a finite
depth into a sample, and both triaxial and biaxial stresses can be present in the vol-
ume sampled by the x-rays.

The stresses which are present within a body, whatever the stress system, can be
related to the set of the three principal stresses , , and . The principal
stresses act along the directions normal to the planes on which no shear stresses
occur. It will be useful, therefore, to develop the relationship between the strain and
stress tensors in a form general enough to allow not only biaxial and triaxial stress-
es to be related to x-ray diffraction measurements but also to allow transformation
of stresses (or strains) from one coordinate system to another.

Typically two rectilinear coordinate systems are used in x-ray diffraction stress
measurements: the laboratory coordinate system Li and the sample coordinate sys-
tem Si (Fig. 6). The laboratory system consists of the axes with respect to which the
diffraction measurements are made; for hkl diffraction L3 is perpendicular to (hkl)
and L2 is coplanar with S1 and S2. Note that S3 is perpendicular to Ns and S1 and S2
are in the plane of the sample; S1 might be chosen parallel to the rolling or machin-
ing direction.

In an anisotropic elastic material stress is a second order tensor related to the
strain tensor through the equation

(5a)

for i, j, k and l = 1, 2 or 3 and elastic constants matrix Cijkl. Similarly, strain may be
defined in terms of the stress components through

(5b)

where Sijkl is the elastic compliance matrix. For an isotropic elastic solid, the elastic
constants E and v relate the stress and strain tensors through

(6)

where is Kroenecker’s delta which equals 1 if i = j and 0 if i j and the double
subscript “kk” indicates the summation . Written explicitly,

e22 �
1
E
3s22 � n1s11 � s332 4 ,

e11 �
1
E
3s11 � n1s22 � s332 4 ,

s11 �  s22 �  s33

	dij

eij �
1 � n

E
sij � dij

n

E
skk ,

e � S  skl ,

s � Ci kl ekl

eikl

si j

s3s2s1

ij j

ij i klj
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Figure 6 Illustration of the two axes systems used in stress measurements: Si sample coordinate system
and Li laboratory coordinate system.

and

(7)

where is the shear modulus. Stresses normal to a free surface
defined by vector nj must be zero at the surface, i.e.,

(8)sij � nj � 0,

m �  E > 1231 �  n 4 2

e12 �
1

2m
s12

e31 �
1

2m
s31,

e23 �
1

2m
s23,

e33 �
1
E
3s33 � n1s11 � s222 4 ,
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and the equations of equilibrium must be satisfied at each point of the material:

(9)

It is also necessary to relate in one coordinate system to that in another sys-
tem. This is done through direction cosines ami and anj, and

(10)

where ami defines the cosine of the angle between xi in the old coordinate system
and xm in the new coordinate system.Thus the relationship between strain in the
Si coordinate system and in the Li system is

(11)

with

(12)

for the angles and defined in Fig. 6. After substituting for a3k and a3l, the result
is

(13)

Note that the prime denotes quantities defined in the sample coordinate system Si,
and unprimed quantities refer to Li. In terms of stresses,

(14)

The quantity measured at angles and in Fig. 6 will be indicated by .
The difference between , the value of d in the stressed sample and measured for
the plane whose normal is at angles , from Si, and the value of do for the
unstressed state is related to by:1e¿33 2fc

cf

dfc

1e¿33 2fccfe¿  33

�
y

E
 1s11 � s22 � s33 2 �

1 � y

E
5s13 cos  f � s23 sin  f6 sin  2c

e¿

33 �
1 � y

E
5s11 cos2 f � s12 sin  2f � s22 sin2 f � s336 sin2 c �

1 � y

E
s33

e33 cos2 c � e13 cos  f  sin  2c � e23 sin  f  sin  2c.

e33
¿ � e11 cos2 f 

 sin2 c � e12 sin  2f  sin2 c � e22 sin2 f 
 sin2 c �
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aik � £

cos f  cos  c sin  f  cos  c � sin  c
� sin  f cos  f 0
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(15)

This result (Eq. 14 and 15) is the starting point for biaxial and triaxial stress analy-
sis via x-ray diffraction.

1e¿

33 2fc �
dfc � d0

d0

5 BIAXIAL AND TRIAXIAL STRESS ANALYSIS

Before proceeding to work through how to use Eq. 14 and 15 to measure stress,
it is useful to consider the forms the stress tensor might take.

Biaxial stresses have tensors of the form

(16 a,b)

for an isotropic material with the x3 direction is normal to the sample surface,
whereas triaxial stresses include tensors of the form

(16 c,d)

For biaxial stress it is convenient to introduce

(17a)

for tensor a above and

(17b)

for tensor b above. This is the stress along the direction L1 which is at an angle 
from S1. The equation for strain becomes [5]

(18)

If do, and E are known with sufficient precision, measurement of at two 
values of would be sufficient to determine . Multiple and should be used
in the stress determination because this allows the data to be fit with a least squares
line, thereby increasing the robustness  of the measurement. In this approach,
is  plotted  as a function of , (Fig. 7), and, as  will  be discussed below, this

method can reveal situations where the assumptions underlying Eq. 18 aresin2 
c

sin2 c

dfc

dfccsfc
 dfcn
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�

1 � n
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sf  sin2 c �

n

E
1s11 � s22 2

f

sf � s11 cos2 f � s12 sin2 f � s22 sin2 f
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s11 0 0
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d

sin   Q2

Q>0
Q<0

d

sin   Q2

d

sin   Q2

(a) (b) (c)

Figure 7 2

not satisfied. In summary, the slope of the plot of vs. gives providing E,
and do are known.
Next consider the values of do, E and required for Eq. 18. Normally do is taken

to equal , the experimentally measured d-spacing at . This ingen-
ious assumption [5] is reasonable because elastic strains typically introduce a max-
imum of 0.1% difference between the true do and d measured at any [G.38].
Further, do is a multiplier to the slope in Eq. 18, and the net effect will, therefore, be
less than 0.1%, much less that that from other errors. The x-ray elastic constants
should be used for a given material and reflection combination. Values of the x-ray
constant are collected in Table 1. In cases where these are not available,
the constants E and can be measured experimentally or can be calculated by aver-
aging single crystal constants via the Reuss or Voigt approximations [G.38].

Figure 7 shows three patterns of d vs. which might be encountered in prac-
tice. The linear plot of d vs. (Fig. 7a) shows the behavior expected from biax-
ial or uniaxial stresses. In this case, determination of the individual stress compo-
nents  may  require  measurement  of for three values of , say , , and      .
The  behavior  in  Fig. 7b is termed “psi-splitting”, that is the d-spacings determined
for , , are no longer identical with those determined for , .
Note that the superscript “+” or “–” for denotes values determined with or

, respectively. The different curves for and as a function of 
indicates that triaxial stresses are present and the previous analysis must be modi-
fied. Oscillatory d vs. curves (Fig. 7c) appear, for example, when significant
levels of texture are present. Special approaches, beyond the scope of this text can
be used in textured materials [G.38].

sin2 c

sin2 cdfc�dfc�c 6 0
c 7 0c

dfc�c 7 0dfc�c 6 0

90°45°0°fdfc

sin2 c

sin2 c

n

11 � n 2 >E

c

c �  0d1c �  0 2
n

n

sfsin2 cdfc

Different types of d vs. s     in c plots. After [G.38].
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Alloy
Composition

(weight percent) λ, hklb
2�

(deg) (103 ksi)
K1

a

(ksi/deg) Reference

(A) Ferritic and martensitic steels (body-centered cubic)

Armco iron Fe + 0.02 C Cr, 211 156 27.9

4340 (50 Rc)
c Fe + 0.40 C, 1.8 Ni, 0.8 Cr, 0.25 Mo Cr, 211 156.0 24.5 89.3

4340 Fe + 0.40 C, 1.8 Ni, 0.8 Cr, 0.25 Mo Cr, 211 156 122

4340 Fe + 0.40 C, 1.8 Ni, 0.8 Cr, 0.25Mo Cr, 211 156 (101)d

4130 Fe + 0.30 C, 1.0 Cr, 0.20 Mo Cr, 211 156 87

Railroad steel Fe + 0.75 C Cr, 211 156.1 90.9e

D-6AC Fe + 0.50 C, 1.0 Cr, 0.5 Ni, 1.0 Mo, 0.1 V Cr, 211 156.2 113.4e

D-6AC Fe + 0.60 C, 1.0 Cr, 0.5 Ni, 1.0 Me, 0.1 V Cr, 211 156 (98)d

Vascomax 250 Fe + 18.5 Ni, 6.6 Ca, 4.8 Mo, 0.1 Al, 0.4 Ti Cr, 211 156 (111)d

4820 (carburized) Fe + 0.20 C, 2.5 Ni, 0.26 Mo (core composi-
tion)

Cr, 211 156 (24.3)d,g 

(26.2)d,h

410 SSf (22 Rc) Fe + 12.5 Cr Cr, 211 155.1 25.6 98.4

410 SS (42 Rc) Fe + 12.6 Cr Cr, 211 155.1 25.1 96.7

422 SS (34 Rc) Fe + 0.22 C, 12.0 Cr, 0.7 Ni, 1.0 Mo, 1.0 W, 
0.25 V

Cr, 211 154.8 26.4 103.2

422 SS (38 Rc) Fe + 0.22 C, 12.0 Cr, 0.7 Ni, 1.0 Mo, 1.0 W. 
0.23 V

Cr, 211 154.8 26.1 103.4

steel Fe + 0.39 C Cr, 220 25.8

steel Fe + 0.73 C Cr, 211 22.8

steel Fe + 0.73 C Co, 310 19.4

steel Fe + 4.3 C, 3.96 Mo, 0.57 Si, 3.96 Mo Fe, 121 
(Fe3C)

21.0

steel Fe + 0.1 C, 0.55 Cr, 4.9 Ni, 0.57 Mo, 0.82 Mn, 
0.3 Si

Cr, 211 22.8

200 Maraging steel Cr, 211 23.5

HSLA 328 Cr, 211 28.6

1045 Cr, 211 28.7

1045 Co, 310 20.0

(B) Austenitic alloys (face-centered cubic)

304 SS Fe + 0.08 C, 18 Cr, 8 Ni, 2 Mn Cr, 220 129.0 20.2 170.0

Incoloy 903 Fe + 38 Ni, 15 Co, 3 Nb, 1.4 Ti, 0.7 Al Cr, 220 128.0 31.2 264.0

Incoloy 903 Fe + 38 Ni, 16 Co, 3 Nb, 1.4 Ti, 0.4 Al Cu, 331 146.3   74.6e

Incoloy 800 Fe + 32.5 Ni, 21 Cr, 0.4 Ti, 0.4 Al Cr, 220 129.0 23.4 196.0

Incoloy 800 Fe + 32.5 Ni, 21 Cr, 0.4 Ti, 0.4 Al Cu, 420 147.0 21.5 110.0

(C) Nickel alloys (face-centered cubic)

Monel K 500 66.5 Ni, 29.5 Co, 2.7 Al, 1.0 Fe Cu, 420 150.0 21.0 98.4

Inconel 600 70 Ni, 15.5 Cr, 8 Fe Cu, 420 151.0 23.1 105.0

Inconel 600 70 Ni, 15.5 Cr, 8 Fe Cr, 220 131.0 21.1 174.0

Kc
E

1 v+
------------=

TABLE 1 DIFFRACTION DATA AND STRESS CONSTANTS

[6]

[7]

[8]

[9]

[8]

[10]

[10]

[9]

[9]

[11]

[7]

[7]

[7]

[7]

[12]

[12]

[12]

[13]

[13]

[10]

[14]

[15]

[5]

[7]

[7]

[10] 

[7]

[7]

[7]

[7]

[7]

464
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Stress MeasurementStress MeasurementStress Measurement

(a) Value of K1 from Eq. (16-13) with ψ = 45�.
(b) In this only: “Cr” means Cr Ka: “Cu” means Cu Kα.
(c) Rc = Rockwell Chardness number.
(d) Calculated from data in referenced paper.

(f) SS = stainless steel.
(g) As - quenched
(h) Average value after tempering at 200� F and above.

l ksi = 103 p = 103 ib/in2 = 0.7031 kg/mm2 = 6.895 MPa.

l kg/mm2 = 1.422 ksi = 9.807 MP.

 Inconel 718 52.5 Ni, 19 Cr, 18.5 Fe, 3.1 Mo, 6.0 Nb, 0.9 Ti, 
0.4 Al

Cu, 331 145.0 19.7-20.3 109.0-
112.0

 Inconel 718 52.5 Ni, 19 Cr, 18.5 Fe, 3.1 Mo, 6.0 Nb, 0.9 Ti, 
0.4 Al

Cu, 331 146.1 122.4e

 Inconel 718 52.5 Ni, 19 Cr, 18.5 Fe, 3.1 Mo, 6.0 Nb, 0.9 Ti, 
0.4 Al

Cr, 220 128.0 31.2-31.4 263.0-
265.0

 Inconel X750 73 Ni, 15.5 Cr, 7 Fe, 2.5 Ti, 0.9 Nb, 0.8 Al Cr. 220 131.0 36.8 301.0

Nickel Cu, 420 22.9

Nickel Cu, 331 20.7

(D)  Aluminum alloys (face-centered cubic)

2024 Al + 4.4 Cu, 1.5 Mg, 0.6 Mn Cu, 511 163 8.51

2024-73 Al + 4.4 Cu, 1.5 Mg, 0.6 Mn Cr, 311 139 44

7075 Al + 1.6 Cu, 2.5 Mg. 0.3 Cr, 5.5 Zn Cr, 311 139.0 8.83 56.9

7079-T611 Al + 0.6 Cu, 3.7 Mg. 0.2 Cr, 4.7 Zn Cr. 311 139 50

2218-T87 Al + 6.3 Cu, 0.3 Mn, 0.18 Zr, 0.1 V, 0.05 Ti Cr. 311 120.5 55.0e

Aluminum Co, 420 7.10

5083-H23 Cr, 311 7.98

5083-H23 Co, 420 7.97

5083-H23 Cu, 511  
/333

7.97

(E) Copper alloys (face-centered cubic)

Cu-Ni 85 Cu, 15 Ni Cu, 420 146.0 18.6 98.8

-Brass Co, 400 9.42

�-Brass Co, 310 7.18

Copper Co, 400 10.7

(F)  Titanium alloys (hexagonal close - packed)

Ti-6-4 Ti + 4 Al, 4 v Cu, 213 142.0 12.2 74.0

Ti-6-4 Ti + 4 Al, 4 v Cu, 213 142 70

Ti-6-2-4-2 Ti + 6 Al, 2 Sn, 4 Zr, 2 Mo Cu, 213 140.7 14.8 92.3

Ti-8A1-1Mo-1V Cu, 213 14.3

(G) Misc.

Tungsten Co, 222 46.5

Uranium Cu, 116 39.1

Zircoloy-2 Cr, 104 11.8

Alloy
Composition

(weight percent) λ, hklb
2�

(deg) (103 ksi)
K1

a

(ksi/deg) Referenc

Kc
E

1 v+
------------=

TABLE 1 (Continued)

[7]

[10]

[7]

[7]

[12]

[12]

[6]

[8]

[7]

[8]

[10]

[12]

[16]

[16]

[16]

[17]

[12]

[12]

[12]

[7]

[7]

[7]

[17]

[12]

[18]

[18]

(e) Measured with detector in same radial position, between F and F′ of Fig. 9(b), for ψ = 0 and 45�.
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In determining triaxal stresses it is convenient to define a1 and a2 such that

(19a)

(19b)

with and . Basically, a1 is defined by
the mean of the values of d for and d for and a2 by the difference
of these d.Thus a1 is a linear function of and , and are obtained
from the slope and intercept of a1 vs. for , 45, and . The shear stress-
es and are obtained from the slope and intercept of a2 vs. for

. Figure 8 shows data for a sample containing a triaxial stress state: a) and
b), and a1 plotted vs. and c) a2 vs. [19].sin 02c 0sin2 cdfc
f � 0, 90°

sin 02c 0s23s13

90°f �  0sin2 c

s33s11, s12, s22sin2 c
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6 DIFFRACTOMETER METHOD

Until about 1950, x-ray stress measurements were made only by photographic

methods. Today the diffractometer is preferred because it is faster and more pre-
cise. The photographic method, and its success of the area detector method, will be
described later.

Steel which has been hardened by quenching and tempering produces very
broad diffraction lines. Measuring the positions of such lines on a photographic film
is difficult and can only be done by making a microphotometer record of the film.
However, such measurements can be made in a straightforward fashion with a dif-
fractometer, as was first shown by Christenson and Rowland [20]. Their demon-
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triaxial stress analysis. (After [19]).

2 

stration that residual stress could be accurately measured in hardened steel, an
important industrial material, greatly enlarged the scope of the x-ray method.

Most diffractometers must be modified to meet two requirements of stress meas-
urement:

1. The specimen holder must be robust enough to support fairly large and
heavy specimens, and it must be possible to rotate the holder about the dif-
fractometer axis independently of the detector rotation, in order to change
the angle .

2. In one variant, the detector must be mounted on a radial slide that allows
detector movement along a radius of the diffractometer circle. (Some pre-
fer to leave the detector in its usual position and move the detector slit. In
the following, when detector movement is mentioned, either practice is
meant.)

The second requirement arises from the need to preserve focusing conditions, as
shown in Fig. 9. In (a) the specimen is equally inclined to the incident and diffract-
ed beams; is zero and the specimen normal NNs coincides with the diffraction plane
normal NNp. Radiation divergent from the source S is diffracted to a focus at F on
the diffractometer circle. In (b) the specimen has been turned through an angle 
for the inclined measurement. Because the focusing circle is always tangent to the
specimen surface, rotation of the specimen alters the focusing circle both in posi-
tion and radius, and the diffracted rays now come to a focus at F’, located a distance
D from the diffractometer axis. If R is the radius of the diffractometer circle, then
it may be shown that

(20)
D

R
�

sin 1u � c 2

sin 1u � c 2
.

c

c

c

vs.s      in 02c 0 forFigure 8 (a) Example of c-splitting and corresponding plots of (b) a , vs. s      in c and (c) a
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Figure 9 Use of a diffractometer for stress measurement (a) and (b) show the focussed beam and (c)
shows the parallel beam configurations..

diffractometer
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detector detector
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(c)   

If is , then D/R is 0.70 for and 0.47 for . When is not zero,
the focal point of the diffracted beam therefore lies between F, the usual position
of the detector receiving slit, and the specimen. To preserve focusing, the detector
should be moved so that the slit is at . The cumbersome receiving slit motion
required with a focussed beam geometry can be avoided using the parallel beam
geometry described below.

F¿

cu � 70°u � 80°45°c
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Instrument misalignment can introduce small errors which cause a change in 
even for a stress-free specimen, when is changed from 0 to . It is therefore nec-
essary to determine this change experimentally and apply it as a correction. If

is the line shift for a stress-free specimen and the measured shift for
a stressed specimen, then the line shift due to stress is

(21)

The correction is best determined on a specimen of fine powder, which is necessar-
ily free of macrostress. The powder should have about the same composition as the
material in which stress is to be measured in order that its diffraction line occur at
about the same position, because the correction itself depends to some
extent on .

A value of greater than about points to the need for better instru-
ment alignment. The general alignment procedure stipulated by the diffractometer
manufacturer should be carried out. Two further conditions must be satisfied:

1. The specimen surface must lie on the diffractometer axis and remain there
as is changed. Failure to achieve this condition is usually the major source
of error in stress measurement. Errors arise, for example, when, the sample
is physically displaced from the diffractometer axis; they may also occur if
the -axis is offset from the diffractometer’s axis. Some kind of mechan-
ical pointer (feeler gauge) is often used to position the specimen in the
proper place.

2. The radial motion of the detector must be truly radial. If the beam from the
x-ray tube is restricted by a very narrow incident-beam slit to pass over the
diffractometer axis and the detector is positioned at to receive the
direct beam, nonradiality of the detector slide will be disclosed by an
apparent deviation of the beam from 0° as the detector is moved toward
the diffractometer axis.

The effect of sample or -axis displacement can be minimized, however, if a par-
allel beam geometry (Fig. 9c) is used instead of the focused beam geometry (Fig.
9a,b). In the parallel beam geometry the position is determined by the angular
relationship between parallel slits in the incident and diffracted beams; these slits
are Soller slits with baffles perpendicular to the goniometer plane. Then the detec-
tor slit can be kept in a stationary position (F in Fig. 9b) instead of translating the
slit along the detector arm to keep it at the focal position for different ; the cost
of this procedure is a substantial loss of intensity. The variation of stress with sam-
ple or -axis displacement of is nearly negligible with the parallel beam
geometry and is substantially less for the stationary slit geometry than for the
parafocusing geometry [G.38].

A reasonably strong high-angle diffraction line is needed for the measurement
of stress. The combination of (hkl) reflecting planes and wavelength that will pro-l

; 2mmc

cF¿

2u

c

u � 0

2uc

c

0.1°1¢2u 2 0
2u

1¢2u 2 02u
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1 1 ksi = 103 psi = 103 lb/in2 = 0.7031 kg/mm3 = 6.895 MPa. and 1 kg/mm2 = 1.422 ksi = 9.807 MPa.

duce such a line varies from one kind of material to another. These combinations
and the approximate position of the line are listed in Table 1 for various materi-
als.

Measurement of Line Position

Line positions for stress measurements must be determined with the highest possi-
ble precision. This is particularly necessary when the lines are broad, as they are
from hardened steel; the full width at half-maximum intensity is then .
If the line is wide for and the 211 reflection for steel (E=207 GPa,1

), a stress of 3 MPa will cause the line to shift by only 7
percent of its width when the specimen is turned through . Measurement of
such a small shift requires that the line center be located very accurately at each
angle .

The standard method of finding the center of a diffraction line, broad or narrow,
is to fit a parabola to the top 15% of the line and take the axis of the parabola as
the line center. This method was first used for stress measurement by Ogilvie [21],
and it provides a more reproducible measure of peak position than centroid or the
mid-point half-maximum methods [22].

When the lines are broad, certain corrections should be applied to the intensity
data before finding the line center, as pointed out by Koistinen and Marburger [23].
One factor controlling these intensities was the Lorentz-polarization (L-P) factor

.This factor can vary considerably over the width of a sin-
gle line, when the line is broad and in the high-angle region. However, the L-P fac-
tor applies to integrated intensities.To obtain an expression governing intensities at
particular values of within a single line, the term, which relates to line
breadth, is eliminated and the resulting modified L-P factor is .
The variation of this factor with makes a high-angle line asymmetrical about its
center. Absorption in the specimen has a similar effect when is not zero, because
the absorption factor is then . If are combined these two factors are
combined and termed the LPA factor, then

(22)

Measured intensities are to be divided by LPA in order to make the lines more
nearly symmetrical, before determining the line center. If the background is high,
because of fluorescence by the specimen, better accuracy is attainable by subtract-

� a
1 � cos2 2u

sin2 u
b  11 � tan  c   cot   u 2

11 � tan  c cot   u 2
c

2u
11 � cos2 2u 2 >sin2 u

11>cos  u 22u

11 � cos 2 2u 2 > 1sin 2 u cos  u2

c

45°
n � 0.29, u � 78°, c � 45°

Cr Ka8°
5° � 10° 2u

2u

LPA � 1mod ified L-P factor 2 1absorption factor 2
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ing the background, assumed linear across the line, before applying the LPA cor-
rection and finding the line center.

Specimen Preparation

Ideally, the specimen surface should be clean and smooth. Dirt and scale, if present,
must be removed, but any removal of material must be done by a process that does
not itself produce residual stress and thereby change the stress to be measured.

Grinding and machining are known to introduce large stresses to depths of at
least 0.005 inch . The effect of acid etching is less certain; some investiga-
tors have reported that etching produces some stress, others that the effect is neg-
ligible; at any rate, deep etching is objectionable because of the surface roughness
it produces (see below). Electrolytic polishing, i.e., the process in which the speci-
men is made the anode in an electrolytic cell is another method of removing metal
from polycrystalline samples without introducing stresses; details are given in [16]
and by Tegart [24].

Surface roughness should be strictly avoided, because the high points in a rough
surface are not stressed in the same way as the bulk of the material and yet they
contribute most to the diffraction pattern, especially the one made at inclined inci-
dence, as indicated in Fig. 10. Of course, the surface should not be touched at all
prior to the stress measurement, if the object is to measure residual surface stress-
es caused by some treatment such as machining, grinding, shot peening, etc. Such
treatments produce steep stress gradients normal to the surface, and the removal of
any material by polishing or etching would defeat the purpose of the measurement.

Measurement of Stress as a Function of Depth

When the stress gradients within a specimen are measured with x-ray diffraction,
material is removed in layers and the stress is measured at each new exposed sur-
face. These measured stresses are not those previously existing, because the
removal of a stressed layer changes the stress in the remaining material. The meas-
ured stresses have therefore to be corrected. The layer-removal correction is
described by Moore and Evans [25], by [16] and by [G.38].

An example of stress measurements in depth is given in Fig. [11], which shows
the residual stress produced in hardened steel by grinding. The extremely steep

1125 mm 2

Figure 10 Diffraction from a rough surface when the inci-
dent beam is inclined.
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Figure 11 Longitudinal residual stress, par-
allel to grinding direction, as a function of
depth below the ground surface in a steel
heat treated to a Rockwell C hardness of
59. X-ray measurements by Koistinen and
Marburger [26]; dissection measurements
by Letner [27]. Note inability of dissection
method to measure stress right at the sur-
face.

stress gradient normal to the surface should be noted; the stress changes from + 100
ksi to - 100 ksi (+ 700 MPa to - 700 MPa) in about 0.0006 inch , which means
that the gradient is about 5 ksi/in (90 to . Beam penetration cor-
rections were necessary here, as they generally are when measurements are made
on ground or machined surfaces.

Variant Techniques

The following variations of the standard method described above are also in use:

1. Measurements are made at only two values of , normally and or
. With fever measurements, the precision of the stresses determined

decreases compared to the method, but the apparatus can thus be
very simple. This approach is frequently used for portable stress apparatus,
and more details follow below.

2. Side-inclination method. The geometry of the Schulz method for pole-figure
determination is adopted. For the measurement of dn the specimen is posi-
tioned so that the direction in which stress is to be measured is parallel to the
diffractometer axis. The rotation is then made about the axis AA for the
measurement of di.The focal point of the diffracted beam remains on the dif-
fractometer circle as is changed, so that radial motion of the detector is not
needed. This method has another advantage for some specimens in which

c

¿c

sin2 c

60°
45°0°c

95 MPa>mm3 � 10
115 mm 2
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stress has to be measured at the bottom of a concave region, such as in the
space between the teeth of a gear; depending on the shape of the concavity,
it may be physically impossible to get an x-ray beam in and out with the
standard method, because either the incident or diffracted beam is blocked
by the specimen at one angle or another; with the slide-inclination
method this problem may not exist. On the debit side, the height of the
beam is severely limited.

Special Diffractometers

It is sometimes necessary to measure residual stress in an object that is too large
and/or heavy to be accommodated on a standard diffractometer. Or one may wish
to measure stress in a large structure, as distinct from a machine component. In
either case, it is necessary to bring the diffractometer to the object to be measured
rather than vice versa.

Compact, portable diffractometers have been made for this purpose. Because
they are intended only for stress measurement, the angular range of detector
movement covers only the high-angle region.The angle is changed by rotating the
whole diffractometer (x-ray tube and detector) with respect to the specimen about
the diffractometer axis, which is an imaginary axis lying in the surface of the speci-
men.

Cohen and James [29] adapted a position-sensitive detector to stress measure-
ment. This detector has the great advantage that it can measure the position of
a diffracted beam without a movement of the detector. Preliminary work was
done with the detector mounted on a standard diffractometer [27] Later a portable
instrument was made, in which the detector and a miniature, air-cooled x-ray tube
are fixed to a single support that moves in a curved guide through an arc of [29].
Three rods fixed to the guide allow the unit to be properly positioned relative to the
specimen. Stress is measured by determining the line position at , swinging
the detector and tube together through , and determining the line position again.
This instrument has the following features:

1. It is fast.All the points on the diffraction-line profile are measured simulta-
neously and stored as I, data in an MCA. A minicomputer then estab-
lishes the line centers for and by least-squares parabola fitting,
computes the stress, and displays it. Stress can be measured with a standard
deviation of about 35 MPa in 20 seconds or less, depending on line width.

2. It is truly portable, weighing only 23 lb (10 kg) and can be carried by one
person, with the aid of a neck strap and two handles, and held in position
for a stress measurement. As a fixed instrument, it should be useful for
monitoring stress in material coming off a production line.

3. The detector, associated electronics are rather expensive.

45°c � 0
2u

45°
c � 0

45°

2u
2u

c

2u

c
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Figure 12. (a) Photograph and (b) schematic views of XSTRESS-3000 portable diffractometer for resid-
ual stress measurement (courtesy Stresstech).

Figure 12 shows a photograph (a) and two schematic views (b) of the goniome-
ter of a portable diffractometer for stress measurement (XSTRESS 3000 from
Stresstech); the systems provided by other manufacturers are not too dissimilar to
this apparatus. The XSTRESS 3000 goniometer sits on three legs so that the x-ray
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source and detectors are at a fixed distance from the sample’s surface; typically the
legs are directly on the surface of large samples and control of the separation
between goniometer and measurement point is quoted as 0.003 mm. The goniome-
ter incorporates two linear PSD’s with /detector element angular resolution
quoted by the manufacturer; it weighs only 10 kg and the self-contained power sup-
ply and tube cooling system module, connected to the goniometer by cables and
tubes, weighs an additional 25 kg. A variety of x-ray tubes are available, the system
can be operated up to 30 kV and 6.7 mA (200 W) and beam collimators between 1
and 5 mm diameter can be selected by the operator. Diffractometer control, data
acquisition and analysis are performed on a standard notebook PC.

0.029°

7 PHOTOGRAPHIC OR AREA DETECTOR METHOD

The photographic method of stress measurement is not often used today, because it
is slower and less precise than the diffractometer method. Stress measurements
with area detectors, however, are becoming increasingly popular since the detectors
have a wide dynamic range, the data is in digital form and peak positions can be
measured with reasonable precision. The photographic method still has some
advantages. The required apparatus is very simple: a small back-reflection camera
fixed to the head of an x-ray tube. This apparatus is smaller, lighter, more robust,
and much cheaper than a mobile diffractometer. It is also more mobile and better
suited to work in a confined space.

Two experimental techniques have been used:

1. Two exposures are made, with the incident beam inclined at a different
angle to the specimen for each exposure [G.10, 16, 31, 32]. Only one side of
the Debye ring on the film is measured in each exposure. This method is
entirely analogous to the standard diffractometer method.

2. A single inclined exposure is made, but both sides of the Debye ring are
measured.

Norton [31] has analyzed the errors in each technique and has concluded that the
single-exposure technique is, in practice, just as precise as the two-exposure tech-
nique, besides being twice as fast, even though the precision of the two-exposure
technique is theoretically better.

Only the single-exposure technique will be described here for biaxial stresses.
The incident beam (Fig. 13) is collimated by a pinhole, not shown, and is inclined at
an angle to the normal Ns to the specimen surface. The diffracted x-rays register
on two strips of film held in a curved holder of radius R centered on O. (Flat-film
cameras have also been used.) The two x-rays beams shown do not lie on a true
Debye cone because they are diffracted by sets of planes, 1 and 2, differently ori-
ented with respect to the stress and therefore with different spacings. The two
sets of planes have slightly different Bragg angles and , and their normals Nr1u2u1

sf

b
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Figure 13 Photographic method
of stress measurement (single-
exposure technique). After
Norton [31].

and make slightly different angles and with the incident beam. Equation
(18) can then be written for each angle, and :

23(a)

23(b)

The difference between Eq. 23(a) and (b) is

(24)

Substituting

,

with , using and , noting 
and solving for yields:
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which is usually expressed as

(25)

where K, the stress constant, is given by

(26)

for in deg.
The quantities measured are the distances S1 and S2 between the diffraction lines
and the shadows of the inside knife edges, which are at a distance l from the inci-
dent beam. Therefore,

(27)

By subtraction

(28)

or

Replacing in Eq. 25 by Eq. 28 results in the working equation

(29)

where the stress constant is given by

(30)

If is chosen to be , the term drops out.
The stress camera shown in Fig. 14 has a radius of 70.0 mm. It takes two standard

packets of dental x-ray film which slide into curved slots in the film holder; thus film
can be inserted and removed for processing without disturbing the camera align-
ment. Knife edges in the film holder cast sharp x-ray shadows at each end of each
film strip; these serve as fiducial marks for the measurement of line position and for
the correction of film shrinkage. The correct distance between specimen and film is
set by replacing the collimator aperture with a retractable pointer, not shown; the
tip of this pointer lies on the axis of the incident beam at the right distance from the
film, i.e., at the point O of Fig. 13. Line positions on the film are measured with a

sin  2b45°b

K3 �
E

4R11 � n 2  sin2 u sin  2b
.

s
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conventional viewing box and scale, such as those used to read
Hull/Debye–Scherrer films, or with a microphotometer. If the standard deviation of
the quantity (S2 - S1) is 0.04 mm, which can be achieved by careful, repeated meas-
urements on each film, then the standard deviation in stress for steel is about 30
MPa [31].

General purpose planar area detectors (e.g., a flat image plate [32]) can be used
very effectively to record the entire diffraction cone in a single exposure. Multiwire
or CCD detectors can also be used [33]. With the detector placed perpendicular to
the incident beam, the diffraction cone from the stressed sample is not circular, and
the variation of radius with azimuthal angle is related, through trigonometry, to the
angle for the different orientations of the diffraction planes. Thus, all 
orientations are measured for a single in a single exposure; obtaining multiple

requires tilting the sample and recording multiple exposures [32]. The compo-
nents of the stress tensor are then obtained using the methods described above.
Textured and large-grained samples may be studied by this technique as well as
samples with randomly oriented grains. The image plate technique has produced
results on a ground steel sample comparable to those from conventional methods
[32].

The small diameter of the incident beam from a stress camera a portable dif-

c

cf

f180° � 2u

Figure 14 Stress camera in position for a stress measurement by the single-exposure technique. The
head of the x-ray tube is enclosed in a protective cover. (Courtesy of Advanced Metals Research
Corporation.)

x-ray
tube

collimatorfilm holder

specimen

film strip

fractometer Fig. 14 is an advantage when one wishes to measure stress variations
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Figure 15 Longitudinal residual stress in the surface of a
steel strip, due to localized heating, do is diameter of heat-
ed area. Norton and Rosenthal [34].

from point to point on a surface, as in the region near a weld.The stress distribution
shown in Fig. 15 determined by a photographic method, simulates the residual
stresses due to spot welding.The specimen was a steel strip . A cir-
cular area of about 1 cm diameter, whose size is indicated on the graph, was heat-
ed locally to about 700ºC for a few seconds by clamping the strip at its center
between the two electrodes of a spot welding machine. The central area rapidly
expanded but was constrained by the relatively cold metal around it. Plastic flow
occurred in the hot central region, and residual stress was set up during cooling.The
stresses shown in Fig. 15 are longitudinal stresses at points along a line through the
heated area across the 80 mm width of the strip.Tensile residual stress, almost equal
to the yield stress of this steel (415 MPa), exists in the heated area.

Other investigations by the photographic method include measurements on Al
[35-37], Ti [34] and steel [34, 38, 39].

25 � 8 � 0.6 cm

8 CALIBRATION

The measurement of stress by x-rays depends on the assumption that the material
under stress was an isotropic body obeying the laws of elasticity. The quantity

, is  required  to  convert strains to stresses and the tacit assumption was
that the values of E and measured in the ordinary way during a tensile test are to
be used. These mechanically measured values are not necessarily the correct ones
to apply to a diffraction measurement. In the latter, strains are measured in partic-
ular crystallographic directions, namely, the directions normal to the (hkl) diffrac-
tion planes, and both E and vary with crystallographic direction. This anisotropy
of elastic properties varies from one metal to another: for example, measurements
on single crystals of -iron show that E has a value of 284 GPa along [111] and 132a

n

n

E> 11 � n 2
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GPa along [100], whereas the values of E for aluminum show very little variation,
being 75 GPa along [111] and 63 GPa [100]. The mechanically measured values are
207 and 69 GPa for polycrystalline iron and aluminum, respectively. These latter
values are evidently average values for aggregates of contiguous grains having ran-
dom orientation. In the x-ray method, however, only grains having a particular ori-
entation relative to the incident beam, and therefore a particular orientation with
respect to the measured stress, are able to diffract. There is therefore no good rea-
son why the mechanically measured values of E and should be applied to these
particular grains. Stated alternately, an aggregate of randomly oriented grains may
behave isotropically but individual grains of particular orientations in that aggre-
gate may not.

These considerations are amply supported by experiment. By making x-ray
measurements on materials subjected to known stresses, the ratio  can be
determined experimentally and can differ substantially from the values calculated
from the mechanically measured elastic constants. Moreover, for the same materi-
al the measured values of usually vary with the indices (hkl) of the dif-
fraction planes.

Methods have been proposed for calculating the proper values of E and to use
with x-ray stress measurements from values measured in various directions in sin-
gle crystals. Examples include the Voigt [40] and Reuss [41] averages, and software
is commercialy available for applying a wide range of models for elastic constants
[e.g., 41a].These and other approaches are summarized elsewhere [G.38].The safest
procedure is to measure on a specimen subjected to known stresses, and
this specimen should be the same material as the sample in which the stresses are
to be measured. Specific examples of calibration procedures may be found in [6-9,
11, 16, G.38].

One practice is to set up known stresses in body by bending. The specimen is a
flat strip, seen edge-on in Fig. 16, at two points and loaded by the forces F at two
other points. This four-point bending produces a tensile stress in the front surface,
and this stress is constant in magnitude between the two inner supports. If the cali-
bration is performed on a diffractometer, the bending fixture must be so designed
that the front surface of the specimen coincides with the diffractometer axis at any

angle and at any degree of bending.c

E> 11 � n 2

n

E> 11 � n 2

E> 11 � n 2

n

F F

diffractometer
axis

x-ray

strain
gauge

specimen

Figure 16 Specimen loaded in bending for calibra-
tion of the x-ray method.
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The strain due to bending is measured by an electrical-resistance strain gauge
mounted near the region examined by x-rays. The product of this strain and the
mechanically measured elastic modulus E of the material is the surface longitudi-
nal stress needed for the calibration. (Any uncertainty in E will cause a corre-
sponding uncertainty in the stress constant K, the proportionality constant linking
peak shift as a function of with stress. The best approach is to measure E on the
same specimen by direct loading of the same kind as that used in the x-ray calibra-
tion, e.g., by four-point bending.)

After a range of known stresses , not exceeding the elastic limit, are measured
by x-rays, the data are plotted in the form of a calibration curve. If, for example, a
diffractometer is used, the calibration curve is a plot of vs. ,
and the slope of the line is equal to the stress constant. (If the line does not go
through the origin, it indicates that the calibrating member itself contained residual
stress before a bending moment was applied.)

The x-ray technique used in calibration should match the technique to be used
later for the measurement of unknown stresses. For example, the stress constant
determined with the focusing technique is not expected to agree with the stress con-
stant determined by the parallel-beam technique (Fig. 9).

Experimentally determined stress constants are given in Table 1 for a variety of
industrial alloys, ferrous and nonferrous. All have been determined with the dif-
fractometer.

¢2u� 12un � 2ui 2sf

sf

c

sf

9 PRECISION AND ACCURACY

As in most measurements, precision (reproducibility) is easier to attain than accu-
racy (approach to the “true” value).

Precision

High precision requires that the random errors involved in measuring diffraction
line position be minimized, and these errors are larger, the wider the line.

Diffractometer

Precision in establishing the profile, and hence the position, of a diffraction line is
governed mainly by the statistical error in counting. As shown by Eq. (6-8), this
error is proportional to , where N is the number of counts. Many investiga-
tors use a fixed-count technique and count long enough at each position to accu-
mulate 105 counts. The relative standard deviation of such a count is 0.3 percent.
Ways of estimating the standard deviation of the measured stress from the errors
involved in counting and curve fitting are treated in [16]. James and Cohen [12]
have made an experimental study of the precision attainable by different tech-
niques; they show, for example, that better precision is attained by fitting a parabo-
la to a number of points, seven or more, by least squares than by fitting it to three

2u
1>2N

points, even when the total time spent in counting is identical. It is difficult to
give a single figure for the precision attainable in a stress measurement in a reaso-
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Stress camera

Precision is increased by making repeated measurements on each film and averag-
ing the results. Using the single-exposure technique, Norton [31] obtained a stan-
dard deviation on steel (narrow lines) of 4.5 ksi (30-35 MPa).

Accuracy

High accuracy requires that systematic errors be minimized. These errors are
chiefly of two kinds, those of a geometrical nature and those involved in the elastic-
constant portion of the stress constant. The systematic errors cause an error in the
measured stress which is proportional to the magnitude of the stress.

In a diffractometer measurement by the standard focusing technique, the chief
geometrical error is a displacement of the specimen surface from the diffractome-
ter axis. If the specimen is displaced by an amount x along the reflecting-plane nor-
mal, then a line shift will occur even for a stress-free specimen, as it is rotated from

to . This shift, in radians, is given by [43]

(31)

where R is the diffractometer radius and x is taken as positive when the displace-
ment is in front of the axis. For , , and
R = 5.73 in. (14.55 cm), .

In the single-exposure camera method, faulty positioning of the camera relative
to the specimen causes errors in R and .

Given careful experimental technique, an inaccurate value of , remains
as the largest source of error. Inspection of the data in Table 1 shows rather poor
agreement between certain investigators for the value of for the same or
similar material. The investigator who does not have the time or facilities to meas-
ure , before making stress measurements has two options: (1) he or she
can select a value, or a mean value, from a list such as that of Table 1, with a possi-
ble error of up to about 10 percent, or (2) he or she can calculate from
the mechanically measured values of E and , with a possible error of about 30 per-
cent. While such errors would be intolerably large in some measurements, they do
not necessarily impair the value of residual stress measurements. As Norton [31]
points out, the investigator is usually more concerned with precision than accuracy,
in that he or she wants to know how the stress varies from one point to another on
the specimen or how the stress at a particular point varies with the treatment of the
specimen. An error of even 30 percent in the absolute magnitude of the measured
stresses would seldom change the conclusions reached in the investigation.

n

E> 11 � n 2

E> 11 � n 2

E> 11 � n 2

E> 11 � n 2
b

¢2u � �0.033 deg
u � 78°, c � 45°x � 10�2 inch 1250 mm 2

2un � 2ul � ¢2u �
2x  cos  u

R
c1 �

sin  u
sin 1u � c 2

d   ,

c� cc� 0

nable measuring time without hedging it about with many qualifications, but, for
measurements on steel, standard deviations of 2 ksi-3 ksi (i.e., 15-20 MPa for nar-
row diffraction lines) and 4 ksi-5 ksi (30-35 MPa for broad lines) are probably con-
servative estimates. The reader is refered to [G.38] for further details.
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(In certain nickel alloys Prevey [7] has found abnormally large differences
between the x-ray and mechanical values of the elastic constants; for these alloys
his x-ray values are up to 80 percent larger than the mechanical values reported in
the literature.)

10 PRACTICAL DIFFICULTIES

Certain conditions inherent in the specimen can affect the accuracy, and even the
possibility, of x-ray stress measurements. Deviations from the regular d vs.
behavior (Fig. 7) can be assessed qualitatively and the validity of the underlying
assumptions tested statistically [44]; this can be very important in determining
whether any of the following conditions are present.

Large Grain Size

If the grains are large, the diffraction line is spotty and its position not well defined.
This condition is obvious with a photographic, but not with a diffractometric, tech-
nique. If this condition is suspected, a back-reflection pinhole photograph should be
made before stress measurements with a diffractometer are attempted. Or the line
may be recorded on a dental film placed in front of the detector slit.

Some industrial products have grains so large that x-ray stress measurements are
impossible with techniques intended for polycrystalline samples. In borderline

an axis lying in the specimen surface, will increase the number of reflecting grains
enough to produce a measurable line.

Techniques for precision measurement of lattice parameters in single crystals
can be used to determine stresses in the individual grams.

Preferred Orientation

A moderate degree of preferred orientation causes no difficulty, but a fairly sharp
texture has two effects:

1. The diffraction line selected for the stress measurement may be strong at
and virtually absent at , or vice versa. The texture will then

control the possible angles.
2. If the material is elastically very anisotropic, the mechanically measured

value of E will depend markedly on direction in the specimen. Oscillations
result in plots of d vs. and complicate stress determination [G.38].
Serious errors can result if the biaxial or traxial methods are applied
blindly.

sin2 c

c

c � 45°c � 0

sin2 c

cases, oscillation of the specimen during the measurement, by ;2-5 degrees about
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Plastic Deformation

If the specimen has been plastically deformed in a particular way in the region
examined by x-rays, the x-ray method does not indicate the true macrostress. (If the
plastic deformation causing the residual stress is remote from the region examined,
the accuracy of the x-ray method is not affected; this condition exists, for example,
in surface measurements on quenched specimens, where residual stress in the outer
surface is due to plastic flow in the interior.)

When a specimen is stretched plastically a few percent and then unloaded, x-ray
measurements show a line shift indicating residual compressive macrostress in the
direction of prestrain. The effect is symmetrical: after plastic compression, x-rays
indicate residual tensile stress. It is not a surface effect, because x-ray measure-
ments made after successive removal of surface layers show that the stress persists
throughout the specimen. On the other hand, dissection measurements show that a
true macrostress does not exist, and, in fact, none would be expected after uniform
deformation. The stress indicated by x-rays is called pseudo-macrostress, “pseudo”
because it is not a true macrostress causing strain on dissection and “macro”
because it causes an x-ray line shift. Pseudo-macrostress is actually, an unusual kind
of microstress, in which the portions of the material that are in tension and in com-
pression are unequal in volume. It has been discussed in various reviews [12, 45, 46
G.38].

The effect was first observed after uniaxial deformation, but such deformation is
not restricted to pure tension and compression. Plastic bending, for example, caus-
es true macrostress (Fig. 2), but the deformation mode is predominantly a tension
or compression of layers parallel to the neutral axis of the beam. The longitudinal
residual stress indicated by x-rays is therefore the sum of true macrostress and
pseudo-macrostress, and the x-ray result will be numerically larger at either surface
than the result obtained by dissection.

Deformation by rolling or die drawing has a certain uniaxial character, but the
forces on the material at the roll or die surface are inclined to the specimen axis.
Macrostress is produced, superimposed on a complex system of microstresses; the
latter probably include a pseudo-macrostress. As a result, the x-ray method does
not measure the true macrostress, but rather the sum of macrostress and some com-
ponent of the microstress that causes an additional line shift.

On the other hand, plastic deformation by grinding or shot peening produces
macrostresses that are accurately measurable by x-rays, as shown by excellent
agreement between x-ray and dissection measurements. Figure 11 shows an exam-
ple. Deformation by these processes appears to be multiaxial, rather than uniaxial,
and pseudo-macrostress is accordingly absent.

In summary, the x-ray method does not reveal the true macrostress in specimens
that have been plastically deformed by tension, compression bending, rolling, or die
drawing. It would be wrong to conclude, however, that the x-ray method is in error.
Pseudo-macrostress is just as real as macrostress. X-rays indicate the sum of the
two, dissection only the latter.
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PROBLEMS

*1 A uniaxial tensile stress of 100 ksi is being measured in iron by 211 diffraction of
x-rays at and . Take the lattice parameter a of the stress-free iron to be
2.8665 Å , , and . (a) Calculate and do to five signifi-
cant figures. (b) What percent error is made in replacing by

in Eq. (18)?
2 Derive Eq. (20).
3 Show that the absorption factor for the diffractometer method is .
*4 The circumferential (hoop) stress in a cylinder of 1045 steel, due to water
quenching followed by glass bead peening, is measured with a diffractometer
(Cr K radiation, 211 reflection). The line shift when a stress-free specimen is
rotated from to is . Take the stress constant K1 as 90 ksi/deg.
The time t given below is the time required to accumulate 20,000 counts at each
angle.
Calculate the residual stress with and without correction for line asymmetry by the
LPA factor.

�0.10°c � 45°c � 0
¢2ua

11 � tan  c   cot   u 2

3dfc�d1c � 0 2 4 >d1c � 0 2
1dfc� dO 2 > dO

dfcn � 0.29E � 30 � 106 psi
45°c � 0

� 2� t(sec) LPA

0  155.00� 69.20 1.910912
155.80 54.47 1.916158
156.60 71.64 1.921281

45� 156.00 35.84 1.509882
156.50 32.35 1.521150
157.00 33.83 1.532391

REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.10 Charles S. Barrett and T. B. Massalski. Structure of Metals, 3rd ed. (New
York: McGraw-Hill, 1966). A classic book on the crystallographic aspects
of physical metallurgy. Really two books in one, the first part dealing with
the theory and methods of diffraction of x-rays, electrons, and neutrons; the
second part with the structure of metals in the wider sense of the word.
Very lucid account of stereographic projection. Stress measurement, phase
transformations, preferred orientation.

G.16 Leonid V. Azaroff. Elements of X-Ray Crystallography (New York:
McGraw-Hill, 1968). Crystallography, diffraction theory (kinematic and
dynamic), structure analysis, single-crystal and powder methods.

485
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



G.17 Harold P. Klug and Leroy E.Alexander. X-Ray Diffraction Procedures, 2nd
ed. (New York: Wiley, 1974). Contains a great deal of useful detail on the
theory and operation of powder cameras and diffractometers. Covers the
following topics in depth: chemical analysis by diffraction, parameter meas-
urement, line-broadening analysis, texture determination, stress measure-
ment, and studies of amorphous materials. Single-crystal methods are not
included.

G.18 W. Parrish, ed. Advances in X-ray diffractometry and X-ray Spectrography
(Eindhoven: Centrex Pub. Co., 1962).

G.38 I. C. Noyan and J. B. Cohen, Residual Stress: Measurement by Diffraction
and Interpretation (New York: Springer-Verlag, 1987). A very complete
treatment of stress and stress tensors and how stresses are measured in
polycrystalline samples.

G.39 Advances in X-ray Analysis, International Centre for Diffraction Data.

ANSWERS TO SELECTED PROBLEMS

1. a) d0 = 1.1702 Å, dn = 1.1691 Å, di = 1.1716 Å
b) –0.1 percent

4. –65 ksi without, and –63 ksi with, correction by the LPA factor
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1 INTRODUCTION

Many of the properties of polycrystalline materials have been explained by studies
of isolated single crystals, since such studies permit measurement of the properties
of the individual building blocks in the composite mass. Because single crystals are
anisotropic, research of this kind always requires accurate knowledge of the orien-
tation of the single crystal test specimen in order that measurements may be made
along known crystallographic directions or planes. By varying the crystal orienta-
tion, data on the property measured (e.g., yield strength, electrical resistivity, corro-
sion rate) is obtained as a function of crystal orientation.

There is also an increasing production of single crystals, not for research studies,
but for use as such in various devices, mainly electrical, optical and magnetic. One
example is silicon crystals for central processor units and random access memory in
computers and for semiconductor based consumer products. Another example is
single-crystal nickel-based super alloy turbine blades which have very high creep
resistance. These crystals must all be produced with particular orientations.

Described below are the three main methods of determining orientation; back-
reflection Laue, transmission Laue, and diffractometer methods. Nor should the old
etch-pit method be overlooked. This is an optical method, involving the reflection
of visible light from the flat sides, of known Miller indices, of etch pits in crystal sur-
faces.Although not universally applicable, this method is fast and requires only sim-
ple apparatus [G.10].

2 BACK-REFLECTION LAUE METHOD

The Laue pattern of a single crystal consists of a set of   diffraction spots on the
film and the positions of these spots depend on the orientation of the crystal. This
is true of either Laue method, transmission or back-reflection, so either can be
used to determine crystal orientation. However, the back-reflection method is the

Orientation of Single

Crystals

From Chapter 16 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 1 Intersection of a conical array of dif-
fracted beams with a film placed in the back-
reflection position. C = crystal, F = film, Z.A. =
zone axis.

more widely used of the two because it requires no special preparation of the spec-
imen, which may be of any thickness, whereas the transmission method requires rel-
atively thin specimens of low absorption.

In either case, since the orientation of the specimen is to be determined from the
location of the Laue spots on the film, it is necessary to orient the specimen relative
to the film in some known manner. The single crystal specimens encountered in
materials work are usually in the form of wire, rod, sheet, or plate, but crystals of
irregular shape must occasionally be analyzed. Wire or rod specimens are best
mounted with their axis parallel to one edge of the square or rectangular film; a
fiducial mark on the specimen surface, for example on the side nearest the film,
then fixes the orientation of the specimen completely. It is convenient to mount
sheet or plate specimens with their plane parallel to the plane of the film and one
edge of the sheet or plate parallel to an edge of the film. Irregularly shaped crystals
must have fiducial marks on their surface which will definitely fix their orientation
relative to that of the film.

The problem now is to determine the orientation of the crystal from the position
of the back-reflection Laue spots on the film. The Bragg angle corresponding to
each Laue spot could be determined, but that would be no help in identifying the
planes producing that spot, since the wavelength of the diffracted beam is
unknown. The orientation of the normal to the planes causing each spot, is fixed,
however because the plane normal always bisects the angle between incident and
diffracted beams. The directions of the plane normals can then be plotted on a
stereographic projection, the angles between them measured, and the planes iden-
tified by comparison with a list of known interplanar angles for the crystal involved.

The first problem, therefore, is to derive, from the measured position of each dif-
fraction spot on the film, the position on a stereographic projection of the pole of
the plane causing that spot. In doing this it is helpful to recall that all of the planes
of one zone diffract beams which lie on the surface of a cone whose axis is the zone
axis and whose semi-apex angle is equal to the angle at which the zone axis is
inclined to the transmitted beam (Fig. 1). If does not exceed , the cone will not
intersect a film placed in the back-reflection region; if lies between and ,90°45°f

45°f

f

u
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the cone intersects the film in a hyperbola; and, if equals , the intersection is a
straight line passing through the incident beam. (If exceeds , the cone shifts to
a position below the transmitted beam and intersects the lower half of the film, as
may be seen by viewing Fig. 1 upside down.) Diffraction spots on a back-reflection
Laue film therefore lie on hyperbolas or straight lines, and the distance of any
hyperbola from the center of the film is a measure of the inclination of the zone
axis.

In Fig. 2 the film is viewed from the crystal. Coordinate axes are defined such
that the incident beam proceeds along the z-axis in the direction Oz and the x- and
y-axes lie in the plane of the film. The diffracted beam by the plane shown strikes
the film at S. The normal to this plane is CN and the plane itself is assumed to
belong to a zone whose axis lies in the yz-plane. If this plane were rotated about the
zone axis, it would pass through all the positions at which planes of this zone in an
actual crystal might lie. During this rotation, the plane normal would cut the film in
the straight line AB and the diffracted beam in the hyperbola HK. AB is therefore
the locus of plane normal intersections with the film and HK the locus of diffract-
ed beam intersections. The plane which diffracts a beam to S, for example, has a
normal which intersects the film at N, since the incident beam, plane normal, and
diffracted beam are coplanar. Since the orientation of the plane normal in space can
be described by its angular coordinates and , the problem is to determine and

from the measured coordinates x and y of the diffraction spot S on the film.d

gdg

90°f

90°f
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Figure 2 Location of back-reflection Laue spot. Note that .y � 90° � f
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A graphical method of doing this was devised by Greninger [1] who developed
a chart which, when placed on the film, gives directly the and coordinates cor-
responding to any diffraction spot. To plot such a chart, note from Fig. 2 that

(1)

where OC = D = specimen-film distance. The angles and are obtained from 
and as follows:

(2)

(3)

With these equations, the position (in terms of x and y) of any diffraction spot can
be plotted for given values of and and any desired specimen-film distance D.
The result is the Greninger chart, graduated at intervals shown in Fig. 3 for D 
= 3.0 cm.The hyperbolas running from left to right are curves of constant , and any
one of these curves is the locus of diffraction spots from planes of a zone whose axis
is tilted away from the plane of the film by the indicated angle . If points having
the same value of are joined together, another set of hyperbolas running from top
to bottom is obtained. The lower half of the chart contains a protractor whose use
will be described later. Greninger charts should have dark lines on a transparent
background and are best printed on overhead projector transparencies using a
computer plotting package and Eq. (1)-(3).

In use, the chart is placed over the film with its center coinciding with the film
center and with the edges of chart and film parallel. The and coordinates corre-
sponding to any diffraction spot are then read directly. Note that use of the chart
avoids any measurement of the actual coordinate distances x and y of the spot. The
chart gives directly, not the x and y coordinates of the spot, but the angular coordi-
nates and of the normal to the diffraction planes causing the spot.

Knowing the and coordinates of any plane normal, for example CN in
Fig. 2, the pole of the plane can be plotted on a stereographic projection. Imagine a
reference sphere centered on the crystal in Fig. 2 and tangent to the film, and let the
projection plane coincide with the film.The point of projection is taken as the inter-
section of the transmitted beam and the reference sphere. Since the plane normal
CN intersects the side of the sphere nearest the x-ray source, the projection must
be viewed from that side and the film “read” from that side. In order to know, after
processing, the orientation the film had during the x-ray exposure, the upper right-
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Figure 3 Greninger chart for the solution of back-reflection Laue patterns, reproduced in the correct
size for a specimen-to-film distance D of 3 cm.

hand corner of the film (viewed from the crystal) is cut away before it is placed in
the cassette, as shown in Fig. 2. When the film is read, this cut corner must therefore
be at the upper left, as shown in Fig. 4(a). The angles and , read from the chart,
are then laid out on the projection as indicated in Fig. 4(b). Note that the underly-
ing Wulff net must be oriented so that its meridians run from side to side, not top
to bottom. The reason for this is the fact that diffraction spots which lie on curves

dg
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Figure 4 Use of the Greninger chart to plot the pole of a reflecting plane on a stereographic projection.
Pole 1´ ln (b) is the pole of the plane causing diffraction spot 1 in (a).
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of constant come from planes of a zone, and the poles of these planes must there-
fore lie on a great circle on the projection. The coordinates corresponding to
diffraction spots on the lower half of the film are obtained simply by reversing the
Greninger chart end for end.

It helps to remember that there are two frames of reference involved in analyz-
ing Laue patterns. The first is the coordinate system of the laboratory, and the sec-
ond is the coordinate system of the crystal. When the crystal is reoriented, this sec-
ond system is also reoriented relative to the laboraotry coordinate system. The
Wulff net and Greninger chart are in the laboratory frame of reference while the
film and the tracing paper or transparency on top of the Wulff net represent the
crystal. Since the laboratory, the x-ray generator and the Laue camera remain fixed
in position, it is perhaps less confusing to keep the orientation of the Greninger
chart and Wulff net fixed and to rotate only the film on the Greninger chart and the
stereographic projection of the poles of the crystal on the Wulff net.

The procedure may be illustrated by determining the orientation of the alu-
minum crystal whose back-reflection Laue pattern. Fig. 5 is a tracing of this photo-
graph, showing the more important spots numbered for reference. The poles of the
planes causing these numbered spots are plotted stereographically in Fig. 6 by the
method of Fig. 4 and are shown as solid circles.

The problem now is to “index” these planes, i.e., to find their Miller indices, and
so disclose the orientation of the crystal. With the aid of a Wulff net, great circles
are drawn through the various sets of poles corresponding to the various hyperbo-
lae of spots on the film. These great circles connect planes of a zone, and planes
lying at their intersections are generally of low indices, such as {100}, {110}, {111},
and {112}. The axes of the zones themselves are also of low indices, so it is helpful

g, d
g
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Figure 5 Selected diffraction spots of back-reflec-
tion Laue pattern of an aluminum crystal, traced.
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Figure 6 Stereographic projection corresponding to back-reflection pattern of Fig. 5.

1 The reader may detect an apparent error in nomenclature here. Pole 5´ for example, is assumed to be
a {100} pole and spot 5 on the diffraction pattern is assumed, tacitly, to be due to a 100 reflection.
Aluminium, however, is face-centered cubic, and there is no 100 reflection from such a lattice, since hkl
must be unmixed for diffraction to occur. In this case, spot 5, is due to overlapping diffracted beans from
second, fourth, sixth, etc. orders of 100 diffraction. But these Bragg planes are all parallel and are repre-
sented on the stereographic projection by one pole, which is conventionally designated as {100}.The cor-
responding diffraction spot is also called, conventionally but loosely, the 100 spot.

to locate these axes on the projection. They are shown as open circles in Fig. 6, PA

being the axis of zone A, PB the axis of zone B, etc. The angles between important
poles (zone intersections and zone axes) are measured next and the poles are iden-
tified by comparing of these measured angles with those calculated for cubic crys-
tals. The method is essentially one of trial and error. Note, for example, that 
the angles PA - PB, PA - 5´, and PB - 5´ are all . This suggests that one or more of
these poles might be {100} or {110}, since the angle between two {100} poles or
between two {110} poles is 90°. Suppose PA, PB, and 5´ are all {100} poles.1 Then PE,
which lies on the great circle between PA and PB and at an angular distance of 

90°
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from each, must be a {110} pole. Next consider zone C; the distance between
pole 6´ and either pole 5´ or PE is also . But reference to a standard projection
shows that there is no important pole located midway on the great circle between
{100}, identified with 5´, and {110}, identified with PE. The original assumption is
therefore wrong. A second assumption is required which is consistent with the
angles measured so far, namely that 5´ is a {100} pole, as before, but that PA and PB

are {110} poles. PE must then be a {100} pole and 6´ a {110} pole. This assumption is
checked by measuring the angles in the triangle a - b - 5´. Both a and b are found to
be from 5´, and from each other, which conclusively identifies a and b as
{111} poles. Note also, from a standard projection, that a {111} pole must lie on a
great circle between {100} and {110}, which agrees with the fact that a, for example,
lies on the great circle between 5´, assumed to be {100}, and PB, assumed to be {110}.
The second assumption is therefore shown to be consistent with the data.

Figure 7 shows the stereographic projection in a more complete form, with all
poles of the type {100}, {110}, and {111} located and identified. Note that it was not

71°55°

45°
45°
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Figure 7 Stereographic projection of Fig. 6 with poles identified.
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necessary to index all the observed diffraction spots in order to determine the crys-
tal orientation, which is specified completely, in fact, by the locations of any two
{100} poles on the projection. The information given in Fig. 7 is therefore all that is
commonly required. Occasionally, however, it may be necessary to determine the
Miller indices of a particular diffraction spot on the film, spot 11 for example. To
find these indices, note that pole 11´ is located from (001) on the great circle
passing through (001) and (111). Reference to a standard projection and a table of
interplanar angles shows that its indices are (112).

As mentioned above, the stereographic projection of Fig. 7 is a complete descrip-
tion of the orientation of the crystal. Other methods of description are also possi-
ble.The crystal to which Fig. 7 refers had the form of a square plate and was mount-
ed with its plane parallel to the plane of the film (and the projection) and its edges
parallel to the film edges, which are in turn parallel to the NS and EW axes of the
projection. Since the (001) pole is near the center of the projection, which corre-
sponds to the specimen normal, and the (010) pole near the edge of the projection
and approximately midway between the E and S poles, a rough description of the
crystal orientation is as follows: one set of cube planes is approximately parallel to
the surface of the plate while another set passes diagonally through the plate and
approximately at right angles to its surface.

Another method of description may be used when only one direction in the crys-
tal is of physical significance, such as the plate normal in the present case. For exam-
ple, a compression test of this crystal may be required with the axis of compression
normal to the plate surface. The interest is then in the orientation of the crystal rel-
ative to the compression axis (plate normal) or, stated inversely, in the orientation
of the compression axis relative to certain directions of low indices in the crystal.
Now inspection of a standard projection shows that each half of the reference
sphere is covered by 24 similar and equivalent spherical triangles, each having {100},
{110}, and {111} as its vertices. The plate normal, i.e., the direction along which the
polychromatic bean was incident on the crystal, will fall in one of these triangles
and it is necessary to draw only one of them in order to describe the precise loca-
tion of the normal. In Fig. 7, the plate normal lies in the (001)-(101)-(111) triangle
which is redrawn in Fig. 8 in the conventional orientation, as though it formed part
of a (001) standard projection. To locate the plate normal on this new drawing,
measure the angles between the center of the projection in Fig. 7 and the three adja-
cent 001, 101, and 111 poles. Let these angles be and . These angles are
then used to determine the three arcs shown in Fig. 8. These are circle arcs, but they
are not centered, in general, on the corresponding poles; rather, each one is the
locus of points located at an equal angular distance from the pole involved and
their intersection therefore locates the desired point. Another method of arriving
at Fig. 8 from Fig. 7 consists simply in rotating the whole projection, poles and plate
normal together, from the orientation shown in Fig. 7 to that of a standard (001)
projection.

Similarly, the orientation of a single-crystal wire or rod may be described in
terms of the location of its axis in the unit stereographic triangle. Note that this

r111r001, r101,

35°
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Figure 8 Use of the unit stereographic triangle to
describe crystal orientation. The point inside the trian-
gle is the normal to the single crystal plate whose ori-
entation is shown in Fig. 7.

2 Note that, when a hyperbola of spots is lined up with a horizontal hyperbola on the chart as in [Fig.
9(a)], the vertical hyperbolae can be used to measure the difference in angle for any two spots and that
this angle is equal to the angle between the planes causing those spots, just as the angle between two
poles lying on a meridian of a Wulff net is given by their difference in latitude.

d

method does not completely describe the orientation of the crystal, since it allows
one rotational degree of freedom about the specimen axis. This is of no conse-
quence, however, if only the value of some measured physical or mechanical prop-
erty is needed along a particular direction in the crystal.

There are other ways of manipulating both the Greninger chart and the stereo-
graphic projection, and the particular method used is purely a matter of personal
preference. For example, the individual spots on the film may be ignored, and the
various hyperbolae on which they lie may be used. The spots on one hyperbola are
due to diffracted beams from planes of one zone and, by means of the Greninger
chart, the axis of this zone can be plotted directly without plotting the poles of any
of the planes belonging to it. The procedure is illustrated in Fig. 9. Keeping the cen-
ters of film and chart coincident, rotate the film about this center until a particular
hyperbola of spots coincides with a curve of constant on the chart, as in (a). The
amount of rotation required is read from the intersection of a vertical pencil line,
previously ruled through the center of the film and parallel to one edge, with the
protractor of the Greninger chart. Suppose this angle is . Then the projection is
rotated by the same angle with respect to the underlying Wulff net and the zone
axis is plotted on the vertical axis of the projection at an angle from the circum-
ference, as in (b).2 Note that zone A itself is represented by the great circle located
at an angle above the center of the projection. Many investigators use only the
zone axes in solving the orientation of the crystal; they will ordinarily not plot the
zone (great) circle. Others prefer to plot all zone circles and to use the intersections
of multiple circles as additional information. In either case, once all the zone axes
or great circles of the important zones are plotted, analysis focuses on the most
important poles, i.e., those poles at the intersection of a number of hyperbolas and

g
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g
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Figure 9 Use of the Greninger chart to plot the axis of a zone of planes on the stereographic projection.
PA is the axis of zone A.
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which are well-separated from neighboring diffracted beams are always of low
indices and can usually be indexed without difficulty.

An experienced investigator working with a familiar material can often recog-
nize the symmetry of Laue patterns from low-index or near-low-index directions,
and compilations of Laue patterns from specific directions [G.40] or commercially
available computer simulation programs are very handy in this context (e.g., [2]).
Figure 10a was traced from film (note the “UR” labeled the upper right of the orig-
inal film is now flipped), and the pattern of spots exhibits mirror symmetry across
the row of spots labeled with “1” at each end (of course some distortion appears
since the incident beam is slightly off zone 1). Mirror-related pairs of hyperbolas are
indicated in Fig. 10b and include zones 3 and 4, 5 and 6, 7 and 8, 9 and 10, and 11
and 12. Prominent hyperbola intersections are outlined by circles in Fig. 10a, and
important intersections are labeled A-G in Fig. 10b. The pair of intersections C and
D are mirror related as are E and F. The intersection matching G lies off the film.
Use of sets of symmetry related and crystallographically equivalent zones can
speed identification of symmetry related zone intersections greatly since these must
necessarily be the same type of hkl.

Measurement of the angles between intersections A-G (directly with the
Greninger chart or after transfer to the stereographic projection) reveals A and B
correspond to 111 and 110 type reflections, respectively, while the pair C and D are
210 type reflections, the pair E and F are 211 reflections and G is a 311 type reflec-
tion. Inspection of the calculated 441 and 331 Laue patterns shown in Fig. 10c and
d, respectively, confirms the identification given above. Note that the intensities of
the symmetry-related spots may vary for different crystallographically equivalent
zones due to the tilt of the crystal, and hyperbolae may not appear to be identical
due to such differences in intensity or to distortions produced by incident beams
along high index directions (e.g., 2 mm symmetry is associated with Laue pattern
recorded with the incident beam along 110 and this is far from apparent at B in Fig.
10a). For patterns recorded with the beam along a low index direction such as 100
or 111, several parallel, closely-spaced hyperbolas may be visible and care is
required when selecting symmetry related sets.

Another method of indexing plotted poles depends on having available a set of
detailed standard projections in a number of orientations, such as {100}, {110}, and
{111} for cubic crystals. It is also a trial and error method and may be illustrated
with reference to Fig. 6. First, a prominent zone is selected and an assumption is
made as to its indices: for example, assume that zone B is a zone i.e., its zone
axis PB is . This assumption is then tested by (a) rotating the projection about
its center until PB lies on the equator of the Wulff net and the ends of the zone cir-
cle coincide with the N and S poles of the net, and (b) rotating all the important
points on the projection about the NS-axis of the net until PB lies at the center and
the zone circle at the circumference. The new projection is then superimposed on a
{100} standard projection and rotated about the center until all points on the pro-
jection coincide with those on the standard. If no such coincidence is obtained, PB

is unlikely to be , and another standard projection should be tried. For the par-H100I

H100I
H100I
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Figure 10 Back reflection Laue patterns for analysis by consideration of symmetry. (a) Pattern traced
from the originial. (b) Zones indicated on the pattern. (c) Simulation of 144 pattern and (d) Simulation
of 133 pattern (after G.P.). The larger filled circles represent more intense diffracted beams in the simu-
lations.

ticular case of Fig. 6, a coincidence would be obtained only on a {110} standard,
since PB is actually a {110} pole. Once a match has been found, the indices of the
unknown poles are given simply by the indices of the poles on the standard with
which they coincide.

In the absence of a Greninger chart, the pole corresponding to any observed
Laue spot may be plotted by means of an easily constructed “stereographic ruler.”
The construction of the ruler is based on the relations shown in Fig. 11. This draw-
ing is a section through the incident beam OC and any diffracted beam CS. Here it
is convenient to use the plane normal CN’ rather than CN and to make the projec-
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Figure 11 Relation between diffraction spot S and stereographic projection P of the plane causing the
spot, for back reflection.

tion from T, the intersection of the reference sphere with the incident beam. The
projection of the pole N’ is therefore at P. From the measured distance OS of the
diffraction spot from the center of the film,

(4)

the distance PQ of the projected pole from the center of the projection is

(5)

where D is the specimen-film distance and r the radius of the reference sphere. The
value of r is fixed by the radius R of the Wulff net used, since the latter equals the
radius of the basic circle of the projection. If the pole of the plane were in its
extreme position at M, then its projection would be at U. The point U therefore lies
on the basic circle of the projection, and UQ is the radius R of the basic circle.
Because the triangles TUQ and TMC are similar, R = 2r and

(6)PQ � R  tan a45° �
u

2
b.

PQ � TQ  tan a45° �
u

2
b � 2r  tan a45° �

u

2
b ,

OS � OC  tan 1180° � 2u2 � D  tan 1180° � 2u2,
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Figure 12 Use of a stereographic ruler
to plot the pole of a reflecting plane
on a stereographic projection in the
back-reflection Laue method. Pole 1´
is the pole of the plane causing dif-
fraction spot 1.

The ruler is constructed by marking off, from a central point, a scale of centime-
ters by which the distance OS may be measured. The distance PQ corresponding to
each distance OS is then calculated from Eqs. (4) and (6), and marked off from the
center of the ruler in the opposite direction. Corresponding graduations are given
the same number and the result is the ruler shown in Fig. 12, which also illustrates
the method of using it. [Calculation of the various distances PQ can be avoided by
use of the Wulff net itself. Figure 11 shows that the pole of the reflecting plane is
located at an angle from the edge of the projection, and is given for each dis-
tance OS by Eq. (13). The ruler is laid along the equator of the Wulff net, its center
coinciding with the net center, and the distance PQ corresponding to each angle 
is marked off with the help of the angular scale on the equator.]

From the choice of plane normal made in Fig. 11, it is apparent that the projec-
tion must be viewed from the side opposite the x-ray source. This requires that the
film be read from that side also, i.e., with its cut corner in the upper right-hand posi-
tion. The projection is then placed over the film, illuminated from below, as shown
in Fig. 12. With the center of the ruler coinciding with the center of the projection,
the ruler is rotated until its edge passes through a particular diffraction spot. The
distance OS is noted and the corresponding pole plotted as shown, on the other side
of center and at the corresponding distance PQ.This procedure is repeated for each
important diffraction spot, after which the projection is transferred to a Wulff net
and the poles indexed by either of the methods previously described. Note that this
procedure gives a projection of the crystal from the side opposite the x-ray source,
whereas the Greninger chart gives a projection of the crystal as seen from the x-ray
source. A crystal orientation can, of course, be described just as well from one side
as the other, and either projection can be made to coincide with the other by a 180°

u

uu
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rotation of the projection about its EW-axis. Although simple to use and construct,
the stereographic ruler is not as accurate as the Greninger chart in the solution of
back-reflection patterns.

The methods of determining and describing crystal orientation have been pre-
sented here exclusively in terms of cubic crystals, because these are the simplest
kind to consider and the most frequently encountered. These methods are quite
general, however, and can be applied to a crystal of any system as long as its inter-
planar angles are known.

However, a noncubic crystal may have such low symmetry and/or be so oriented
that the Laue pattern shows only one spot, or none at all, from a low-index plane.
Plane indexing can then be difficult. Methods of coping with this problem include
the following:

1. The crystal is re-oriented, in a manner suggested by the Laue pattern, and
examined in a diffractometer. See Sec. 5.

2. A set of simulated Laue patterns, covering the unit stereographic triangle
of the crystal, is generated by a computer [2]. The simulated pattern which
most nearly matches the unknown yields tentative (hkl) indices for three
prominent spots. Measurements on the film of the angles between these
spots and the film center (incident x-ray beam) yield tentative indices for
the crystal plane normal to the incident beam. A simulated pattern is then
generated for this special orientation and compared with the unknown pat-
tern to verify the plane indexing.

Specialized books on the Laue methods are those of Amoros et al. [G.31] and
Preuss et al. [G.40]. The latter contains a catalog of back-reflection patterns, many
generated by a computer.

3 TRANSMISSION LAUE METHOD

Given a specimen of sufficiently low absorption, a transmission Laue pattern can
be obtained and used, in much the same way as a back-reflection Laue pattern, to
reveal the orientation of the crystal.

In either Laue method, the diffraction spots on the film, due to the planes of a
single zone in the crystal, always lie on a curve which is some kind of conic section.
When the film is in the transmission position, this curve is a complete ellipse for suf-
ficiently small values of , the angle between the zone axis and the transmitted
beam (Fig. 13). For somewhat larger values of , the ellipse is incomplete because
of the finite size of the film. When , the curve becomes a parabola; when

exceeds , a hyperbola; and when , a straight line. In all cases, the curve
passes through the central spot formed by the transmitted beam.

The angular relationships involved in the transmission Laue method are illus-
trated in Fig. 14. Here a reference sphere is described about the crystal at C, the
incident beam entering the sphere at I and the transmitted beam leaving at O. The

f �  90°45°f

f �  45°
f

f
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Figure 13 Intersection of a coni-
cal array of diffracted beams
with a film placed in the trans-
mission position. C = crystal, F =
film, Z.A. = zone axis.

film is placed tangent to the sphere at O, and its upper right-hand corner, viewed
from the crystal, is cut off for identification of its position during the x-ray exposure.
The beam diffracted as plane shown strikes the film at R, and the normal to this dif-
fraction plane intersects the sphere at P.

Consider diffraction from planes of a zone whose axis lies in the yz-plane at an
angle to the transmitted (or incident) beam. If a single plane of this zone isf
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Figure 14 Relation between plane normal orientation and diffraction spot position in the transmission
Laue method.
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rotated so that its pole, initially at A, travels along the great circle APEBW A, then
it will pass through all the orientations in which planes of this zone might occur in
an actual crystal. During this rotation, the diffraction spot on the film, initially at D,
would travel along the elliptical path DROD shown by the dashed line.

Any particular orientation of the plane, such as the one shown in the drawing, is
characterized by particular values of and , the angular coordinates of its pole.
These coordinates in turn, for a given crystal-film distance D (= CO), determine the
x,y coordinates of the diffraction spot R on the film. The plane orientation follows
from the spot position, and one way of proceeding is by means of the Leonhardt
chart shown in Fig. 15.

This chart is exactly analogous to the Greninger chart for solving back-reflection
patterns and is used in precisely the same way. It consists of a grid composed of two
sets of lines: the lines of one set are lines of constant and correspond to thef
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Figure 15 Leonhardt chart for the solution of transmission Laue patterns, reproduced in the correct size
for a specimen-to-film distance of 3 cm. The dashed lines are lines of constant , and the solid lines are
lines of constant . (Courtesy of C. G. Dunn [3].)d
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meridians on a Wulff net, and the lines of the other are lines of constant and cor-
respond to latitude lines. By means of this chart, the pole of a plane causing any par-
ticular diffraction spot may be plotted stereographically. The projection plane is
tangent to the sphere at the point I of Fig. 14, and the projection is made from the
point O.This requires that the film be read from the side facing the crystal, i.e., with
the cut corner at the upper right. Figure 16 shows how the pole corresponding to a
particular spot is plotted when the film and chart are in the parallel position. An
alternate way of using the chart is to rotate it about its center until a line of 
constant coincides with a row of spots from planes of a single zone, as shown in
Fig. 17; knowing and the rotation angle , allows the axis of the zone to be plot-
ted directly.

A stereographic ruler may be constructed for the transmission method and will
give greater plotting accuracy than the Leonhardt chart, particularly when the angle

approaches . Figure 18, which is a section through the incident beam and any
diffracted beam, shows that the distance of the diffraction spot from the center of
the film is given by

(7)

The distance of the pole of the diffraction plane from the center of the projection
is given by

(8)

Figure 19 illusrates the use of a ruler constructed according to these equations.
In this case, the projection is made on a plane located on the same side of the crys-
tal as the film and, accordingly, the film must be read with its cut corner in the upper
left-hand position.

Whether the chart or the ruler is used to plot the poles of diffraction planes, they
are indexed in the same way as back-reflection patterns. The location of the pro-
jected poles is quite different for the two x-ray methods.The poles of planes respon-
sible for observed spots on a transmission film are all located near the edge of the
projection, since such planes must necessarily be inclined at small angles to the inci-
dent beam. The reverse is true of back reflection patterns.

PQ � R  tan a45° �
u

2
b.

OS � D   tan  2u.

90°f

ef

f

d

4 DIFFRACTOMETER METHOD

Still another method of determining crystal orientation involves the use of the dif-
fractometer and a procedure radically different from that of either Laue method.
With the essentially monochromatic radiation used in the diffractometer, a single
crystal will diffract only when its orientation is such that a certain set of diffraction
planes is inclined to the incident beam at an angle which satisfies Bragg’s law for
that set of planes and the characteristic radiation employed. But when the detector,
fixed in position at the corresponding angle , discloses that diffraction is2u

u
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in (b) is the pole of the plane causing diffraction spot 1 in (a).
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Figure 18 Relation between diffraction spot S and stereographic projection P of the plane causing the
spot, in transmission.

produced, then the inclination of the diffraction plane relative to any chosen line or
plane on the crystal surface is known from the position of the crystal. Two kinds of
operation are required:
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Figure 19 Use of a stereographic
ruler to plot the pole of a diffracting
plane on a stereographic projection in
the transmission Laue method. Pole 1’
is the pole of the plane causing dif-
fraction spot 1.
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Orientation of Single Crystals

1. rotation of the crystal about various axes until an angular position is found
for which diffraction occurs.

2. location of the pole of the diffraction plane diffraction on a stereographic
projection from the known angles of rotation.

The diffractometer method has many variations, depending on the particular
kind of goniometer used to hold and rotate the specimen. Only one of these varia-
tions will be described here, that involving the goniometer used in the reflection
method of determining preferred orientation, since that is the kind most generally
available in materials laboratories. This specimen holder needs very little modifica-
tion for use with single crystals, the chief one being an increase in the width of the
primary beam slits in a direction parallel to the diffractometer axis in order to
increase the diffracted intensity. This type of holder provides the three possible
rotation axes shown in Fig. 20: one coincides with the diffractometer axis, the sec-
ond (AA’) lies in the plane of the incident beam I and diffracted beam D and tan-
gent to the specimen surface, shown here as a flat plate, while the third (BB’) is nor-
mal to the specimen surface.

Suppose the orientation of a cubic crystal is to be determined. For such crystals
it is convenient to use {111}: there are four sets of these and their diffracting power
is usually high. First, the value for the 111 reflection (or, if desired, the 222 reflec-
tion) is computed from the known spacing of the {111} planes and the known wave-
length of the radiation used. The detector is then fixed in this position. The spec-
imen holder is now rotated about the diffractometer axis until its surface, and the
rotation axis AA’, is equally inclined to the incident beam and the diffracted beam,
or rather, to the line from crystal to detector with which the diffracted beam, when
formed, will coincide. The specimen holder is then fixed in this position, no further
rotation about the diffractometer axis being required. Then, by rotation about the
axis BB’, one edge of the specimen, or a line drawn on it is made parallel to the dif-
fractometer axis. This is the initial position illustrated in Fig. 20.

2u

2u

A

D

B A


B


C I

N

�

�






detector

2

Figure 20 Crystal rotation axes for the diffractometer
method of determining orientation 

510
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Orientation of Single Crystals

The crystal is then slowly rotated about the axes AA’ and BB’ until an indication
of a reflection is observed on the rate meter. Computerized diffractometers allow
this search to be automated; the computer systematically checks different combi-
nations of notations about axes AA’ and BB’ until a peak is found, whereupon the
search ends and the computer awaits further instructions. The increases in produc-
tivity which result from the ability to align crystals while the operator is elsewhere
should not be underestimated.

Once the position of the crystal for diffraction has been found, the normal to one
set of {111} planes coincides with the line CN, that is, lies in the plane of the dif-
fractometer circle and bisects the angle between incident and diffracted beams. The
pole of these diffracting planes may now be plotted stereographically, as shown in
Fig. 21. The projection is made on a plane parallel to the specimen surface, and with
the NS-axis of the projection parallel to the reference edge or line mentioned
above. When the crystal is rotated degrees about BB’ from its initial position, the
projection is also rotated degrees about its center. The direction CN, which might
be called the normal to “potential” diffraction planes, is represented by the pole N´,
which is initially at the center of the projection but which moves degrees along a
radius when the crystal is rotated degrees about AA´.

The object is to make N´ coincide with a {111} pole and so disclose the location
of the latter on the projection. The search may be made by varying continuously
for fixed values of 4 or apart; the projection is then covered point by point
along a series of radii. It is enough to examine one quadrant in this way since there
will always be at least one {111} pole in any one quadrant. Once one pole has been

5°b

g

g

g

b

b

PROJECTIONN�

EW

S

N


�

Figure 21 Plotting method
used when determining crystal
orientation with the diffrac-
tometer. (The directions of the
rotations shown here corre-
spond to the directions of the
arrows in Fig.20.)
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located, the search for the second is aided by the knowledge that it must be 
from the first. Although two {111} poles are enough to fix the orientation of the
crystal, a third should be located as a check.

Parenthetically, it should be noted that the positioning of the crystal surface and
the axis AA´ at equal angles to the incident and diffracted beams is done only for
convenience in plotting the stereographic projection. There is no question of focus-
ing when monochromatic radiation is diffracted from an undeformed single crystal,
and the ideal incident beam for the determination of crystal orientation is a paral-
lel beam, not a divergent one.

In the hands of an experienced operator, the diffractometer method is faster
than either Laue method. Furthermore, it can yield results of greater accuracy if
narrow slits are used to reduce the divergence of the incident beam, although the
use of extramely narrow slits will make it more difficult to locate the diffracting
positions of the crystal. On the other hand, the diffractometer method furnishes no
permanent record of the orientation determination, whereas Laue patterns may be
filed away for future reference. This is true even with most computer automated
systems for diffractometer-based crystal orientation. But what is more important,
the diffractometer method does not readily disclose the state of perfection of the
crystal, whereas a Laue pattern yields this kind of information at a glance and in
many investigations the relative perfection of a single crystal is of as much interest
as its orientation.

All things considered the Laue methods are preferable when only occasional ori-
entation determinations are required, or when there is any doubt about the quality
of the crystal. When the orientations of large numbers of crystals have to be deter-
mined in a routine manner, the diffractometer method is superior. In fact, this
method was developed largely for just such an application during World War II,
when the orientation of large numbers of quartz crystals had to be determined.
These crystals were used in radio transmitters to control, through their natural fre-
quency of vibration, the frequency of the transmitted signal. For this purpose quartz
wafers had to be cut with faces accurately parallel to certain crystallographic planes,
and the diffractometer was used to determine the orientations of these planes in the
crystal.

70.5°

5 SETTING A CRYSTAL IN A REQUIRED ORIENTATION

After the orientation of a crystal is found by x-rays, it is often necessary to rotate it
into some special orientation, such as one with along the incident beam, for
the purpose of either (a) subsequent x-ray examination in the special orientation,
or (b) subsequent cutting along some selected plane. To obtain this orientation, the
crystal is mounted in a three-circle goniometer, whose arcs have been set at zero,
and its orientation is determined by, for example, the back-reflection Laue method.
A projection of the crystal is then made, and from this projection the goniometer
rotations which will bring the crystal into the required orientation are determined.

H100I

Orientation of Single Crystals
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Orientation of Single Crystals

For example, suppose it is required to rotate the crystal whose orientation is
given by Fig. 7 into a position where [011] points along the incident beam and [100]
points horizontally to the left, i.e., into the standard (011) orientation if the latter
were rotated about the center. The initial orientation (Position 1) is shown in
Fig. 22 by the open symbols, referred to NSEW-axes. Since (011) is to be brought
to the center of the projection and (100) to the left side, (010) will lie on the verti-
cal axis of the projection when the crystal is in its final position. The first step
therefore is to locate a point away from (011) on the great circle joining (010)
to (011), because this point must coincide with the north pole of the final projec-
tion. This is simply a construction point; in the present case it happens to coincide
with the pole, but generally it is of no crystallographic significance. The pro-
jection is then rotated clockwise about the incident-beam axis to bring this
point onto the vertical axis of the underlying Wulff net. (In Fig. 22, the latitude and
longitude lines of this net have been omitted for clarity.) The crystal is now in
Position 2, shown by open symbols referred to N´S´E´W´-axes. The next rotation is
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Figure 22 Crystal rotation to produce specified orientation. Position 1 is shown in Fig 7, position 2 is indi-
cated by open symbols, position 3 by shaded symbols, and position 4 by solid symbols.

513
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Orientation of Single Crystals

performed about the E´W´-axis, which requires that the underlying Wulff net be
arranged with its equator vertical so that the latitude lines will run from top to bot-
tom. This rotation, of , moves all poles along latitude lines, shown as dashed
small circles, and brings to the N´-pole, and (100) and (011) to the E´W´-axis
of the projection, as indicated by the shaded symbols (Position 3). The final orien-
tation is obtained by a 28° rotation about the N´S´-axis, with the equator of the
underlying Wulff net now horizontal; the poles move to the positions shown by solid
symbols (Position 4).

The necessity for selecting a construction point from (011) should now be
evident. If this point, which here happens to be , is brought to the N´-pole, then
(011) and (100) must of necessity lie on the E´W´-axis; the final rotation about N´S´
will then move the latter to their required positions without disturbing the position
of the pole, since coincides with the N´S´-axis.

The order of these three rotations is not arbitrary. The sterographic rotations
correspond to physical rotations on the goniometer and must be made in such a
way that one rotation does not physically alter the position of any axis about which
a subsequent rotation is to be made.The goniometer used here was initially set with
the axis of its uppermost arc horizontal and coincident with the primary beam, and
with the axis of the next arc horizontal and at right angles to the incident beam.The
first rotation about the beam axis therefore did not disturb the position of the sec-
ond axis (the E´W´-axis), and neither of the first two rotations disturbed the posi-
tion of the third axis (the vertical N´S´-axis). Whether or not the stereographic
orientations are performed in the correct order makes a great difference in the
rotation angles found, but once the right angles are determined by the correct stere-
ographic procedure, the actual physical rotations on the goniometer may be per-
formed in any sequence.

The back-reflection Laue pattern of an aluminum crystal rotated into the orien-
tation described above is shown in Fig. 23. Note that the arrangement of spots has
2-fold rotational symmetry about the primary beam, corresponding to the 2-fold
rotational symmetry of cubic crystals about their axes. (Conversely, the
observed symmetry of the Laue pattern of a crystal of unknown structure is an indi-
cation of the kind of symmetry possessed by that crystal.Thus the Laue method can
be used as an aid in the determination of crystal structure.)

The crystal-setting procedure illustrated in Fig. 22 can be carried out whether or
not the indices of the various poles are known. If the Laue pattern of a crystal is dif-
ficult to solve, any spot on it can be indexed by using a Laue camera and a diffrac-
tometer in sequence [4]. In addition, a goniometer is required that fits both instru-
ments. The procedure is as follows:

1. Make a Laue pattern and a stereographic projections of the poles corre-
sponding to a few important spots.

2. By the procedure of Fig. 22, rotate the pole to be indexed to the center of
the projection. The corresponding rotation on the goniometer will make
the unknown plane (hkl) normal to the incident beam of the Laue camera.

H110I

1011210112

10112
90°

10112
38°
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Orientation of Single Crystals

Figure 23 Back-reflection Laue pattern of an aluminum crystal. The incident beam is parallel to [011],
points vertically upward, and [100] points horizontally to the left. Tungsten radiation, 30 kV, 19 mA, 40
min exposure, 5 cm specimen-to-film distance. (The light shadow at the bottom is that of the goniome-
ter which holds the specimen.)

3. Transfer the goniometer and crystal to the diffractometer, in such a way
that the (hkl) plane normal bisects the angle between the incident and
(potential) diffracted beams.

4. Make a diffractometer scan to find the angle at which diffraction occurs
from the (hkl) planes. [Higher-order reflections may also be observed, i.e.,
diffraction from (nh nk nl) planes.]

5. Calculate the spacing d of the (hkl) planes from and the known value
of .

6. From this value of d determine (hkl) by calculation from the known crystal
structure or by examining a list of known d spacings for the substance
involved.

There is another method of setting a crystal in a standard orientation, which does
not require either photographic registration of the diffraction pattern or stereo-
graphic manipulation of the data. This involves real-time observation of the Laue
pattern: the diffracted beams formed in the transmission Laue method are so
intense, for a crystal of the proper thickness that the spots they form on a fluores-
cent screen are readily visible in a dark room. The observer merely rotates the crys-
tal about the various arcs of the goniometer until the pattern corresponding to the
required orientation appears on the screen. Obviously, this pattern must be recog-
nized when it appears, but a little study of a few Laue photographs made of crystals
in standard orientations provides enough experience.

l

2u

2u
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Orientation of Single Crystals

Various area detectors are available (see below) and would be employed if the
job of crystal setting occurs frequently enough to justify the expense.An alternative
is the construction of a light-and x-ray-tight viewing box. This box encloses the flu-
orescent screen which the observer views through a binocular eyepiece set in the
wall of the box, either directly along the direction of the transmitted beam, or indi-
rectly in a direction at right angles by means of a mirror or a right-angle prism. For
x-ray protection, the optical system should include lead glass, and the observer’s
hands should be shielded during manipulation of the crystal if the goniometer axes
cannot be controlled remotely. Direct manipulation of the goniometer head is very
undesirable while the x-ray tube is energized (even if “reliable” shutters are closed
during manipulation): there is too great a risk of operator carelessness. Even with-
out motorized axes controlled outside the radiation enclosure, flexible cables can
be attached to the knobs of the goniometer allowing remote rotation.

More elaborate apparatus permits electronic amplification of transmission Laue
spots formed on a fluorescent screen. An image of the spot pattern on the screen
can be projected by a lens on to the front (input) face of an image-intensifier tube.
The intensified image appears on the rear (output) face of the tube and is bright
enough to be observed directly or photographed in 1/220 second [5-7]. This large
gain in image intensity permits photography, by a motion picture or television cam-
era, of rapid changes in a Laue pattern caused, for example, by a phase change in
the crystal. (The image-intensifier tube has also made it possible to obtain a trans-
mission Laue photograph with a single 30-nanosecond pulse from a high-power
pulsed x-ray tube [8].) Multiple wire area detectors can be used to record Laue pat-
terns as can charge-coupled-device (CCD) detectors coupled to fluorescent
screens; an additional advantage of these systems is that the data is recorded in dig-
ital form, ready for further analysis on a computer.

PROBLEMS

*1 A back-reflection Laue photograph is made of an aluminum crystal with a crys-
tal- to-film distance of 3 cm. When viewed from the x-ray source, the Laue spots
have the following x, y coordinates, measured (in inches) from the center of the
film, see table at the top of the next page. Plot these spots on a sheet of graph paper
graduated in inches. By means of a Greninger chart, determine the orientation of
the crystal, plot all poles of the form {100}, {110}, and {111}, and give the coordinates
of the {100} poles in terms of latitude and longitude measured from the center of
the projection.
2 A transmission Laue photograph is made of an aluminum crystal with a crystal-
to-film distance of 5 cm. To an observer looking through the film toward the x-ray
source, the spots have the following x, y coordinates (in inches):
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x y x y

+0.26 +0.09 �0.44 +1.24

+0.45 +0.70 �1.10 +1.80

+1.25 +1.80 �1.21 +0.40

+1.32 +0.40 �1.70 +1.19

+0.13 �1.61 �0.76 �1.41

+0.28 �1.21 �0.79 �0.95

+0.51 �0.69 �0.92 �0.26

+0.74 �0.31

Proceed as in Prob. 1, but use a stereographic ruler to plot the poles of diffraction
planes.
*3 Determine the necessary angular rotations about (a) the incident beam axis, (b)
the east-west axis, and (c) the north-south axis to bring the crystal of Prob. 2 into
the “cube orientation.”
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the theory and methods of diffraction of x-rays, electrons, and neutrons; the

x y x y

+0.66 +0.88 �0.10 +0.79

+0.94 +2.44 �0.45 +2.35
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+1.36 +0.05 �0.90 +1.00
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second part with the structure of metals in the wider sense of the word.
Very lucid account of stereographic projection. Stress measurement, phase
transformations, preferred orientation.
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ANSWERS TO SELECTED PROBLEMS

1. 8 N, 23 E; 74 S, 90 E; 16 S, 64 W

3. 26 about beam axis, clockwise, looking from crystal to x-ray source; 3 about
EW, clockwise, looking from E to W; 9 about NS, counterclockwise, look-
ing from N to S

°
°°

°°°°°°
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1 INTRODUCTION

The quality of what is nominally a “single” crystal can vary over an enormous range.
At one extreme, the crystal may have undergone gross plastic deformation by bend-
ing and/or twisting, such that some portions of it are disoriented from other por-
tions by angles as large as tens of degrees, and the dislocation density is high.At the
other extreme, some carefully grown crystals are free of dislocations and other line
or planar imperfections, and their crystal planes are flat to less than 10-4 degrees
over distances of the order of a centimeter. In general, metal crystals tend to be
more imperfect than crystals of covalent or ionic substances.

Various x-ray methods of assessing crystal quality are described below. These
methods differ in sensitivity, and the least sensitive will be covered first.

2 LAUE METHODS

Either Laue method, transmission or back-reflection, easily discloses gross plastic
deformation. Any change in the orientation of the diffraction planes is accompa-
nied by a corresponding change in the direction, and wavelength, of the diffracted
beam. In fact, Laue diffraction of x-rays is often compared to the reflection of visi-
ble light by a mirror. An undistorted crystal gives sharp Laue spots. In a bent or
twisted crystal, the continuous change in orientation of the diffraction planes
smears the Laue spots into streaks, just as a spot of light reflected onto a screen by
a flat mirror becomes elongated when the mirror is curved.

Ordinary Laue Methods

If a crystal has been bent about a single axis, both the Miller indices of the bending
axis and the extend of the bending can usually be determined stereographically;
each Laue streak is plotted as an arc representing the range of orientation of the
corresponding lattice plane, and a rotation axis that will account for the directions
of these arcs on the projection is found. The angular lengths of the arcs are a meas-
ure of the amount of bending which has occurred. In measuring the amount of

Crystal Quality

From Chapter 17 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Figure 1 Laue photographs of a deformed aluminum crystal. Specimen-to-film distance 3 cm, tung-
sten radiation, 30 kV.

bending by this method, it must be remembered that the wavelengths present in the
incident beam do not cover an infinite range. There is no radiation of wavelength
shorter than the short-wavelength limit, and on the long-wavelength side the inten-
sity decreases continuously as the wavelength increases.This means that, for a given
degree of lattice bending, some Laue streaks may not be as long as they might be if
a full range of wavelengths were available. The amount of bending estimated from
the lengths of these streaks would therefore be smaller than that actually present.

Transmission and back-reflection Laue patterns made from the same deformed
region usually differ markedly in appearance.The photographs in Fig. 1 were made,
under identical conditions, of the same region of a deformed aluminum crystal hav-
ing the same orientation relative to the incident beam for each photograph. Both
show elongated spots, which are evidence of lattice bending, but the spots are elon-
gated primarily in a radial direction on the transmission pattern while on the back-
reflection pattern they tend to follow zone lines.The term asterism (from the Greek
aster = star) was used initially to describe the starlike appearance of a transmission
pattern such as Fig. 1(a), but it is now used to describe any form of streaking, radi-
al or nonradial, on either kind of Laue photograph.

The striking difference between these two photographs is best understood by
considering a very general case. Suppose a crystal is so deformed that the normal to
a particular set of diffraction planes describes a small cone of apex angle , i.e., in
various parts of the crystal the normal deviates by an angle in all directions from
its mean position.This is equivalent to rocking a flat mirror through the same angu-
lar range and, as Fig. 2 shows, the diffracted spot S is roughly elliptical on a film
placed in the transmission position.When the plane normal rocks through the angle

e

2e

Crystal Quality
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Figure 2 Effect of lattice distortion on the shape of
a transmission Laue spot. CN is the normal to the
diffracting plane.

in the plane ACN, the diffracted beam moves through an angle , and the major
axis of the ellipse is given approximately by when is small. On the other
hand, when the plane normal rocks through the angle in a direction normal to
the plane ACN, the only effect is to rock the diffraction planes through the same
angle about the incident beam. The minor axis of the elliptical spot is therefore
given by . The shape of the spot is character-
ized by the ratio

For , the major axis is some 12 times the length of the minor axis.
In the back-reflection region, the situation is entirely different and the spot S is

roughly circular, as shown in Fig. 3. Both axes of the spot subtend an angle of
approximately at the crystal. Therefore, the shape of a back-reflection spot is
more directly related to the nature of the lattice distortion than is the shape of a
transmission spot since, in the general case, circular motion of the end of the (hkl)
plane normal causes circular motion of the backward-reflected beam but elliptical
motion of the forward-reflected beam. For this reason, the back-reflection method
is generally preferable for studies of lattice distortion. It must not be supposed,
however, that only radial streaking is possible on transmission patterns. The direc-
tion of streaking depends on the orientation of the axis about which the lattice
planes are bent and if, for example, they are bent only about an axis lying in the
plane ACN of Fig. 2, then the spot will be elongated in a direction at right angles to
the radius AS.

4e

2u � 10°
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Minor axis
�
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2e1AC22u
�
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u
.
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Figure 4 Formation of Debye arcs
on Laue patterns of deformed crys-
tals.
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C
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  �(180� � 2   )

N

Figure 3 Effect of lattice distortion on
the shape of a back-reflection Laue
spot. CN is the normal to the diffract-
ing plane.

One feature of the back-reflection pattern Fig. 1 deserves some comment, name-
ly, the short arcs, concentric with the film center, which pass through many of the
elongated Laue spots. These are portions of Debye rings, such as one might expect
on a pinhole photograph made of a polycrystalline specimen with characteristic
radiation. With a polycrystalline specimen of randomly oriented grains a complete
Debye ring is formed, because the normals to any particular set of planes (hkl) have
all possible orientations in space; in a deformed single crystal, the same normals are
restricted to a finite range of orientations with the result that only fragments of
Debye rings appear. Imagine a circle on the film along which a Debye ring would
form if a polycrystalline specimen were used, as indicated in Fig. 4. If a Laue spot
then becomes enlarged as a result of lattice deformation and spreads over the
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1 In Fig. 1(b), the characteristic radiation involved is tungsten L radiation. The voltage used (30 kV) is
too low to excite the K lines of tungsten (excitation voltage = 70 kV) but high enough to excite the L
lines (excitation voltage = 12 kV).

potential Debye ring, then a short portion of a Debye ring will form. It will be much
darker than the Laue spot, since the characteristic radiation1 which forms it is much
more intense than the wavelengths immediately adjacent to it in the continuous
spectrum. In fact, if the x-ray exposure is not sufficiently long, only the Debye arcs
may be visible on the film, and the observer may be led to erroneous conclusions
regarding the nature and extent of the lattice deformation.

1. Since the asterism on the transmission pattern is predominantly radial, lat-
tice planes inclined at small angles to the incident beam are bent about a
number of axes, in such a manner that their plane normals are confined to a
small cone in space.

2. Since the asterism on the back-reflection pattern chiefly follows zone lines,
the major portion of planes inclined at large angles to the incident beam
are bent about a single axis. However, the existence of Debye arcs shows
that there are latent Laue spots of considerable area superimposed on the
visible elongated spots, and that a small portion of the planes referred to
are therefore bent about a number of axes.

Laue photographs can also disclose polygonization, which is a process that some
deformed crystals undergo when annealed at an elevated temperature. If the defor-
mation is not too severe, plastically bent portions of the crystal break up into small-
er blocks, which are relatively strain-free and disoriented by approximately the
same total amount (never more than a few degrees) as the bent fragment from
which they originate, as suggested by Fig. 5. (The term “polygonization” describes
the fact that a certain crystallographic direction [uvw] forms part of an are before
annealing and part of a polygon afterwards.) Moreover, the mean orientation of the
blocks is the same as that of the parent fragment. The effect of polygonization on a
Laue pattern is therefore to replace an elongated Laue streak (from the bent lat-
tice) with a row of small sharp spots (from the individual blocks) occupying the
same position on the film, provided each block is sufficiently disoriented from its
neighbor so that the beams reflected by adjoining blocks are resolved one from
another. Figure 6 shows an example of polygonization in a crystal of silicon ferrite.
A single elongated Laue spot from the deformed crystal appears in (a), while (b)
and (c) show the breakup of this spot caused by annealing.

With these facts in mind, re-examination of the patterns shown in Fig. 1 leads to
the following conclusions:

A polygonized crystal such as this may be regarded as an extreme example of the
mosaic structure depicted, extreme in the sense that the average angle between
adjacent blocks (subgrains) of the polygonized crystal is much larger than normal.
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(a)

(b)

(c)

Figure 6 Enlarged transmission Laue spots from a thin crystal of silicon ferrite containing 3.3
percent silicon in solid solution): (a) as bent to a radius of 9 mm., (b) after annealing 10 min at 950°C,
(c) after annealing 4 hr at 1300°C. Dunn and Daniels [1].

1a � iron

BENT POLYGONIZED
[uvw][uvw]

Figure 5 Reflection of white radiation by bent and polygonized lattices (schematic).

The sensitivity of the ordinary Laue method in the detection of crystal disorien-
tation may be estimated as follows. Suppose the crystal-to-film distance is 5 cm, and
assume that the minimum detectible broadening of a Laue spot is 1 mm. Then the
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diffracted beam has diverged by about 1/50 radian or 1°. This divergence corre-
sponds to a disorientation of the reflecting planes of about 0.5°. This disorientation
applies only to the area irradiated by the incident beam, which is typically 1 mm in
diameter; the irradiated area is therefore only 10-2 cm2.

Guinier-Tennevin Method

This method [2, 3] is a variant of the transmission Laue method and exploits the
focusing effect. A large increase in sensitivity is obtained by increasing the source-
to-crystal and crystal-to-film distances to the order of 50 cm. One therefore has a
rather long “optical lever” that can disclose slight disorientations of the crystal.

Figure 7 shows the geometry of the method. This drawing is a horizontal section
and shows white radiation diverging from a source S, either a point focus or a fine
vertical-line focus on the x-ray tube target, and incident on a thin crystal. The hori-
zontal divergence angle is 1°-3°. If the crystal is perfect, as in (a), the rays dif-
fracted by the transverse planes shown converge to a focus at F. The Laue spot on
the film is then a thin vertical line, as in Fig. 8 (a). Note that only one Laue spot is
of concern and not the arrangement of spots as in an ordinary Laue pattern.

If the crystal is bent or polygonized, as in Fig. 7 (b), the diffracted beam will
broaden and the Laue spot on the film will be a rectangle of width w. (The dashed
lines in this drawing will be discussed later.) The disorientation of the crystal may
be calculated from the magnitude of w and the other dimensions involved.
Disorientations as small as degree are detectible, and this value pertains5 � 10�3

a

(a)

(b)

film

film

F

w

a

c
b
d

F

S

A
B

C

F �

D

	

Figure 7 Guinier-Tennevin
method. (a) Perfect crystal.
Focused diffracted beam. (b)
Bent or polygonized crystal.
Enlarged view of nonfocused
beam.
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(a) (b) (c)

(d)

Figure 8 Single Laue spots obtained by the Guinier-Tennevin method on a film placed at the focusing
position F. Spots (a), (b), and (c) are from the transverse planes of a quartz crystal plate,

: (a) unstrained, magnification 2X, (b) elastically bent, 2X, (c) elastically twisted, 5X.
Spot (d) is from an aluminum crystal after plastic deformation, 4X. Julien et al. [4-6].
37 � 13 � 0.5 mm
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to an irradiated crystal area of 1-2 cm2. Fig. 8 (b) shows a broadened reflection of
this kind.

A modification of the Guinier-Tennevin method can reveal additional informa-
tion about a deformed crystal [4, 5]. If a Soller slit with horizontal plates is placed
in the incident beam and the crystal is twisted about a vertical axis, the original ver-
tical-line Laue spot broadens into a striated region composed of fine inclined lines,
and the inclination of these lines is a measure of the torsional strain in the crystal
(Fig. 8 (c)).

Spot (d) of Fig. 8 is from a plate-shaped aluminum crystal that had been plasti-
cally deformed a small amount. This spot contains considerable internal detail. The
striations show that portions of the crystal are twisted, and the dark vertical lines,
of which two are prominent, show that fragmentation (polygonization) has
occurred. Each line is a focused reflection from a nearly perfect portion of the crys-
tal.

3 TOPOGRAPHIC AND OTHER METHODS

2 Other techniques of x-ray imaging also qualify as microscopy, for example, those employing Fresnel
plates for focussing x-rays [8], and it would be better to use x-ray topography and x-ray diffraction
microscopy as synonyms

In methods designed mainly for the examination of nearly perfect crystals, the
interest is not so much in measuring the angular disorientation of one part of the
crystal with respect to another, but rather in disclosing the presence of individual
imperfections, such as dislocations.All of these emplying radiation from x-ray tubes
methods involve diffraction of radiation. Synchrotron radiation-based tech-
niques can use either the continuous spectrum or monoclvornatized radiation. A
number of interesting variants have been devised [7, G22].

The methods described below are called topographic, in the sense that the dif-
fraction “spot” has a fine structure that is an image or map of the crystal examined.
To be topographic, a one-to-one correspondence must exist between points within
the diffraction spot and points on the crystal.

X-ray diffraction topography has sometimes been called x-ray microscopy,2

because the image formed by diffracted x-rays, often only a few millimeters wide, is
subsequently examined, and photographed, with an optical microscope at magnifi-
cations of 10-100 X. Such magnification is useful only if the detail in the x-ray image
is sufficiently fine, and fine detail is obtained by recording the image, not on ordi-
nary x-ray film, but on special high-resolution plates. These are glass plates coated
with a thin, photographically slow, high-resolution emulsion. As a rule of thumb,
individual dislocations can be resolved in carefully prepared topographs once the
dislocation density is blow 106 cm–2.

Ka
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Effect of Extinction

The phenomenon of extinction plays a major role in image formation in x-ray
topography. Extinction has its maximum effect in perfect crystals. As a crystal
becomes more imperfect, its diffracting power for x-rays increases. Thus, when a
crystal is examined by a topographic method, the crystal’s imperfect regions will
diffract more strongly, and the dark regions on the topograph will reveal where the
imperfections are located in the crystal.

It is not usually the imperfections themselves that are imaged on the topograph
(they are much too small) but rather the strain fields around the imperfections;
these strains cause the plane spacings d to vary from their equilibrium value, there-
by modifying the x-ray scattering process. White [9] has given a vivid demonstra-
tion, on the macroscopic level, of the effect of lattice strain on diffracting power,
such as occurs in x-ray topography on a microscopic scale. He diffracted crystal-
monochromatized radiation from the surface of a thin quartz plate, elasti-
cally bent by increasing amounts, and measured the integrated intensity of the
reflection (Fig. 9). The intensity for the unbent crystal was near the value calculat-
ed for a perfect crystal, and it increased with bending strain up to almost the value
calculated for an “ideally imperfect” crystal (one in which extinction is absent). The
effect was reversible and independent of whether the bending was convex or con-
cave relative to the incident beam. The crystal plate was 0.5 mm thick, so that the
surface strain was about for the maximum bending shown in Fig. 9 The x-
ray penetration depth was greater than half the thickness of the bent crystal, so that
the x-rays saw strains varying from zero at the neutral axis to a maximum at the sur-
face.
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Figure 9 Integrated intensity of the
202 reflection of radiation
from a quartz plate as a function of
the amount of bending. R is the
radius of curvature. The quartz
plate was cut parallel to the (202)
planes. After White [9].
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Not only does this important experiment demonstrate quite directly the relation
between nonuniform lattice strain and x-ray diffracting power, but it also shows
that extinction can be reversibly varied in an almost perfect crystal.

Diffraction Contrast

Contrast within x-ray topographs can arise from differences in diffracting power of
crystal defects, such as dislocations, and the perfect lattice. As can be inferred from
Fig. 9, the highly strained material around the core of a dislocation diffracts more
intensely than the positions farther away. Thus, contrast is produced between the
material immediately adjacent to the defect and the material far from the defect. In
certain orientations of the defect relative to the incident and diffracted beams, how-
ever, the contrast produced by the defect disappears. Use of this “invisibility crite-
rion” is the principal way in which defect character is deduced in x-ray topography
and in transmission electron microscopy. The formula for the invisibility criterion
can be obtained in the same way that the interference function was obtained: the
intensity observed depends on the phase difference between scattering atoms, in
this case, displaced from their equilibrium positions.

The structure factor is given by

where n denotes the different atoms in the unit cell, H = h b1 + k b2 + l b3 and rn is
the direct space vector from the origin of the unit cell to the nth atom in that unit
cell. In practice, diffracted intensity does not drop to zero at angles slightly differ-
ent from the Bragg angle , and setting S allows for this. In other
words, the vector no longer must be the sum of integral multiples of the
reciprocal lattice vectors bi. Remember also that the formula for the amplitude dif-
fracted by the entire crystal is

S · Rm ,

where the summation is over the m unit cells in the crystal, F is the structure factor
which is the same for each unit cell, and Rm is the direct space vector from the ori-
gin to the mth unit cell. The effect of deformation, either from a continuously vary-
ing elastic field or from a discrete defect such as a dislocation can be treated in the
same fashion. If R’m is the position of the mth unit cell in the deformed crystal,

S (1)4 � R¿m2 6.Ahkl � �mFhkl exp 52pi1 3H 


4 6Ahkl � �mFhkl exp 52pi1 3H 


1S � S02>l
1S � S0>l � H 
uB

� �nfn exp 52pi1H � rn2 6,

Fhkl � �n fn exp 52pi 3 1S � S02>l  �   rn 4 6
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3 Note that the Burgers vector b is different from the reciprocal lattice vectors whose magnitudes are
also designated by b. However reciprocal lattice vectors are written bn in general and b1, b2 and b3
specifically while the Burgers vector is written b.

Writing the displacement of the unit cell due to the deformation as dRm, then
S

S

S (2)

Note that dRm is a function of position and is defined relative to the nearest posi-
tion a unit cell would have in a perfect crystal.

The four vector products S and S must now be
considered to deduce the effect of the defect, if any, on contrast. The first and third
terms have already been encountered in the structure factor and interference func-
tion, respectively. Note that S and dRm are both small quantities, i.e.,
and S . Thus the fourth term can be neglected, and only the term H·dRm pro-
duces contrast. If , then H·dRm = 0 and there is no effect on diffracted
intensity. This condition H·dRm = 0 is known as the invisibility criterion, Stated
another way, the defect will not produce contrast if its displacement field is solely
parallel to the diffraction planes. If, however, the displacement field has one or
more components out of these planes, the strain will affect the diffracted intensity
and produce a local increase in diffracted intensity.

As examples of the use of the invisibility criterion in TEM or x-ray topographic
defect identification, consider a pure screw dislocation and a pure edge dislocation.
The displacement field ui around a stationary screw dislocation whose unit line vec-
tor t is parallel to x3 depends on the Burgers vector b and is given by [10]:3

(3)

Around a stationary edge dislocation parallel to x3, the displacement field is:

(4)u3 � 0.

u2 � �
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The term C is a constant required to make the argument of the natural logarithm
term dimensionless, and and are the Lamé constants. In terms of more com-
monly encountered elastic constants, is the shear modulus and Young’s modulus

. Even though t may change for a given dislocation line
as it winds through the crystal, its Burgers vector b must remain constant unless it
intersects another dislocation. Note that these equations apply to an isotropic elas-
tic solid, and the displacement fields will differ in anisotropic materials.

For screw dislocations the invisibility criterion is very simple: H · b = 0. Many
authors, particularly those working in TEM replace H with g. This equation states
that the screw dislocation will be invisible if b is parallel to the diffracting planes,
i.e., if b is a direction within this plane. For edge dislocations, the two non-zero dis-
placement terms require that H · b = 0 and must be satisfied for the
dislocation to go out of contrast. Examples of the use of the invisibility criterion in
x-ray topography follow in this section; Section 20-8 covers examples in TEM.

Consider the curved dislocation pictured in Fig. 10; it is in an fcc material. If its
Burgers vector is and its line direction is given by unit vector t, the
section AA where t = [110] has pure screw character and BB where has
pure edge character. Between A and B the dislocation character is mixed, varying
from predominantly screw to predominantly edge. For the pure edge section

. An image produced with H = 200, i.e., an image formed with the
beam diffracted from (100), would have 0. The entire length of the dislo-
cation would be visible. An image produced with H = 002, however, would have
H · b = 0. Note that (001) is in the same zone as and , having zone axis
[110], and is rotated 54.7° from . The pure screw segment AA would not pro-
duce contrast, but the pure edge section BB might since .

. Generally, the contrast produced when is greater than that
produced when H · b = 0 but , so that contrast from the latter con-H � 1b � t2 � 0

H � b � 03111 4 � 0
H � 1b � t2 � 3001 4¿
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Figure 10 Schematic of a curved dislocation line lying on with tangent vector t and Burgers vec-
tor parallel to [110].
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dition is termed residual contrast. If the dislocation were imaged with 
both H · b and would be zero and the dislocation would be invisible.

Finding invisibilities from two non-colinear H insures that a dislocation’s char-
acter can be identified. In many situations, however, only one type of Burgers vec-
tor is expected, and only one invisibility may be required to establish the character
of the dislocations. In a bcc system, for example, the expected slip system is
{110} , and or , must be distinguished. Imaging with

allows rapid identification of b in the bcc system. The schematic of Fig.
11 shows a progression of steps which might be used in the identification process.
With a priori knowledge of the type of slip system, only two images must be record-
ed to determine b. Images from at least three different H must be recorded to
reveal all of the dislocations present (e.g., H = [101] in addition to H = [110] and
[011] in the schematic of Fig. 11).

As was noted above, residual contrast can be seen if H · b = 0 but
. In some cases this residual contrast can be nearly as strong in the

same micrograph as that for dislocations with , or it can so weak as to be
negligible. An additional complication can occur for situations where H · b> 1: the
intensity produced for dislocations for which H · b ≥ 2 can be much higher than that
when the product equals 1. The possibility exists, therefore, that dislocations which
are in contrast can be mistaken for dislocations exhibiting residual contrast. These
potential pitfalls are mentioned to illustrate that some caution is required in inter-
preting contrast in x-ray topographs and TEM micrographs; normally analysis of
defect character using the invisibility criterion is straight-forward.

Under conditions of high absorption and in perfect crystals, the contrast of
defects such as dislocations reverses from that in thinner crystals. Imperfections
locally destroy the crystal perfection that causes the anomalously high transmission
of the Borrmann effect, thereby producing less blackening of the photographic
emulsion and casting a white “shadow” on the film.

H � b � 0
H � 1b � t2 � 0

H � H110I
3111 4b 7 3111 4 , 3111 4 , 3111 4 ,H111I

H � 1b � t2
H � 3112 4

Image with
H � [110]

Image with
H � [011]

Image with
H � [011]

b : [111]

b : [111], [111]
–

Yes

Yes

Yes
No

No

No
Disl.

invisible?

Disl.
invisible?

Disl.
invisible?

b : [111], [111]
– –

b : [111]
–

b : [111]
–

b : [111]
–

Figure 11 Flow chart illustrating the use of the invisibility criterion.
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Berg-Barrett Method

This method involves the diffraction of radiation from the face of the specimen
crystal [7.11-7.13]. There is therefore no restriction on specimen thickness but the
depth from which the x-rays sample may range from one micrometer to hundreds
of micrometers or more.

Unfiltered radiation from the x-ray tube passes through a, long collimator
(Fig. 12), which defines a broad beam that will flood the specimen crystal. In a dark-
ened room the crystal is adjusted so that a selected (hkl) plane makes the correct
Bragg angle for diffraction, as judged by the appearance of a bright spot on an adja-
cent fluorescent screen. The screen is then replaced by a photographic plate. For
maximum resolution of detail the plate should be as close to the crystal as possible,
preferably less than 1 mm, without touching the incident beam. This prevents the
images of the same defect from and from diverging too much and smear-
ing the image of the defect. The diffraction planes, as suggested in the drawing, are
not normally parallel to the crystal surface; the angle should be about 90° so that2u
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Figure 12 Berg-Barrett method. (a) Plan view. The source is the focal spot on the x-ray tube target, seen
“end on” from the specimen, so that the source appears square. (b) Perspective view.
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the diffracted rays strike the plate at right angles.
A perfect crystal would produce a uniformly dark Berg-Barrett image. Crystal

imperfections affect the image mainly in two ways:

1. As discussed before, local regions of the crystal with low extinction, such as
those with nonuniform strain, will diffract more strongly and cause darker
regions on the image, an effect called “extinction contrast.”

2. Local regions that are rotated out of parallelism with the rest of the crystal
will be set not quite, or not at all, at the exact Bragg angle and will diffract
of less strongly or not at all, causing lighter regions on the image.

The Berg-Barrett method has a maximum resolution of about , and it can dis-
close such imperfections as subgrain boundaries, twins, and individual dislocations
where they intersect or pass close to the crystal surface.

The Berg-Barrett topographs in Fig. 13 show how the choice of diffracting plane
governs dislocation visibility [13].The specimen is a lithium fluoride crystal, cleaved
parallel to a (100) face and slightly bent. Dislocations that emerge on this face are
revealed by tiny etch pits in the optical micrograph (a). Pits forming diagonal lines

5 mm

Ka

(a) (b)

200

0.5 mm

(c) (d)

202220

Figure 13 Different aspects of the (100) face of a LiF crystal. (a) Optical micrograph of the etched sur-
face. (b), (c), (d) Berg-Barrett x-ray topographs of the same area of the unetched surface, made with
three different hkl reflections; the arrow on each topograph is the projection of the incident-beam
direction on the (100) face. Newkirk [13].
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are due to edge dislocations; those forming horizontal lines are due to screw dislo-
cations; both kinds of dislocations lie on {110} slip planes and have . Most
of the screw dislocations are located to the right of the curved vertical line at the
center; this line is thought to mark the place where the cleavage crack, moving from
right to left, began to move so fast that dislocations had no time to form ahead of
it. The x-ray topographs of the unetched surface in (b), (c), (d) reveal dislocations
selectively. In (b), a 200 reflection, the emergent points of screw dislocations form
dark horizontal lines, and edge dislocations are virtually invisible. One can con-
clude, therefore, that the edge dislocations have b = [011] or [011]. On the other
hand, if the image is formed by a 202 reflection, as this means that the screw dislo-
cations have b = [101] in (c), only edge dislocations are revealed, as evidenced by
the dark diagonal lines. As expected from the b identified above, the 220 image in
(d) shows both edge and screw dislocations. The thick, irregular dark lines in all
three topographs are subgrain boundaries. One should remember that the horizon-
tal and diagonal lines in Fig. 13 are not the images of individual dislocation lines
running parallel to the crystal’s surface; rather, the lines result from closely spaced
dislocations emerging from the surface.

Lang Method

This method involves the diffraction of of radiation in transmission [14, 15] The
diffracted beam will therefore be too weak if the crystal is either too thin or too
thick. The optimum thickness t corresponds to , where of is the linear
absorption coefficient.

X-rays from the source S, a point or a line, pass through the narrow slit St in
Fig. 14 before hitting the crystal. The incident beam therefore has the shape of a
very thin ribbon, intersecting the crystal along the plane AB.This beam has very lit-
tle divergence in the plane of the drawing, because S1 is a narrow slit and the
source-to-slit distance D is large, several tens of centimeters. The diffracting planes,
for the beam directions shown, are at right angles to the crystal surface, and these
planes must make the right Bragg angle for the characteristic radiation involved.
Slit assembly S2 passes the diffracted beam but prevents the transmitted beam from
striking the plate.

If the crystal is fixed, the image on the plate is a section topograph, revealing the
distribution of imperfections on the section AB of the crystal: these defects form
“direct images,” that is they diffract more strongly than the perfect regions of the
crystal and produce more darkening of the photographic emulsion. Remember that
a ribbon of radiation is striking the crystal, and the image of the section topograph
recorded on the film is, for a parallel-sided crystal, a long narrow rectangle.The two
Bloch waves excited in the Borrmann triangle interfere, and, in the absence of
defects or strain, the section topograph consists of a set of light and dark fringes
parallel to the sides of the topograph (Fig. 15a). More precisely, the waves interfere
within the Borrmann prism consisting of the stack of many contiguous Borrmann
triangles. These fringes are termed Pendellösung fringes from the German words

mmt � 1

Ka

b � H110I
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for crystal and plate

Figure 14 Lang method. Slits S1 and S2 are fixed. The crystal and the photographic plate are mounted on
a stage that can be slowly traversed in the directions shown.

for “pendulum” and “solution” which describes the mathematical treatment of the
energy transfer from one Bloch wave to the other. The fringes are very sensitive to
small strain gradients which affect the pattern of fringes first by producing addi-
tional periods of the fringes (left side of Fig. 15a) and second, at high elastic strains,
by destroying the Pendellösung fringes altogether (Fig. 15b). Dislocations within
the Borrmann triangle ABC, but not intersecting the direct beam (AB), cast shad-
ow within the section topograph or distort the pattern of fringes. A significant den-
sity of oxide precipitates within an otherwise defect-free silicon wafer is sufficient
to obscure the fringes, and back surface damage, introduced to getter point defects
within the silicon wafer, is also sufficient to destroy the conditions required to
observe fringes.The length of the crystal may be explored by making a series of sec-
tion topographs, the crystal and plate being moved stepwise between exposures.
Section topographs are most useful when the crystal is rather thick.The first images
of individual dislocations were obtained by this method, and very beautiful section
topographs have been produced of synthetic crystals such as silicon and of natural-
ly occurring crystals such as diamond. Pendellösung fringe measurements have
been used to provide very precise measurement of the atomic scattering factor in
crystals as diverse as silicon [18] and aluminum [19] and of the thermal expansion
coefficient of silicon [20]. Section topographs may also be recorded with mono-
chromatic synchrotron radiation as well as polychromatic synchrotron radiation.

The crystal may be continuously explored from end to end by moving crystal and
plate together, back and forth, during the exposure. The resulting image is a projec-
tion topograph; it is most informative when the crystal is fairly thin and the density
of imperfections not too large, so that images of imperfections do not overlap.
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Figure 15 Two section topographs of a 0.5 mm Si wafer recorded with synchrotron radiation at two adja-
cent positions. The Pendellösung fringes run horizontally. The left edge of the image corresponds to the
position where the wafer was cut with a diamond dicing blade; extra fringes result because of the elas-
tic strain gradients left by the cutting operations. Small amounts of strain from surface scratches, etc. can
completely destroy the interference producing the fringes (white blur in the top topograph and black,
vertical black streaks in the bottom topograph) [16].

Figure 16 shows a topograph containing images of dislocations. Spatial resolution
can approach , although this is not often attained.

The Lang method can also reveal magnetic domains in ferromagnetic and ferri-
magnetic materials [22]. Here, spontaneous magnetostrictive strains in domains and
domain walls are enough to upset the regularity of the lattice and constitute crystal
imperfections.

Lang cameras are commercially available and can be used to great effect for
quality control of silicon crystals. Such crystals are often may centimeters wide. If a
wide crystal happens to be very slightly bent, Bragg’s law will not be satisfied for
the highly parallel incident beam during a complete traverse of the crystal. To
ensure continuous diffraction Schwuttke [23] oscillated the crystal and plate
through a very small angle about a vertical axis through A of Fig. 14 during the tra-
verse, and Silver and Turner [24] devised an automatic control of the oscillation
angle.

1 mm
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Figure 16 Lang topograph of a thin crystal of
lithium fluoride. Dark lines are dislocations,
some randomly arranged and some nearly
parallel. The latter form the band running
diagonally across the photograph; these dislo-
cations, which intersect the top and bottom
surfaces of the crystal, constitute a small
angle boundary between two subgrains. of

, radiation, 200 reflection. (Courtesy
of A. R. Lang [21].) 
Mo Ka1

Polychromatic or White Beam Topography

Laue patterns of nearly perfect crystals can produce many topographs simultane-
ously: the structure within each spot is a map of the diffracting power of the area of
the crystal irradiated (Fig. 17). Section and projection topographs can be recorded
as well as reflection topographs. Topographic imaging with polychromatic x-rays is
practical only with synchrotron radiation, since only it possesses the needed inten-
sity and parallelism. The disadvantages of experimenting away from one’s home
laboratory and of being able to record topographs only during several tightly sched-
uled periods each year are offset by several advantages.

In addition to being able to record multiple reflections simultaneously, that is, to
record much of the information required to identify defect character, each set of
topographs requires an exposure of seconds compared to hours required for
topographs recorded with x-ray generators. This is essential for following dynamic
processes such as phase transformations or plastic deformation.A number of inves-
tigators have developed x-ray cameras for recording topographs at video rates, and
spatial resolutions down to have been reported [25-27]. Plastic defor-
mation emanating from a notch during in situ loading has been studied, for exam-
ple, in thin niobium crystals containing a low density of dislocations [28].
Dislocations emitted from notches in silicon under different loading conditions is
another example of in situ studies only practical with synchrotron radiation.

Another advantage of polychromatic topography is that crystals containing a
range of orientations can be imaged in their entirety: different portions of the crys-

10 � 20 mm
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SYNCHROTRON

SLIT

SPECIMEN FILM

Figure 17 White or polychromatic beam topography illustrated for a crystal of GaAs alloyed with
In. The slit defined the area imaged, and the irregular white area at the center of this 001 Laue

pattern is the beam stop. The enlarged topograph shows contrast from surface scratches (heavy running
from upper left to lower right) and individual dislocation lines (short, sharply difined black images).

� 2%

tal diffract slightly different wavelengths. Bent or otherwise distorted crystals are
one application where polychromatic topography is particularly valuable. This
method is also quite useful in determining the misorientation between subgrains
(i.e., the rotation axis and the magnitude of rotation).

Misorientations may be mapped by observing a sharp change in contrast in a
crystal possessing a K-absorption edge within the range of wavelengths diffracted
from the crystal. Those parts of the crystal diffracting wavelengths lower than that
of the absorption edge contribute little intensity to the topograph while those posi-
tions where diffracted wavelengths are greater than that of the edge produce much
greater darkening of the topograph [29]. The locus of positions where the large
change in contrast occurs is termed an absorption edge contour, and the position of
this contour for different crystals orientations maps the strain and/or bending in the
sample [30]. If the crystal does not possess a suitable absorption edge, a filter with
a suitable edge can be placed in the polychromatic beam before or after the sample
and can produce the desired change of contrast. A molybdenum filter in a poly-
chromatic beam, for example, provides different transmissivities for wavelengths
above and below 0.62 A; the change in contrast allows one to quickly characterize
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texture in flat plate diffraction patterns of polycrystalline systems as diverse as
TaSi2/Si eutectic composites [31] and plates of Al-Li 2090 [32].

Cross-sections of crystals as large as of are often imaged in
transmission; in the reflection geometry, much larger areas can be studied in single
exposures by directing the incident beam at an angle nearly parallel to the surface
of the sample. Recording multiple reflections simultaneously requires large sheets
of film, and a much larger sample-to-film separation is needed than in the Lang
method so that the different Laue “spots” do not overlap. Because the emulsions
must be thick in order to record topographs in a reasonable period of time, some
smearing of defect images such as dislocations is inevitable in this technique: the
diffracted beams cannot everywhere be perpendicular to the plane of the film. The
normal compromise in transmission polychromatic topography is either to place
the film perpendicular to the direct beam S0 (Fig. 17) or to position the film per-
pendicular to the diffracted beam of greatest interest.

Double Crystal Topography

A dislocation-free, undeformed crystal can be used as a monochromator or beam
conditioner for recording x-ray topographs of samples. Figure 18 illustrates this
technique, double crystal topography, and shows how a divergent beam of of 
radiation from an x-ray tube or a nearly parallel beam of polychromatic synchro-
tron radiation is incident on the monochromator and how those x-ray photons ori-
ented at the appropriate angle diffract first from the monochromator (through
angle of ) and then from the sample (through angle ) in transmission (Fig.
18(d)) or reflection (Fig. 18(a)). Because the perfect monochromator crystal has a
very narrow acceptance angle for x-rays of a given wavelength, double crystal
topographs often require much longer exposure times than other types of
topographs. Even small elastic curvatures prevent large portions of the irradiated
volume from diffracting. This effect has been used to measure changes in dilation-
al and shear strains as a function of position in a GaAs wafer. In cases with consid-
erably greater strains, the resulting topograph consists of only a narrow contour
which can be used to map the distribution of deformation around stress concentra-
tors. Figure 19a shows a single contour from diffraction of the niobium matrix
which was deformed by a nearby niobium hydride precipitate, and Fig. 19b, of the
same sample, shows multiple contours recorded on a single piece of film using rota-
tions of 210 arc sec between exposures [21].

The high strain sensitivity intrinsic to double- or triple- crystal topography can
be very useful in revealing subtle changes in orientation, defect character or strain.
Fewster [34], for example, has used triple crystal topography 4 to explain that the
diffuse intensity observed around Bragg peaks in triple axis diffractometry can be
due to incompletely removed scratches on the sample and not necessarily to point
defects.

2uC2uM

Ka

5 mm � 20 mm
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Figure 18  Illustration of different multiple axis geometries; S, N and A are the directions of x-ray
beams, crystal normals and rotation axes, respectively, while subscripts 0, M, C and A denote initial,
monochromator, sample crystal and analyzer, respectively. Double axis diffractometry/topography in
the non-dispersive or (+,-) mode and reflection geometry is illustrated at the top; film is placed at “F”,
either orientation, for topographic imaging while the detector “D” is used to record diffracted intensi-
ty as a function of sample rotation about Ac.Double axis diffractometry is the dispersive or (+,+) mode
and reflection geometry appears in the diagram second from the top. Triple axis diffractometry is
shown in the diagram third from the top; the analyzer crystal is used to separate strain and misorien-
tation contributions to the diffraction peak. The bottom diagram shows double axis
diffractometry/topography in the transmission geometry.
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(a) (b)

Figure 19 Transmission double crystal topographs recorded with radiation with diffraction
vector H = [002]. A number of NbH precipitates nucleated and grew within the niobium single-crys-
tal matrix; these produce the large deflections in the set of positions diffracting. (a) was recorded with
a single sample orientation and shows the positions within the crystal diffracting and wave-
lengths. (b) was recorded with multiple 210 arc sec sample rotations. [28, 29].

Ka2Ka1

Mo Ka

4 MULTIPLE AXIS DIFFRACTOMETRY

4Triple crystal topography uses an analyzer crystal or set of crystals, placed within the beam diffracted
from the sample, to separate orientation effects from strain effects within the topographic image. The
geometry is that in Fig. 18(c) if film replaces the detecter.
5Double axis diffractometry is also called double crystal diffractometry.

In order to measure the diffraction peak profile of nearly perfect crystals or epi-
taxial layers, an experimental arrangement different from that of the parafocusing

diffractometer is required: the instrumental profile for such an instrument is
far broader than the width typical of a dislocation-free crystal. Instead, a perfect
reference crystal (or set of crystals) is used as a beam conditioner so that the sam-
ple’s diffraction peak profile contains little contribution from sources other than
the sample itself. In double axis diffractometry,5 shown in Fig. 18, the monochro-
mator M, which should be as nearly perfect as possible, is set to diffract radia-
tion in the direction of crystal C, which is to be examined. Crystal C is then rotated
(“rocked”) through the Bragg angle , while the beam diffracted by it is measured
in a fixed detector with a wide slit. The resulting curve of intensity vs. is called a
rocking curve.

There are two settings of the monochromator and sample crystal can be used, the
(+,–) and the (+,+) geometries which are shown in Fig. 18 (a) and (b), respectively;

u

uC

Ka

u–2u
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the first “+” denotes the direction of the normal of the diffraction planes of the
monochromator, and the second symbol denotes the direction of the normal to the
diffraction planes of the sample crystal relative to the monochromator crystal. The
(+,–) arrangement is also termed the non-dispersive and the (+,+) arrangement the
dispersive setting. If the d-spacings of the diffraction planes of the monochromator
and sample are iden ti cal, the beam SC diffracted from the sample in the      (+,–)
geometry will be parallel to the beam incident on the monochromator S0. An addi-
tional consequence is that and radiation diffract at exactly the same angle.
For differing d-spacings, SC and S0 will no longer be parallel, and and peaks
will be separated by the angle:

(5)

where is the difference in wavelength between and , is the average
wavelength of the doublet and and are the Bragg angles for the mono-
chromator and sample, respectively. The peak may appear at a higher angle
than the peak, or it may appear at lower angles depending on the relative sizes
of and . In the (+,+) geometry the minus sign in Eq. (5) is replaced by a plus
sign, and and are always separated.There are, therefore, two reasons to use
the (+,–) geometry and a monochromator matched to the sample: the pattern is
simpler to interpret and superposition of the and radiation at the same
angle increases the peak intensity.

The double axis diffractometer was much used in the early days of x-ray diffrac-
tion to compare the width and height of the rocking curve for a real crystal with the
values predicted by dynamical theory for a perfect crystal [G.19, G.20]. Note that
the perfect crystal rocking curve predicted by dynamical diffraction theory for an
incident plane wave is not what is measured by the double axis diffractometer.
Instead, experimental rocking curves are the convolution of the monochromator
and sample reflection profiles. After accounting for convolution of the two crystals,
dynamical theory predicted a width of the order of 10 arc sec. (0.003°) for typical
experimental conditions, and some crystals were found with rocking-curve widths
approaching this value. However, most natural crystals exhibit widths 10 to 100
times greater.

The width of a rocking curve is a direct measure of the range of orientation and,
to a lesser extent, the amount of strain present in the irradiated area of the crystal,
because the instrumental contribution to the width of the diffraction peaks is so
low, peaks from individual blocks (subgrains) often can be resolved in a rocking
curve (Fig. 20).

The width of a rocking curve can also be very sensitive to the surface condition
of the crystal. Etching the surface of a calcite crystal produces a rocking curve width
in transmission of 12 arc sec (0.003°), very near the perfect crystal value while
grinding the surface of a similar crystal on emery paper produces a width of about
120 arc sec (0.03°) [36].
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Figure 20 Double axis diffractometer data and subgrain peaks. (a) Tracing of optical photomicrograph
of a polygonized aluminum crystal, etched to reveal large subgrains, produced by bending the crystal
to a radius of 2 cm and annealing at 645 C for 21 hours; the superimposed rectangle shows the area irra-
diated by the incident x-ray beam. (b) Rocking curve (200 reflection, (+,-) setting) of the
crystal in (b); the maxima A’, B’, C’ correspond to subgrains A, B, C in (b). Intrater and Weissmann [25].

13 � 0.1 mm2

With the advent of the transistor age and the enabling advances in crystal
growth, particularly of silicon, more and more laboratories incorporated double
axis diffractometers into their quality control programs. Rocking curve widths rou-
tinely are those predicted by dynamical theory. The availability of low cost person-
al computers in the 1980’s led, by 1990, to a high degree of automation of the
tedious alignment required for double axis diffractometry, and relatively inexpen-
sive, user-friendly computer-integrated systems became available. The impact of
this technical development has been that rocking curves can now be obtained by
the crystal growers themselves, after a few hours of training, without the interven-
tion of x-ray diffraction specialists. Since that time it has become the rule rather
than the exception for rocking curve data to be reported in the literature.

Rocking curves from silicon and other, well-established wafer materials, howev-
er, are no longer of particular interest because quality control has become so good;
growth issues are better addressed by x-ray topography, described in the previous
section, or triple axis diffractometry, described later in this section. Instead, rocking
curves of epitaxial layers grown by such techniques as metallo-organic chemical
vapor deposition and molecular beam epitaxy (MBE) are now the focus of much of
the characterization effort with double axis diffractometry.
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Figure 21 shows rocking curves from two different multiple quantum well struc-
tures of AlxGa1-xAs/GaAs; the nominal structure for each is shown schematically to
the right of each rocking curve [37]. The reader should note that the logarithm of
the intensity is plotted and not the intensity; this increases the visibility of the small-
er peaks. Large peaks from the substrate and buffer layer (labeled “s” and “b”,
respectively) appear as well as a series of peaks from the periodic AlxGa1-xAs/GaAs
structure (labeled “ ”). This type of structure is loosely termed a
superlattice, and the average d-spacing of the artificial superlattice determines the
Bragg angle of the fundamental or “0” peak of this structure. If the superlattice and
substrate diffraction planes are both parallel to the sample’s surface, the separation
between the superlattice’s fundamental peak and substrate peak is given by

(6)

where is the average lattice parameter of the superlattice and aS
is that of the unstrained substrate. Satellite peaks also appear, and the period of the
superlattice determines the separation between satellites: the smaller the period in
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Figure 21  Rocking curves (left) from two 40 period AlxGa1-xAs/GaAs superlattices grown on (001)
GaAs. The 004 reflection and radiation were used. The nominal structures are shown to the
right of the rocking curves: the superlattice period and composition were intended to be 800 Å and
x=0.35. The best fit found for the top rocking curve (a) was 360 Å GaAs and 500 Å Al0.33Ga0.67As and
for the bottom rocking curve (b) 423 Å GaAs and 286 Å Al0.38Ga0.62As. [37], reprinted courtesy of
Advances in X-ray Analysis. The numbers show the order of the superlattice satellite reflections, “b”
and “s” label the buffer layer and substrate reflections, respectively, and the x-ray beams incident on
and exiting from the sample are SM and SC respectively.
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direct space, the larger the peak separation in a diffraction pattern (i.e., in recipro-
cal space). Kinematical diffraction theory accurately predicts, in most circum-
stances, the superlattice period t from the satellite peak separation and this
relation is

(7)

for different diffraction geometries [37, G.22]. For the sample producing the data in
Fig. 21a, the period is 860 Å and for that in Fig. 21b the period is 709 Å. The peri-
ods were intended to be 800 Å in both cases.

The number and relative thicknesses of the layers within each period of the
superlattice produce a modulation of satellite peak intensity in much the same way
that the atoms and their positions within the unit cell determine the structure fac-
tor and affect the diffracted intensity. For the samples described in Fig. 21, the lay-
ers are AlxGa1-xAs and GaAs. Changes in the relative thicknesses of the two layers,
while keeping the composition and period of the superlattice constant, leads to dif-
ferent patterns of interference and to some satellite peaks disappearing. For exam-
ple, the ±1 peaks are strong in both structures of Fig. 21. In Fig. 21a, the +2 peak is
prominent, –2 cannot be seen and ±3 peaks are small; in Fig. 21b the –2 peak is rea-
sonably strong, and more prominent than the +2 peak, and the +3 peak is about as
intense as the –2 peak. Numerical simulation of the superlattice diffraction patterns
reveals that a structure of 360 Å GaAs/500 Å Al0.33Ga0.67As within each period is
consistent with the observed intensities of Fig. 21a and that    423 Å GaAs/286 Å
Al0.38Ga0.62As is consistent with Fig. 21b.

In the schematics of Fig. 21, the diffraction planes are parallel to the crystal sur-
face.This geometry is termed the symmetric Bragg setting, and only those strains 
along the direction of the surface normal are measured. Often , the strain parallel
to the surface, must be determined in order to understand the nature of any relax-
ation processes in the thin layer. In this case, diffraction planes are selected which
make a small angle with the surface; these are termed asymmetric reflections since
the plane normal is no longer symmetric with respect to the sample surface, i.e., it
is no longer parallel to the sample surface normal. The angular separation between
layer and substrate peaks is now a function of both and . Comparison of data
from symmetric and asymmetric peaks, therefore, allows direct quantification of .
For layers grown on 001 GaAs or Si, {511} are frequently used asymmetric reflec-
tions.

The lateral variation of epilayer quality is often assessed by stepping the sample
across the beam. Sampling from areas as small as 1 mm2 is routine with tube-pro-
duced x-radiation.With synchrotron radiation rocking curves can be obtained with-
out difficulty with diameter microbeams [38]. Rocking curves have been
obtained from areas less than [39, 40].

Another approach is that developed by Weissmann and coworkers [41] who
obtained semitopographic information by phtographing the beam diffracted by
crystal C for various angular positions of this crystal. These type of measurements
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can be made topographic by recording the diffracted beams on film for several
carefully measured film-to-sample separations [42].

Several aspects of the design of most double axis diffractometers limit their abil-
ity to measure accurate absolute lattice parameters. Because these units are prima-
rily intended for measuring rocking curve widths and separations between closely
spaced peaks of epilayers and their substrates or of superlattice peaks of multiple
quantum well samples, the x-ray optics are not designed with precise measurement
of absolute diffraction angles. The sample holder or stage is generally intended to
accommodate different sized samples and not to place the sample precisely in the
center of the beam. The receiving slits are wide in order to allow all diffraction
beams to be observed without rotating the detector. Calibration of the zero angle
precise enough for lattice parameter determinations is impractical. Mis-cuts of the
sample face of a fraction of a degree are routinely present as are misorientations
introduced during mounting of the sample on the second axis stage. Thus, without
special procedures, the Bragg angle of the sample can only be taken as approxi-
mate.

If one can assume that the top micrometers of the substrate are not strained by
the layer(s) on top of it, the difference in diffraction angles between the substrate
and layer peaks can be related to the difference in lattice parameter through
Bragg’s law. Because the unstrained lattice parameter of the substrate is generally
known to reasonable level of accuracy, the layer lattice parameter(s) may be deter-
mined if there is no misorientation (i.e., rotation) between the diffraction planes of
layer and substrate. These assumptions are often unjustified, and the resulting
uncertainty is simply too great for most applications. Obviously, this short cut does
not apply to monolithic samples, i.e., bare wafers or other bulk crystals.

The Bond method [13.7-13.9] allows precise measurement of lattice parameters
(Fig. 22). A special rotation stage is needed which permits the position of the hkl
peak to be measured on either side of the incident beam (i.e., at detector positions
d1 and d2 in Fig. 22). The average value from these two measurements yields the
precise lattice parameter (without requiring a precise measurement of the beam’s
zero position). Such diffractometers are rarely encountered.

It is fortunate that there is a simple procedure, suitable for most double axis sys-
tems, which allows determination of absolute lattice parameters. The technique 
[43, 44], which can be termed the 0°/180° sample/reference method, provides accu-
racy comparable to the Bond method [13.8] but requires measurements be made on
a reference crystal as well as the crystal of interest. Both crystals are mounted on
the sample stage and are left undisturbed throughout the measurement (Fig. 23).
First, the diffraction peak position is determined for the sample in the 0° ori-
entation of the sample stage. Then the sample stage is rotated (about z, the bisector
of SM and SS) to the 180° orientation and the diffraction peak position is
measured. In general, and will be unequal due to miscut or to inciden-
tal tilt of the sample on the stage. These steps are repeated for the reference crys-
tal, and and are obtained.The average positions of the sample and ref-
erence peaks are:

uR11802uR102

uS11802uS102
uS11802

uS102

2u
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S1

S0

S2

21

d1

d2

180� - 2

180� - 2

Figure 22  Schematic illustrating the Bond technique. The hkl peak position is measured at detector
positions d1 and d2 for crystal orientations 1 and 2, respectively. The dashed lines show the normals to
(hkl) for each orientation, and the angle needed to rotate the detector from d1 to d2 is .4u

and

The difference between and is related directly to the difference in lattice
parameter between the reference and unknown sample crystals.

Double axis diffractometry collects data from a large region of reciprocal space.
As a result, contributions from tilt (i.e., misorientation) and from dilation combine
to form the observed rocking curve. Figure 24 shows how a misoriented portion of
a crystal with a slightly different lattice parameter can diffract simultaneously with
the remainder of the crystal, so that diffracted beams from both can pass through
the wide aperture of the detector. In this example, the two regions have a common
direction [110], and region 2 (right of Fig. 24) is rotated by from region 1. The
beam incident on both parts of the crystal is along SM, the proper direction for 004
diffraction, and, with and S1 exits at a greater angle than S2.
Many assumptions are required, therefore, for quantitative interpretation of double
crystal rocking curves.

The normal method of separating the misorientation from dilation uses a perfect
(unstrained) analyzer crystal positioned between the sample crystal and the detec-
tor (Fig. 18(d)). The rotation axes of the monochromator M, the sample crystal and
the analyzer A are denoted AM,AC, and AA, respectively. Normally,AA and the ana-
lyzer crystal are mounted on an arm that pivots around AC. The analyzer crystal
functions as an ideal detector slit and greatly decreases the region of reciprocal
space sampled for any given orientation of the sample.

The basic scan in triple axis diffractometry involves rotating the analyzer crystal

d2 7 d1, 2u2 6 2u1

f

uRuS

uR � 3uR102 
 uR11802 4 >2

uS � 3uS102 
 uS11802 4 >2
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Figure 23  Sample orientations for the sample/reference method for double axis diffrac-
tometers described in the text. Note the position of the dark mark in the corner of the sample and
reference crystals.
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Figure 24 Illustration of how misorientation between closely oriented domains can contribute to
broadening in double axis diffractometry.

by angle for a sample rotation 2 . In order to separate the contributions from lat-
tice parameter variation and misorientation, a series of scans are recorded,
each being offset from the preceding scan by a sample rotation . In effect, the
sample rotation aligns another misoriented domain for diffraction, and the 
scan records only changes in d from regions with this misorientation in much the
same fashion as a scan in the parafocusing diffractometer reveals changes in
d-spacings. The result is that only changes in lattice parameter appear in any one

scan, and the changes or spread of misorientation are seen by comparing off-
set scans.

Figure 25 compares a 111si double crystal rocking curve with a triple crystal 
for a TaSi2/Si in situ composite crystal [45]; both were recorded with radia-
tion.The sample consists of a parallel array of ~ diameter silicide rods in a sin-
gle crystal silicon matrix; there are about 106 cm–2 rods with spacing of in
samples containing ~4 wt. % Ta [46]. The rod axes are [0001]TaSi2, and the rods are
parallel to [111]Si. It is remarkable that the rocking curve of a sample with two phas-
es intimately mixed throughout its volume can be so narrow: 93 arc sec compared
to the expected width of 7.4 arc sec.The scan in Fig. 25 is much narrower than
the double crystal rocking curve (20-25 arc sec) and indicates that the strain and
misorientation contribute to the rocking curve.

In heavily dislocated samples it is sometimes impossible to distinguish peaks in
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Figure 25 Comparison of 333Si double axis rocking curve (i), triple axis scan (ii) and triple axis 
curve for a crystal of TaSi2-Si recorded on the same diffractometer using radiation. Curve (i) was
recorded without the analyzer crystal, (ii) was recorded with the analyzer crystal in a single orientation
and (iii) was recorded with the analyzer rotated for every rotation of the sample crystal. [15]¢�2 ¢�

Cu Ka
�–2��

double axis rocking curves while the peaks are quite clear in triple axis scans
(Fig. 26). The sample consisted of five silicon-germanium layers, each thick,
with germanium contents of 10, 20, 30, 40, and 50%. In the double crystal rocking
curve (top), only a broad peak, spanning the 0-50% germanium composition range,
is visible: the individual layers are not resolved. In the triple axis curve (bottom) the
layers are clearly revealed [G.22].

The distribution of diffracted intensity around a Bragg peak is normally repre-
sented by a reciprocal space map constructed of a series of triple axis scans,
each of which has the analyzer crystal offset by an angle from the other scans in
the series. In the map, one axis is the variation in strain and the second, orthogonal
axis is the variation in tilt; contours of intensity for these two variables comprise the
map. For the example of Fig. 24, the variation of strain in the reciprocal space map
would be labeled and the variation in tilt would be designated ; what
would be plotted would be the change in scattering vector q along each of these
directions. In a single scan, the change in intensity is measured as the diffrac-
tion vector changes along [001]. A rotation about changes the diffraction
vector from being parallel to [001] to having a component along [110].

Figure 27 shows two 224-type reciprocal space maps for a sample consisting of a

3110d�
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¢q110¢q001
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Figure 26  Double crystal rocking curve (top) and triple crystal rocking curve (bottom) from a heavily
dislocated silicon germanium multi layer [G.22].

GaAs substrate {2° offcut (001)}, a compositionally graded InGaAs buffer layer and
a 40 period AlGaAs/InGaAs superlattice [47]. Recording two 224-type reciprocal
space maps gives a much more complete picture of the strain and misorientation in
the sample than a single map would. The different shades of gray indicate intensity
contours. In addition to the periodically spaced superlattice peaks (labeled –4, –3,
etc.), there is a broad peak consisting of the graded layer and the substrate. The left
side of the broad peak is the top of the graded layer, and the substrate peak is at
the right. The breadth of the central peak (spreading left from the substrate peak
shows the range of compositions in the buffer layer, and the vertical shift in the plot
between the substrate and graded layer peaks indicates there is a tilt between the
two, a tilt measured as 0.17° along the nearest to the miscut direction.

It would not have been possible with double axis diffractometry to isolate the tilt
and composition differences between substrate and graded buffer layer seen in
Fig. 27, even with the 0°/180° sample/reference method or with rocking curve sim-
ulations. The inclined dark bar in the lower left of the ( ) reciprocal space map of
Fig. 27 right represents the reciprocal space sampling region for a typical double
axis diffractometer. The intensity measured at an one sample angle in a double axis
scan is the integral of intensities along this line, and the intensity at the next angle
in the scan is found by translating the sampling region from the position shown in
the figure and integrating the intensities along the new line. The small bar indicates
the reciprocal space sampling region for triple crystal diffraction and shows the
improved strain and tilt resolution.
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Figure 27  Two 224 reciprocal space maps for a sample consisting of a 2° offcut 001 GaAs substrate, a
graded buffer layer and superlattice. The contours of different shades of gray map different levels of
intensity [41]. The pair of diagonal black bands (lower left of right-hand map) schematically indicate the
regions of reciprocal space sampled, with the longer band corresponding to double axis and the shorter
band to triple axis diffractometry.

5 REMARKS

Table 1 summarizes some of the features of the methods just described. Note that
a crystal of any thickness can be examined in reflection, but the information
received applies only to a shallow surface layer. The range of techniques is wide,
and any crystal growth program may employ several during different stages of
developing production techniques. Transmission methods, on the other hand, are
restricted to rather thin crystals, of the order of 1 mm or less, but these methods
reveal imperfections throughout the volume. Note also that the “area irradiated,”
which is related to the area of the incident beam, may differ from the “area exam-
ined” if the crystal is traversed across the beam, as in the Lang projection method.

Incidentally, the reader should note a possible confusion in terminology. When
monochromatic radiation is diffracted by a single crystal in reflection the experi-
mental geometry is B termed the Bragg case or Bragg setting. When the mono-
chromatic beam is diffracted in transmission it is called the Laue case or Laue set-
ting even though white radiation is not involved.

Further information about the methods listed and about other methods assess-
ing crystal quality may be found in various review papers [41, 48-51] and in the
books cited in [G.22, G.43 and G.44]. The production of good x-ray topographs can
demand considerable experimental skill; the experimental side of the Berg-Barrett
and Lang methods, including processing technique for special photographic emul-
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* R=reflection T=transmission
** Poly=polychromatic, Mono=monochromatic

Method Type* Radiation** Area examined Strain sensitivity

Ordinary Laue R, T poly small low

Guinier-Tennevin T poly large low

X-ray Topography

Berg-Barrett R mono large low to moderate

Lang T mono small (section)
large (projection)

high
moderate

Double crystal T,R mono large high

Polychromatic T,R poly large low to moderate

Diffractometry

Double axis T,R mono large or small high

Triple axis T,R mono large or small very high

TABLE 1

sions, is described by Austerman and Newkirk [54] and by Tanner [G.43].
Finally, a comparison is in order between TEM and x-ray topography as means

of studying crystal imperfections. The TEM has the advantage of very much higher
resolution of fine detail, but with some danger that what is seen in the thin-foil spec-
imen does not represent the bulk crystal; dislocations may move into or out of the
foil or rearrange themselves during the process of thinning the specimen.The lower
resolution of x-ray topography is balanced by the facts that one topograph repre-
sents a relatively enormous area of the specimen and that x-ray topography is much
more sensitive to strain variation than TEM. Roughly stated, one technique looks
at the trees., the other at the forest.

PROBLEMS

1 In the Berg-Barrett topographs of Fig. 13, explain why only screw dislocations are
revealed in (b), only edges in (c), and screws and edges in (d). Give the indices of
the operating slip systems. i.e., the indices of each slip plane and of the slip direc-
tion in that plane. (Slip in a LiF crystal occurs on {110} planes in directions, but
the experimental observations in Fig. 13 are inconsistent with the assumption that
slip occurred on all possible slip systems. Note also that only those dislocations
which intersect a crystal face will be distinctly observed by x-ray examination of
that face.)
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Polymers
1 INTRODUCTION

Diffraction and scattering from polymers presents a set of problems different from
those encountered with crystalline materials or even amorphous materials such as
inorganic glasses. The difference is not merely that polymers are very large mole-
cules with large molecular weights.The structure of many, very large bio-active mol-
ecules such as proteins and DNA has been determined by x-ray diffraction in a
straight-forward albeit laborious fashion. The origin of the word “polymer” illus-
trates an important difference between materials. Many (poly) repeats units (mers)
of the same building block link repetitively, normally in a long, flexible chain.

As flexible chains, polymers can be crystalline, semi-crystalline or amorphous.
The amount of crystallinity (or its absence) determines to a large extent whether a
particular piece of polymeric material is useful for a given application. Different
polymers crystallize or order to different extents, and measuring the amount and
the anisotropy of ordering in polymer samples is a very important application of
diffraction and scattering studies.

Because the “structure” of amorphous materials are rather different from that 
of the crystalline materials discussed above, this chapter begins by describing the
structure of some common polymers and compares these building blocks with those
of inorganic glasses. Because polymers are frequently encountered in the form of
fibers, with preferred orientation similar to the fiber texture in crystalline materials,
examples used in the present chapter are drawn from fiber studies. X-ray studies 
of polymer structure naturally divide into wide angle diffraction, wide angle scat-
tering (2 > 5 ) and small angle scattering (2 < 5 ), and Sec. 3 and 4, respectively,
introduce the first two topics. Since long range order is required for diffraction,
studies of the crystalline portion of polymer samples are covered in Sec. 3.
Amorphous polymers and the amorphous portions of semi-crystalline polymers
produce significant scattered intensities in the wide-angle range and provide the
examples in Sec. 4. While small angle scattering is a frequently-used technique with 

°u°u

From Chapter 18 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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polymers, it finds application in crystalline as well as amorphous materials systems;
for this reason its application to polymers is beyond the scope of this chapter.

2 POLYMER STRUCTURE

Si4�

(SiO4)4�

tetrahedra

O2�

(a)

(b) (c)

Figure 1  Repeat units in different SiO2 structures: (a) (SiO4)4-tetrahedral and two-dimensional rep-
resentations of (b) silica glass and (c) crystalline SiO2. (After Schaffer, Saxena, Antolovich, Sanders
and Warner [1].)

In order to understand why polymers in solids “pack” so differently than other
classes of materials, consider first the structure of SiO2. The molecule SiO2 forms
several crystalline phases (e.g., cristoballite, quartz) as well as the amorphous phase
silica. The repeat unit or mer for silica is the (Si04)

4– tetrahedron, and, in this
unordered state, the several linked tetrahedra pictured in Fig. 1 can be con sidered
part of a long chain. Each oxygen atom needs to be shared with a silicon atom; the
oxygen atoms at the tetrahedra corners are not free to dangle. This sharing pro-
duces a three-dimensional network of silicon and oxygen, and two-dimensional rep-
resentations of possible crystalline and amorphous atomic arrangements are also
shown in Fig. 1. Short-range order but not long-range order is present in the silica
glass while long-range order is the characteristic of the crystalline phase.

Polymers
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Figure 2  Three polymers based on the mer
C2H3R where R is a single hydrogen atom in
polyethylene (a), a single chlorine atom in
polyvinylchloride (b) and a C6H5 ring in
polystyrene (c). The simplified planar repre-
sentation is used. (After Schaffer, Saxena,
Antolovich, Sanders and Warner [1].)

Figure 2(a) shows a section of a polyethylene molecule with the C2H4 mer
enclosed in square brackets. Note that this two-dimensional linear representation
simplifies the actual three-dimensional structure. The structure of polyethylene is
often abbreviated as -[-CH2-CH2-]n-, where n represents the number of repeat units
(or monomers) and is on the order of 105.

The backbones of polymers consist of covalent bonds, for example, the chain of
carbon single bonds in polyethylene (Fig. 2a). Polyesters, on the other hand, contain
the ester linkage in the backbone:

In some families of polymers, one of the hydrogen atoms attached to the carbon
backbone in Fig. 2a is replaced by a more complicated sidegroup R. For a vinyl
polymer, the generic formula is

Polypropylene results when R is a CH3 group and polyvinylchloride when R is a
chlorine atom (Fig.2b). Polystyrene is more complex, with R being a C6H5 ring (Fig.
2c). Hydrocarbon rubbers share the form -[-CH2-CH=CR-CH2-]n- and have a dou-
ble bond in the backbone.

Examining the polyvinylchloride and polystyrene structures shown in Fig. 2
reveals alternating carbon atoms with a sidegroup R different from hydrogen. In
these structures there are, however, two hydrogens which can be replaced, and
these can be distinguished as sites 1 and 2. Figure 2b and c show configurations
where R is randomly distributed between sites 1 and 2, and this is the atactic con-
figuration. In the isotactic configuration, all R occupy site 1 (alternatively, all R
might occupy site 2 , and in the syndiotactic configuration R alternates regularly

R
 |

� 3 � CH 2 � CH � 4 n �

O
 �

� O � C �
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(a)

(b)

Figure 3  (a) Isotactic and (b) syndiotactic configura-
tions of polystyrene. Note that the C6H5 rings are
much larger than indicated in the drawing. The atac-
tic configuration is shown in Fig 2c. (After Schaffer,
Saxena, Antolovich, Sanders and Warner [1].)

between the two sites (Fig. 3). As will be discussed shortly, the type of polymer con-
figuration largely determines the extent to which it can be crystallized.

The facts that polymer backbones are covalently bonded and that covalent
bonds have specific bond angles have important consequences for the three-dimen-
sional structure (conformation) of polymers. In polyethylene, the carbon atom
forms four covalent bonds, two with other carbon atoms and two with hydrogen
atoms.The resulting tetrahedral bond angles of 109.5 are shown in Fig. 4. Note that
the C-C bonds are free to rotate about an axis which preserves the bond angle;
therefore, the carbon atoms adjacent to the pair in the center of Fig. 4b are free to
occupy any position on the cones shown. Conformations from planar zig-zag (Fig.
4c) to random coil (Fig. 4d) may occur for a chain of covalently bonded carbon
atoms; the latter conformation is the lower energy, more common form of polyeth-
ylene. Polymer molecules in solution, in melts and in noncrystalline solids seek to
coil randomly, and energy can be lowered in solids only if the polymers crystallize.

Polymer chains are not independent of their neighbors in solids; they
can interact and bond. At one extreme are the hydrocarbon rubbers

°

Polymers

109.5�

109.5�

109.5�

C
C

C
C C

C
C

C
C

C
C CC

C
C

C

C C
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(b)

(c)

(d)

Figure 4  Three-dimensional structure (conformation) of a polyethlene chain. (a) the C-C-C bond angle,
(b) restriction of adjacent carbon atoms to specific cones of rotation, (c) planar zig-zag conformation
resulting when all of the C atoms in the chain backbone lie in the same plane and (d) the more common
(lower energy) random coil conformation. (After Schaffer, Saxena,Antolovich, Sanders and Warner [1].)

560
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



(a) (b)

Figure 5  Secondary bonds (dashed lines) which can result for (a) isotactic and (b) syndiotactic configu-
rations of polyvinylchloride. (After Schaffer, Saxena, Antolovich, Sanders and Warner [1].)

Polymers

-[-CH2-CH=CR-CH2-]n- where a double bond exists in the center of each mer;
under certain conditions this bond can be broken and can link adjacent chains. Such
cross-links are primary bonds and are characteristic of thermoset polymers: the
concept of individual chains no longer applies. In the absence of primary bonds,
strong secondary bonds can form. In polyvinylchloride the electronegative chlorine
side groups bond to the electropositive hydrogen sidegroups of a neighboring
chain, and Fig. 5 illustrates possible bonding for isotactic and syndiotactic configu-
rations for this thermoplastic polymer.

In general thermoset polymers do not crystallize, and the factors influencing the
crystallinity of thermoplastic polymers are those which affect the efficiency with
which molecules can pack: the size of sidegroups, the extent and degree of chain
branching, tacticity and the complexity of monomer or repeat unit. Even in the
most favorable circumstances, a polymer with small, polar sidegroups in a regular
configuration, the tangling and low diffusion rates of the long molecules in the melt
prevent fully crystalline material from solidifying.

Three possible crystallite arrangements are shown in Fig. 6; a polymer chain with
length up to 50,000 Å can extend through multiple 50-500 Å long crystallites. It is
not surprising that a chain might run from a disordered region through a bundle of
well-organized, parallel chains (micelle) back through an amorphous volume, etc.
Nor is it unexpected that oriented crystallites might be produced in drawn fibers. In
some instances polymers form folded chains and reasonably-sized single crystals.
Polyethylene single crystals have been observed with lengths along a single direc-
tion of up to [2]; in this case, the orientation of covalent chain backbones are
perpendicular to the longer dimensions of the crystal (Fig. 7). A unit cell of poly-
ethylene is shown in Fig. 8. Usually planar ribbon-like structures crystallize in
orthorhombic or monoclinic unit cells; rod-like and helical polymer chains often
pack in a hexagonal or trigonal unit cell [4]. Once again note that many molecules
may be present in a single crystal.

Bulk semi-crystalline polymers often have structures composed of aggregates of
folded chain crystalline and non-crystalline material; these spherulites possess radii

10 mm
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Figure 6 Three polymer chain arrangements producing crystallites, (top left) fringed micelles, (top right)
folded chains. Possible arrangement of oriented crystallites (bottom). (After Rodriguez [2].)

of up to (Fig. 9) and each grows out from a separate nucleation point [2]. In
spherulites the folded chains within the crystalline material are oriented normal to
the spherulites’ radii. A primary concern is the fraction of crystallinity present.

100 mm

3 WIDE-ANGLE DIFFRACTION

~105 Å

chain
orientation

~100 Å

Figure 7  Illustration of dimensions and chain orientations in a large single crystal of polyethylene.
(After Rodriguez [2].)

A common arrangement for diffraction from polymer samples employs the same
geometry as is used in recording transmission Laue patterns: a flat piece of film 
or an area detector sits perpendicular to the incident x-ray beam S0 and at a dis-
tance D from the sample (Fig. 10). A monochromatic beam, however, is normally
used for polymer diffraction instead of the polychromatic beam required to 

Polymers

562
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



b

a

Figure 8  Unit cell of crystalline polyethylene, a = 7.41 Å, b = 4.94 Å and successive pendant atoms are
2.55 Å apart along the chain axis (After Natta and Corradini, [3].)

produce Laue patterns. The most common arrangement is with the monochroma-
tor placed between the x-ray source and the sample.The diffracted beams Si emerge
from the back surface of the sample at angles and expose the film/detector at a
separation Ri from the position where the incident beam would have encountered
the film if it were not intercepted by the beam stop. The transmission geometry is
normally used since most polymer samples are not highly absorbing, being com-
posed of relatively low atomic number elements such as carbon and hydrogen, and
since these elements’ scattering powers drop rapidly with increasing angle. For
example, a sample of polymethylmethacrylate (PMMA) has a linear attenuation
coefficient for radiation [5]. Samples with thicknesses 
are optimum for transmission diffraction, and for PMMA this thickness is about 1.5
mm, a thickness which is readily obtained.

t � 1>mCu Kam � 6 cm �1

2ui

Polymers

Crystalline
Lamella

Noncrystalline

Growth
Direction

Molecular
Orientation

Figure 9  Schematic of spherulite structure.
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Figure 10a  Illustration of the diffraction geometry (transmission) often used for polymers.

The value of D must be accurately known if the Ri are to be converted into reli-
able di and the reflections assigned their proper hkl indices. The most reliable tech-
nique for determining D for a particular diffraction pattern is to dust an internal
standard onto the sample. Using a fine powder such as calcite, which produces a
strong diffraction ring at d = 3.035 Å, is more reliable than having a standard spec-
imen-to-film separation since sample position variability on the order of 5% are
typical in flat plate apparatus [4]. Direct measurement of Ri is impractical since a
beam stop must be used in this geometry, but 2Ri can be measured accurately using
diffraction spots or arcs Pi on opposite sides of the transmitted beam. Simple
trigonometry applied to Fig 10 yields:

(1)

or solving for the Bragg angle

(2)

When this angle is substituted into Bragg’s law, the interplanar spacing is

(3)

for diffraction of x-rays with wavelength .l

di � l> 12 sin 3 5tan �1 1R i>D 2 6>2 4 2

ui � 1>2 tan �1 1R i>D 2

tan 2ui � R i>D
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c, c*

002

222

a*000

Figure 10b  Reciprocal lattice for polymer fiber(s) with concentric circular distribution of reciprocal lat-
tice points in the equatorial plane (a*b*); note the similarity with rotation photographs.

Indices hkl need to be assigned to the reflections recorded on the film or area
detector, and this process is speeded greatly if one makes use of what is known
about preferred orientation in the sample. For fibers, the simplest case is where the
crystallites are uniformly distributed at all orientations about a common axis
termed the fiber axis (FA in Fig. 10) which is usually denoted c. An analogy is a sin-
gle crystal rotated with constant angular velocity about c, i.e., to the results of a
rotation camera. Each reciprocal lattice point will trace a circle centered on c (more
precisely c* which is taken to be parallel to c), and Fig. 10 illustrates this geometry
as well as the Ewald sphere construction representing diffraction from a uniaxially
oriented fibrous sample. The diffraction conditions are satisfied where these recip-
rocal lattice rings (rel rings) intersect the Ewald sphere. If the fiber axis is posi-
tioned perpendicular to the incident beam, the resulting diffraction pattern consists
of spots arrayed in layer lines (Fig. 10c) just like a rotation camera pattern. The
presence of the layer lines allow periodicities along the fiber axis c to be separated
from periodicities along the other lattice vectors.

The meridian and the equator shown in the schematic diffraction pattern in
Fig. 10d are important in the indexing procedure. The diffracted beams forming
spots on the equator are coplanar with S0 and perpendicular to c and c*.The indices
of these equatorial reflections must be of the form hk0 since the rel rings produc-
ing these reflections are centered on point 0,0,0 of the reciprocal lattice. On the
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c, c*

0

M

1

E

Figure 10c  Geometric relationship between the distribution of reciprocal lattice points and the fiber dif-
fraction pattern.

Second
layer

First layer

meridian

equator

Pi

Ri

Ri

Pi

Figure 10d  Schematic of the resulting diffraction pattern.
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Polymers

adjacent first layer line, the rel ring centers are point 0,0,1 of the reciprocal lattice,
and the reflections have indices hk1. On the meridian, the diffraction vector is par-
allel to c*, and the reflections must have indices 00l.

Even if the rel rings were continuous, each ring would only intersect the Ewald
sphere over a narrow range. The resulting reflection would not, therefore, extend
too far along the layer line. As shown in the enlargement of the reciprocal lattice
near c* (Fig. 11), higher order meridional 00l rel rings, however, do not intersect the
Ewald sphere as long as the fiber axis is perpendicular to S0. Further, limited crys-
tallite size and imperfect fiber texture often broaden the reciprocal lattice points so
that hkl rel rings can produce diffraction spots on the meridian.

The problem of determining whether a given reflection is meridional or not is
solved by simply tilting the sample (i.e., the fiber axis) and, hence, the reciprocal lat-
tice, so that a particular 00l rel ring touches the Ewald sphere. This angle is the
Bragg angle for the 00l reflection. Once the tilt is executed 00l should appear and

should be absent. Figure 12 shows data for poly-(p-phenylene terephthalamide)
with and without tilting of the fiber [6]. Any hkl reflection appearing on the merid-
ian in the untilted fiber will split into two off-meridional reflections upon tilting.
Note also that tilting does distort the equatorial line.

Using the layer line spacing allows relatively straight-forward determination of
the value of the lattice constant c. In addition, all of the reflections on the equator
have l = 0, those on the first layer line have l = 1, etc. What remains is the determi-
nation of h and k for each reflection, something which can be done using the meth-
ods outlined.

00l

Ewald
sphere

Ewald
sphere (b)(a)

003
003

c*c*

�

Figure 11  Illustration of the tilt � needed to bring meridional reflections into the orientation for dif-
fraction. (a) Beam perpendicular to fiber axis c*, and (b) fiber axis tilted by � to bring 003 to the Ewald
sphere.
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Figure 12  Diffraction patterns of Kevlar fibers record-
ed on an image plate. (Top) Beam incident perpendi-
cular to the fiber axis (vertical), and (bottom) with 16
tilt of the fibers.(Courtesy of S. Jerkins).

Clues concerning crystal morphology can be gained by observing the morpholo-
gy of the spots in a diffraction pattern. The sharpness of the equatorial diffraction
peaks compared with the arcs on the layer lines can indicate chain-folded lamellae
[4].

4 WIDE-ANGLE SCATTERING

It would be quite unexpected to find a polymer sample which was totally crystalline
or which had perfect fiber texture. Sharp diffraction peaks would not be observed,
but considerable amounts of scattering would be expected. Fluctuations in electron
density over lengths less than about 100 Å produce maxima in scattered intensity
at diffraction angles greater than about 5 . Figure 13 shows x-ray scattering curves
for poly tetrafluoroethylene in the crystal phase at 18 C and in the molten phase at
350 C [5]; note that intensity I(SS    ) is plotted as is conventional in scattering experi-
ments, as a function of the scattering vector SS      where the angle 
lies between the incident and scattered beams. The sharp peaks in the 18 C pattern
indicate the crystal structure, but there are also broad peaks superimposed on the
diffraction peaks. The broad peaks accompanying the diffraction peaks are very
similar to those in the pattern from the melt and demonstrate that a substantial
fraction of the sample is non-crystalline at 18 C.

Apparatus for wide angle scattering studies of polymers generally make use of
the symmetric transmission geometry with pinhole collimation and with a mono-
chromator positioned between sample and x-ray source. Use of the symmetric u–2u

2u¿ � 4p1sin u2>l

°
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Figure 13  X-ray scattering curve for poly (tetrafluoroethylene) in the crystalline phase (dashed line) and
in the molten phase (solid line). (After Warren, Krutter and Morningstar [7].)

transmission geometry requires intensity corrections which are much less involved
than those in the reflection geometry and produce an undistorted map of recipro-
cal space. Obtaining this latter condition prevents use of area detectors for anything
other than qualitative scattering studies of aligned polymers when the range of scat-
tering angles spans [5]. Therefore, a simple scintillation detector is  ade-
quate for diffractometry. In scattering studies of preferred molecular orien-
tation, the sample must be rotated in its own plane; without this provision only a
single line through reciprocal space can be scanned. Experimental scattering data
needs to be corrected carefully for a variety of effects, and the reader is directed to
the references for an introduction to these details.

Of the total intensity scattered by organic polymers, a large fraction is incoher-
ent or Compton scattering. In addition, the large x-ray path lengths inherent in
polymer samples allow significant multiple scattering. The relative amount of inco-
herent scattering relative to coherent scattering increases as SS      becomes large, and
this causes problems if coherent scattering must be measured out to large SS    in
order to provide radial distribution functions with high resolution. Since radial dis-
tribution functions have somewhat limited application in the area of organic poly-
mers, the scattering vector range can be limited to SS      Å–1 [5]. Ordinarily,
much more information can be gained from inorganic non-crystalline materials
(glasses), and the complexity of Fig. 14, the radial distribution function determined
for an inorganic glass [7], demonstrates the difficulties encountered when applying
this procedure to interpreting scattering from the inherently more complex poly-
mers.

¿ � 6 � 7

¿

¿

u – 2u
2u 7 30°
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Figure 14  Radial distribution curve for SiO2 glass, with the letters indicating various characteristic atom-

ic separations. (After Warren, Krutter and Morningstar [7].)

Preparing a sample with some amount of average preferred orientation, is one
route to unraveling the diffuse x-ray scattering from disordered polymers.
Mechanical methods including extrusion produce significant preferred orientation,
and plotting SS , where is the angle between SS    and the deformation axis,
reveals the ordering present. Figure 15 shows a contour map of  SS for a par-
tially-aligned, non-crystalline sample of extruded PEEK (poly ether ether ketone)
and SS for meridional and for equatorial orientations [5].The dif-
fuse peak at SS    Å–1 is the most intense for while the other peaks at
higher SS    5.5 Å–1) are more intense for . Since the largest peak is
most intense in the plane perpendicular to the mechanical axis (equator), it repre-
sents correlations between PEEK chain segments. The peaks at SS    and
5.5 Å–1 are most intense along a direction parallel to the direction of alignment
(meridian) and arise from correlations within molecular chains. Use of aligned
polymer samples is particularly revealing with polymers possessing substantial
sidechains [5].

Scattering studies have shown that the chain conformation in molten poly      eth-
ylene is irregular and ‘random-coil’-like [8]; this result was obtained by partitioning
the scattering into interchain (producing broad oscillations) and intrachain (more
sharply defined maxima) components.

¿ 1 � 3

a � 0°¿ 1 � 3 and 
a � 90°¿ � 1.3

a � 90°a � 0°¿ 2I1

¿ 2I1a, 
¿a¿ 2I1a, 
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Figure 15  (Left) Scattered x-ray intensity function for partially aligned non-crystalline PEEK prepared
by extrusion (extrusion axis vertical) and (right) two-dimensional surfaces along the indicated setions.
(After G.R. Mitchell [5].)

5 SUMMARY

Diffraction patterns from polymers incorporate features normally encountered in
very different contexts in metals or ceramics. Improved computational methods for
quantifying the amount of crystallinity and for refining lattice parameters offer the
prospect for better process control and development of strategies for economic
manufacturing; discussion of these methods is beyond the scope of a volume such
as this; Alexander’s monograph, although dated, remains a very useful reference
[9]. Additional helpful information is provided in the recent book by 
Roe [10].

PROBLEMS

1 For the polyethylene crystal structure shown in Fig. 8, calculate the diffraction
peak positions for the ten lowest-angle reflections. Assume the crystals are ran-
domly oriented. What is the maximum width the diffraction peaks could have and
still be resolved? How might processing of a sample with fairly wide peaks allow
better analysis of the underlying crystal structure?

Polymers

571
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



This page intentionally left blank 

www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



1 INTRODUCTION

Strong diffraction peaks result from constructive interference of x-rays scattered
from ordered arrays of atoms and molecules. Much can be learned from the angu-
lar distribution of scattered intensity at low angles, and the treatment of scattering
covered previously can be extended without overly much work to cover small angle
scattering. Fluctuations in electron density over lengths on the order of 100 Å or
larger can be great enough to produce appreciable scattered x-ray intensities at
angles . These variations can be from differences in density, from differ-
ences in composition or from both, and do not need to be periodic.

Long period structures can produce peaks in intensity in the small angle range.
The anisotropic distribution of intensity can be analyzed in much the same way as
wide angle diffraction patterns, texture photographs, or pole figures. Examples of
analysis of long period structures appear in Sec. 2.

The amount and angular distribution of scattered intensity also provides infor-
mation such as the size of very small particles or their surface area per unit volume,
regardless of whether the sample or particles are crystalline or amorphous. Section
3 develops the scattering formalism used to interpret results from small angle scat-
tering experiments. In Sec. 4 analysis of one of the scattering regions, the Guinier
region, is discussed, and in Sec. 5 another portion of the scattering curve, the Porod
region, is covered. Small angle scattering apparatus are discussed in Sec. 6, and
examples appear in Sec. 7.

The reader will note that the discussion begins with long period structures which
are often encountered in polymers and in biological materials. These long period
structures and their analysis, however, are largely foreign to those working with met-
als, ceramics, or semiconductors. Readers primarily concerned with metals and
ceramics will find Sec. 3 through the end of the chapter more applicable. The reason
for covering long period structures early in the chapter (Sec. 2) and starting the dis-
cussion of scattering with diffraction equations (the first part of Sec. 3) is to provide

2u 6 5°

Small Angle Scattering

From Chapter 19 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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2 LONG PERIOD STRUCTURES

a

b

c

Figure 1 Schematic of long-range ordered structures (right side of each column) and corresponding dif-
fraction patterns in the small angle region (left side of each column). Pattern types a-c discussed in the
text. (After Kakudo and Kasai [1].)

Long period structures produce maxima in scattered intensity, and the sharpness
and angular distribution of these peaks reflect the regularity of the variation in
electron density along different directions. There are differences with respect to the
more often encountered wide angle diffraction. In what follows, the distribution of
scattered intensity recorded on film or other area detector is linked to specific
structures using examples of polymers comprised of lamellar crystallites [1]. It is
important to remember the inverse relationship between periodicity in direct space
and diffraction angle in reciprocal space, between crystallite size and the width of
diffraction peaks.

The left side of Fig. 1 shows the features in small angle scattering patterns
expected from different microstructures of stacked lamellar crystallite (right side)
[1]. When ring patterns are observed (Fig. 1a), spherically symmetric assemblies of
crystallites, e.g., spherulites, or unoriented assemblies of stacked lamellar crystal-
lites can be responsible. Such rings sometimes are distorted into ellipses, and these
elliptical ring patterns can be encountered at intermediate stages of deformation of

Small Angle Scattering

a bridge from earlier coverage of diffraction from periodic arrays of scatterers to scat-
tering from random arrays of entities which can be sharply or poorly defined.
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Figure 2 Low angle x-ray diffraction pattern of turkey leg collagen recorded on an image plate.
(Courtesy of Snigirev et al [3].)

drawn or compressed samples; the corresponding microstructures might be
deformed spherulites or stacked lamellar crystallites. Many orders can be observed
if the long period structure is regular enough. Spherical latex particles 2780 Å in
diameter and suspended in water produced thirteen rings, for example, when a pin-
hole monochromator and radiation were used [2].

Scattering in layer lines is a frequent feature in long period patterns of polymers.
Two-point (Fig. 1b) and four-point (Fig. 1c) layer line patterns reveal the orienta-
tion of stacks of lamellar crystallites. The maxima appear along the direction of
stacking, and the lateral width of the spots depends on the dimensions of the lamel-
lae along the corresponding direction, being larger for smaller direct space dimen-
sions. Inclined stacks of crystallites, i.e., parallel lamellae inclined with respect to the
fiber direction, sometimes result in necked regions of drawn fibers or in sheets
drawn in two different directions. The resulting rotation of the direction of stacking
alters the position of the scattered intensity maxima (Fig. 1b), and small crystallite
size broadening can be superimposed. Figure 2 was recorded from turkey leg ten-
don, and multiple small angle peaks are observed on either side of the direct beam
[3].

Four-point layer line geometry reflects doubly oriented structure in the sample
(Fig. 1c). Patterns with four points on straight horizontal lines or convex with
respect to the equator are best regarded as the superposition of two two-point layer
line patterns related by mirror symmetry. The corresponding texture could be an
assembly of two crystallite stacks with mirrored inclinations. The bottom pattern of
Fig. 1c shows what might be produced by a doubly-oriented structure. The inclina-
tion from the vertical axis reveals the directions along which the lamellae are
stacked, and one material producing such a pattern is doubly oriented Nylon 6
obtained by solid state polymerization [1]. Sometimes the four maxima lie on a
curve concave with respect to the equator, and this can be thought of as a distortion
of the symmetry producing an elliptical ring pattern.

Cu Ka

3 SCATTERED INTENSITY

The “exact” equation for the relative intensities of different diffracted lines meas-
ured in a diffractometer was given previously as

I � �F�2p a
1 � cos2 2u
sin2 u 

 cos u
b exp1–2M2

Small Angle Scattering
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where I = relative integrated intensity, p = multiplicity factor, = Bragg angle,
exp (–2M) = temperature factor and F = structure factor defined by 

where the summation extends over all n atoms of the unit cell, un, vn, wn are the frac-
tional coordinates of the nth atom within the unit cell and fn are the atomic scat-
tering factors. Implicit in writing the summation is that each atom scatters as a well-
defined entity.

As seen by incident x-ray photons, a sample consists of a spatially inhomoge-
neous sea of electrons. In fact, quantum mechanics indicates that each electron is
itself spread into a diffuse cloud of negative charge. The important quantity is the
charge density which is normally expressed in electron units so that the quantity

is the ratio of charge in volume dV to the charge of one electron. Thus, for
each electron dV = 1. The scattering from a single atom must take into account
the phase differences for scattering from different “portions” of the atom, and f the
atomic scattering factor is made up of the contributions from individual electrons
fe given by

(1)

Calculation of the precise values of depends on detailed knowledge of
the charge distribution .

While it may not be precisely true, assuming that the charge distribution of elec-
trons in an atom is spherical and equals is a very useful approximation and
allows a simple expression to be obtained for f. Using and
Fig. 3, and 

(2)

Note that at small angles, i.e., small k or approaches unity. If Z
is the number of electrons in the atom,

(3)

and f approaches Z at small values of . Thus, changes in electron density
affect the amplitude of scattered x-radiation regardless of the ordering or lack of
ordering of the scattering atoms.

sin u >l

an�
q

0

4pr2rn1r2dr � Z

1sin u2>l, sin 1kr2>kr

� a
n

�
q

0

4pr2rn1r2 
sin kr

kr
 dr,

f � a
n
1fe2n � an�

q

r
�
p

f

exp1ikr  cos f2 rn 1r2 2pr2
 sin f df dr

1S � S02 � r � 2r sin u cos f
k � 14p>l2 sin u

r � r1r2

r

f � �n1fe2n

fe � �exp 3 12pi>l2 1S � S02 � r 4r dV.

�r
r dV

r

Fhkl � ©fn exp 32pi1hun � kvn � lwn2 4 ,

u

Small Angle Scattering

576
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



S - S0

O

�

S0
S

2�

r

Figure 3 Illustration of qualities used in the transformation of Eq. 1 to 2.

Suppose there are small regions of constant composition different from the sur-
rounding matrix. If the regions, hereafter designated particles, are dispersed at ran-
dom and the concentration of particles is not too high, the amplitude scattered by
the particle (in electron units) relative to the matrix is given by the difference in
electron density through:

A(SS    ) SS (4)

With reference to Fig. 4, rs is the magnitude of r along SS and SS  .
At small angles SS  and rs is the component of r along a line perpendicular to
S0. If Ars is the cross-sectional area of the particle along rs, the scattered amplitude
is

A(SS    ) SS (5)

There are two regions of small angle scattering are important in many applications,
the Guinier and Porod regions. The angular limits of these regions and what can be
learned from analysis of scattering in each is covered in the next two sections.

rs2Arsdrs� ¢r�exp12pi

� 2u>l
� r � srs� 1S � S02

� r 4 2dVr,� ¢r �exp12pi 3

4 GUINIER REGION

Equation 5 expresses scattering from a single particle as a function of the scatter-
ing vector SS  , and, in the small angle region, the exponential function can be expand-
ed as a power series in SS  , and terms of order higher than SS      2 can be discarded, leav-
ing

A(SS        ) SS      SS        (6)2rs
2Arsdrs 4 .rArsdrs � �2p2� ¢r c �Arsdrs � �2pi

Small Angle Scattering
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Figure 4 Illustration of the approximations used in obtaining Eq. 5.

The most convenient origin to choose for the particle is its center of gravity; the sec-
ond term of Eq. 6 goes to zero. The first term is the product of the volume per par-
ticle V and while the third term is related to Rgs the radius of gyration of the par-
ticle. This relationship is

(7)

and yields for the amplitude of scattering for the particle

A(SS    ) SS        

SS      (8)

Normally the term in the parenthesis is approximated as an exponential function:

A(SS    ) (9)

For n independently scattering particles,

I(SS    ) = |A(SS    )| (10)

and the slope of the plot of ln I vs. yields a slope of (Fig. 5) and is
termed a Guinier plot after A. Guinier who pioneered this approach. Guinier’s

� R2
gs16p2u2>l2

2 � n1¢r22V2exp 3 � 4p212u>l22R2
gs 4

� ¢rVexp1 � 2p2 32u>l 4 2Rgs
2 2.

2Rgs
2 2.� ¢rV11 � 2p2

2 Rgs
2 2� ¢r 1V � 2p2 V

Rgs
2 � V �1�r2

sArsdrs,

¢r

Small Angle Scattering
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Figure 5 Variation of scattered intensity in the small angle region (left) and Guinier plot for determin-
ing the radius of gyration Rgs of the scatters.

name should already be familiar through the Guinier camera. Guinier-Preston or
G-P zones in Al-Cu alloys also bear his name. Note that Eq. 10 holds for scatterers
which are small enough so that their maximum diameter Dmax satisfies the inequal-
ity .

If the particles have a range of sizes and take all possible orientations, then the
particle dimensions along the two orthogonal axes x1 and x2 perpendicular to SS also
are reflected in the slope of the Guinier plot. The distance to a point r is related to
its coordinates via SS 2 and the average radius of gyration 
is given by 

(11)

If all orientations are equally possible, then replaces in Eq. 10, where

(12)

In practice, Guinier plots do not have a linear region which extends to 
(Fig. 5). Normally the slope is taken where the curve is linear and excludes the very
lowest angles. A bump in the plot of Fig. 5b, for example, can be caused by inter-
particle interference: the particles may not be randomly arranged or the density of
particles may be too high. If a range of particle sizes are present, this will be indi-
cated by a range of slopes in the Guinier plot, and, in some cases, the size distribu-
tion can be determined.

When particles of varying sizes are present, the radius of gyration determined
from the slope of the Guinier plot is heavily weighted towards those with the
largest sizes. For n different sizes present each with weight fraction wn and volume
Vn, the term V represents the scattered amplitude and R2

g

2u � 0°

 6 Rg
2

7 � �r2dV>V.

Rgs
2 HRg

2I>3

6 Rg
2

7 �  6 Rgx
2

7 �  6 Rgy
2

7 �  6 Rgs
2

7 .

 6 Rg
2

7r2 � X 2 � y2 �

kDmax 
 1
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(13)

Since is the square of the number of electrons per particle and this is pro-
portional to R6,

(14)

which is heavily-weighted toward large R of the distribution of particle sizes.

 6 Rg
2

7 �  6 R8
7 > 6 R6

7

¢r2 V2

6 Rg
2

7 �
a

n
wn1¢r2

2 Vn
2 1Rg

n22

a wn1¢r2
2 Vn

2
.

5 POROD REGION

spherical coordinates and setting inside the sphere and elsewhere:

SS      SS        (15)

Writing the exponential function in terms of cosines and sines and letting
SS      (so that SS      ) allows the integral in Eq. 15 to be

altered to

SS      (16)

Note that as varies from 0 to , u varies from SS    SS      r. The value of
the integral with respect to is . After integrating with respect to u and then r,
the result is:

(17)

This result is proportional to the amplitude of scattering, and one can, therefore,
write for the intensity in electron units:

(18)

Computing the square of the term in the parentheses and setting
produces:

(19)I1S 2 �
161¢r22

64p4S 6 31 � 14p2a2S 2 � 12 cos2 2paS � 2paS sin 4paS 4 ,

2 sin x cos x � sin 2x  and 1 � cos2 x � sin2 x

I1S 2 � 3¢r4pa3 4 21322 c
sin 2paS � 2paS  cos 2paS

12pS a23
d

2

.

�exp2piaS � rdVr �
4
3
pa3 e

3 3sin2pS a � 2pS a cos2pS a 4

12pS a23
f b.

2pf

r to � 2p� 2ppa

d r df dr du.�
2p

0
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�2pS r

2pS r
�
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0

3cos u � i sin u 4 c �
1
2
p

 r sina dadu � � 2pr cos au � 2p

r cos a2r2 sin a da df dr� r2dVr�
2p

0
�
p

0
�

a

0

exp1 � 2pi�exp1 � 2pi

r � 0r � 1

Small Angle Scattering

For a solid sphere of radius a, the amplitude scattered can be found by terms of
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Figure 6 Porod plot for determining ST the total surface area of the scatteres in the irradiated volume.

If the size distribution is narrow, the total area below the dashed line will equal that above the line (i.e.,
).�  A2 � A4 � pA1 � A3 � p  

and applying yields

(20)

Two factors allow further simplification. First, in the presence of a size distribution
of scatterers, which is usually the case, the trigonometric terms cancel due to the
contributions of the various size scatterers. Second, SS    SS      . Therefore, for each
size having frequency wa,

(21)

where ST is the total surface area in the volume irradiated. Approximations made
in obtaining Eq. 21 are valid where a plot of ln I vs. ln SS has a slope of -4. A plot of
the quantity SS    SS    SS yields a horizontal region where and from which
the value can be obtained.This Porod plot (Fig. 6)
can have oscillations at low SS    when there is a narrow size distribution of particles;
these are due to the trigonometric factors in Eq. 20. For a narrow distribution of
particle sizes and for equiaxed particles, equal areas are found at small SS    above and
below the line defining . If the particles are angular or if they are very small
in one direction, the areas will not be equal and a horizontal line is never quite
achieved [4].

The inverse of the surface to volume ratio SV is related to an average dimension
termed the Porod radius RP. Since Rp is related to , it is
numerically different from RG [4].
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Absolute intensities do not need to be measured in order to determine ST using
Eq. 21. It can be shown that Eq. 10 can be used to determine that the integrated
small angle intensity equals , i.e.,

SS      (22)

where N is the total number of particles and V is the volume of each particle.
Therefore,

(23)

which is another measure of particle size. Dividing Eq. 21 by Eq. 22 eliminates the
constants, and the relative scattered intensity is

(24)

where Vtotal = N V, the total volume for all particles in the beam.
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6 SMALL ANGLE SCATTERING APPARATUS

Apparatus for measuring the distribution of small angle scattering generally
employ the transmission geometry because of the difficulty in making intensity
measurements near the direct beam in the reflection geometry. The measurements
require a fine x-ray beam with small flare so that the direct beam can be intercept-
ed without blocking much of the range of scattered intensity. Monochromatic radi-
ation is required, and a crystal monochromator between the x-ray source and sam-
ple is used frequently. The balanced filter approach can also be used to determine
the scattering from radiation only.The smaller and/or more parallel the incident
beam, however, the lower the intensity. Therefore, simultaneously achieving ade-
quate resolution and intensity is a significant challenge. Three successful approach-
es to data collection are slit collimation, pinhole collimation and crystal monochro-
mator collimation.

Consider a beam emanating from a source and defined by two collimating slits
(C1 and C2 in Fig. 7a). Cross-fire from the source illuminates not only the area AB
defined by parallel rays from the source and passing through C1 and C2 but also
the penumbral region to either side of AB. Between D and E of Fig. 7a, therefore,
it is impossible to measure the scattered intensity. In fact, there is almost always a
halo of parasitic radiation accompanying the direct beam, and the region where the
incident intensity cannot be measured extends beyond D and E. The angles in Fig.
7a are greatly exaggerated, but it is important to remember that there is some diver-
gence contributing to the scattered intensity at P and that this divergence, as
well as the physical dimensions of the beam and what part of the source area is
used, is defined by the slits C1 and C2. Slit C1 is placed as close as possible to the

¢u
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Figure 7 (a) Illustration of the finite source size producing a penumbral area where the scattered inten-
sity cannot be measured (after Guinier, [G.30]). (b) Laboratory small angle scattering apparatus
designed to scan the detector and receiving slits across the scattered beam. With radiation and
the configuration shown, the beam is about wide, scattering from the slits becomes small beyond

and d-approaching 500 Å are observable. In order to achieve this performance, collimators
have openings 0.1 mm, 0.05 mm, mm, 0.1 mm, and 0.05 mm, respectively. The sepa-

rations between C1 and C2, C3, the sample, and as shown above. C5 are about 200 mm, 300 mm, 350 mm
and 500 mm, respectively. (after Schwartz and Cohen, [G.7]). (c) Bonse-Hart geometry. The monochro-
mator and analyzer are channel-cut crystals, that is crystals through which a specially-oriented channel
has been cut. The x-ray bean diffracts twice in both the monochromator and in the analyzer crystals,
thereby narowing the range of angles incident on the sample and the angular range of scattered radia-
tion measured at any one setting of the analyzer.

0.1 � 0.15C1 p C5

� 0.075° 2u
0.05° 2u
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x-ray source, and sometimes a third slit C3 is added near the sample. The third slit
is slightly wider than C1 and C2 so that it does not quite intersect the direct beam
but does eliminate most of the scatter from C2.

Because the scattering is at such small angles, the slit geometry and dimensions
can strongly affect the results. Rectangular slits, used to increase intensity, can be a
particularly problem since the top, middle and bottom portions of the slit sample
inherently different angles. Even data collected with a narrow pinhole must be
carefully corrected for the effect of finite slit width as well as for other effects such
as parasitic scattering (from sources other than the sample).

Small angle scattering is quite weak, and vacuum paths from the x-ray source to
the detector are a practical necessity to minimize beam attenuation and air scatter-
ing. Very thin foils, which themselves do not produce small angle scattering, can be
used to seal the vacuum where the x-ray beam enters and leaves the scattering
apparatus. Sample thicknesses , where is the linear attenuation coeffi-
cient, produce maximum intensity. This result is common to other x-ray transmis-
sion experiments and represents a reasonable compromise between increasing
attenuation with increasing thickness and increasing number of scatterers encoun-
tered by the beam. Thicknesses of and , however, are still useful since the
variation of scattered intensity varies slowly with t.

In simpler apparatus, the detector may pivot about the center of the sample, in
the same fashion as a transmission diffractometer. Alternatively, the scatter slit,
receiving slit and detector may be translated perpendicular to the incident beam.
Figure 7b illustrates such an apparatus and shows dimensions and separations of
slits typical of such a small angle system [4]. Note that only a simple, single-channel
detector (proportional or scintillation) and simple electronics are required. Data
collection rates can be improved dramatically if a linear position sensitive detector
replaces the slit and detector system. More complex electronics and increased sus-
ceptibility to parasitic scatter are the trade-offs when using such a multiple channel
detector. Use of a single channel or linear position sensitive detector suffices for
isotropic samples where the scattering (and structure) does not vary with direction.
If this is not the case, then the sample must be rotated about the beam axis to align
different directions with the scattering plane defined by the detector and its plane
of rotation. Thus data collection can be very slow although high quality numerical
data can be produced.

Earlier the method of choice for non-isotropic samples employed photographic
emulsions as area detectors, and the older scattering literature contains many fine
examples. The limited dynamic range and long exposure times led to use of multi-
wire proportional area detectors, image storage plates or CCD detectors.These dig-
ital media are down-loaded directly to computers, provide orders of magnitude
increase in dynamic range and at least two orders of magnitude increase in data col-
lection rates. Real time observation of dynamic phenomena are possible as a result.

The Bonse-Hart geometry (Fig. 7c) offers very important advantages [5]. A per-
fect crystal monochromator system provides monochromatic, nearly parallel radia-
tion.A perfect crystal analyzer system takes the place of the slits following the sam-

I r  I0 t exp 3 � 1m>r2rt 4
3>m2>m

mt � 1>m
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ple in the single channel system (Fig. 7a). As the analyzer is rotated, the intensity at
different scattering angles is recorded. Thus, with the parallel beam optics, large
sample areas can be irradiated. Scattering angles very close to the direct beam can
be investigated, and some researchers, therefore, refer to this as ultra-small-angle
scattering. Generally more than one reflection in the monochromator is required to
provide a sharply-enough defined direct beam. Similarly, multiple bounces in one
or two channel-cut analyzer crystal may be employed.

7 EXAMPLES

Applications of small angle scattering span fields from biological structures to
porosity in coals to dispersoids in structural engineering materials. In some cases
complementary information can be gathered by techniques such as TEM. In others
such as pore evolution during heating of coal, the information is unobtainable by
other methods.

It is instructive to first consider small angle scattering from various coals because
a wide range of scattering behavior has been documented [7, 8]. One complication
is that both pores and mineral matter exist in coal and contribute to scattering. Low
temperature ashing of several coals was used to eliminate the effect of porosity, the
scattering curves of the ash (including the mineral matter) were observed to always
be proportional to k–4 for a range of mineral contents, and the contribution of min-
eral matter was estimated to be less than a few percent in most cases and never
more than twenty-five percent. Two effects allow the scattering from the mineral
matter to be neglected. First, the contribution to the total scattering of the mineral
matter must be even smaller than that in the ashed samples, and the intensity from
smaller pores decreases less rapidly than k-4. Second, specific surfaces calculated
from the k–4 portions of the scattering curve normally have systematic errors or sta-
tistical uncertainties on the order of ten percent [7, 8].

Scattering curves from fifty coal samples were recorded six times with 
radiation and corrected for various factors.All of the coals examined were found to
produce one of four distinct types of scattering curves (Fig. 8). Curve 1 (dash-dot-
ted line) showed scattered intensity proportional to for the inner portion of the
curve; pores exist, therefore, that are so large that is always satisfied.
Scattering from these macropores, whose dimensions exceed 103 Å, decays very
rapidly, and the relatively weak scattering from micropores, whose dimensions
average less than Å, produces the nearly constant scattered intensity in the
outer portion of the curve [7, 8].

Curve 2 (solid line in Fig. 8) shows, in addition to the features of curve 1, a shoul-
der in the scattered intensity curve at intermediate angles. The shoulder can be
interpreted as evidence for 100 to 300 Å diameter transitional pores. For there to
be a shoulder, the transitional pores must have been small enough to satisfy

in the inner portion of the scattering curve and must have produced scat-
tering much weaker than that of the macropores (whose scattering underlies
the shoulder. With the presence of the shoulder, there were two regions seen where

u�4
kDmax 
 1

� 25

kDmin  3.5
u�4

Cu Ka
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Figure 8 Small angle scattering typical of coal. Four types of behaviour are observed, and an explana-
tion of each is given in the text. (After Kalliat, Kwak, Schmidt and coworkers [7, 8].)

intensity decreased as : the inner range reflected the surface area of the macro-
pores and the outer range reflected the sum of the surface area of the macropores
and transition pores [7, 8].

In the third type of coals, represented by curve 3 (dotted line) in Fig. 8, a rather
broad peak was observed in the outermost portion of the scattering curve. At lower
angles the scattering was proportional to , as in the coal types discussed above,
and the macropore structure was, therefore, taken to be equivalent for all three
types. The peak corresponded to a Bragg spacing of about 20 Å and has been inter-
preted as being from scattering units consisting of a few layers of planar aggregates
containing aromatic rings. The fourth type of scattering curve (dashed line)
appeared quite similar to the third, except that the scattering curve showed signifi-
cant inflection instead of a peak at the highest angles [7, 8].

Consolidation of nanometer-sized metal particles provides a second example of
the application of small angle scattering. Consolidation of such powders is one
route to obtaining nanocrystalline metallic samples, and the volume fraction and

u�4

u�4
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size distribution of voids are important in determining the densities which can be
obtained. The crystallite size is obtained easily from diffraction peak widths, and
small angle neutron scattering can be used to measure the distribution of void
dimensions [9].

Dispersoid volume fraction and size frequency distribution play an important
role in strengthening many alloys, both at room and elevated temperatures, and the
diameters of the dispersoids are frequently in the range which may profitably be
studied with small angle scattering. Oxide dispersion strengthened Ni-based alloys,
for example, have been studied in this way, and, not only were histograms of dis-
persoid size found to be in good agreement with results from TEM, but the result-
ing calculated creep strengths also agreed reasonably well with experiment [10].

Small angle scattering has been used to great effect to study formation and evo-
lution of metastable coherent precipitates, such as Guinier Preston zones, during
the early stages of decomposition of alloys. Small angle neutron scattering of
Al-3% Ag samples [11], for example, has helped clarify the shape of the metastable
miscibility gap in this alloy as well as the composition variation within the zones as
they evolve. The variation (during aging) of Ti composition in coherent precipitates
in Ni-rich Ni-Ti alloys [12] is a second example of how small angle (neutron) scat-
tering can be employed profitably.

Position-resolved small angle x-ray scattering is possible, and synchrotron radia-
tion sources such as APS or ESRF should make such scattering studies possible
with or smaller diameter beams. As an example, hydroxy apatite crystallite
orientation in human vertebral bone and cellulose semi-crystalline fibril orienta-
tion distribution in wood has been quantified at the level [13]. In both mate-
rials the measured crystallite orientations agreed with those expected to develop in
response to the applied stresses.

Other biological materials also can be studied profitably by small angle scatter-
ing. Phase transitions in cell membrane lipids, for example, are thought to be the
mechanism whereby mass transfer occurs into/out of cells, and the kinetics and
mechanisms have been studied [14]. Position-resolved ultra small angle scattering
clearly reveals the changes between calcified and non-calcified regions of the ten-
don [3]; data from this study is shown in Fig. 2; the data was obtained from an irra-
diated area less than in diameter.

Ultra small angle scattering has found application in the observation of latex
particle degeneration in water and in the ordering of the particles into an fcc array
for low concentrations [15]. Measurement of radii of gyration for polypropylene
samples clearly differentiated between translucent and opaque samples: microcrys-
tallite radii of two translucent samples were 600 and 400 Å, respectively, while that
of a turbid sample was 1400 Å [15]. Temporal resolution at the 100 ms level has
been obtained for heating and quenching of polymers and the growth of starch par-
ticle during gelatinization [16]. Polymer superstructure during deformation has
been observed during stretching to change gradually from lamellar to fibrillar [17].

10 mm

200 mm

25 mm
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Transmission Electron

Microscopy
1 INTRODUCTION

Transmission electron microscopy (TEM) is the pre-eminent method for determin-
ing dislocations’ and other crystallographic defects character and for performing
chemical and crystallographic analysis of micrometer and smaller precipitates and
other microstructures. Use of TEM in materials science/engineering can be intro-
duced in only a few additional pages and is well worth the small increment of effort.
Since most defect characterization requires an understanding of diffraction con-
trast, this is an important constituent of this chapter.

A TEM can be used to image either a planar section through reciprocal space
(i.e., the diffraction pattern) or the sample itself. Diffraction contrast can be used to
identify defect character; this introduction was in the context of x-ray diffraction
topography, the x-ray imaging analog of TEM. The treatment of TEM, therefore,
builds on what was already presented, with the four sections on the TEM, its com-
ponents and operation followed by four sections on analysis of information
obtained using TEM.

Section 2 discusses the interaction of electrons with electric and magnetic fields,
Sec. 3 covers electron guns (i.e., sources), Sec. 4 discusses magnetic lenses and Sec.
5 introduces electron optics, focusing on the lenses in a generic TEM and their dif-
ferences from glass lenses used in optical microscopes. The subject of Sec. 6 is
Kikuchi lines, of Sec. 7 is convergent beam diffraction, of Sec. 8 is imaging and
amplitude contrast and of Sec. 9 is imaging and phase contrast.

2 ELECTRON INTERACTIONS WITH ELECTRIC AND MAGNETIC FIELDS

In an electric field E and magnetic field H, the electrons experience the Lorentz
force F given by

(1)F � � e1E � v � H2

From Chapter 20 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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where e is the charge and v is the velocity vector of the electron. When combined
with Newton’s expression

(2)

where t denotes time and m is the mass, a is the acceleration vector and x is the posi-
tion vector of the electron, an expression for particle optics results. In TEM, the first
term of Eq. 1, the electric field interaction, applies to the electron gun where the
electrons produced by the filament are accelerated to the energy to be used in the
microscope. The second term of Eq. 1, describing the magnetic field interaction,
governs the operation of TEM lenses. In particular, it is important to remember that
the spatial variation of E and H is essential in the operation of the TEM electron
gun and lenses.

F � ma � md2x>dt2

3 ELECTRON GUN

Figure 1 shows a schematic of an electron gun.The filament is the cathode (C in Fig.
1) and is at a potential relative to the anode A (i.e., ). Many of
the electrons emitted from the filament strike the anode and are lost, but some pass
through the hole and proceed along the optic axis. Between the cathode and anode,
the cup-like Wehnelt cylinder improves the uniformity of electron emission from
the gun: the cylinder has a slight positive bias with respect to the cathode.

The relationship between E and the potential is

(3)

lines of constant potential appear in Fig. 1a and the corresponding electron tra-
jectories are shown in Fig. 1b. Control of the electron trajectories within the gun are
important in obtaining good imaging performance, but the energy of the electrons
depends only on the potential through which they are accelerated not their trajec-
tories. Acceleration through 100 kV produces electrons with 100 keV energy, and

f

E � � §f � � 10f>0x, 0f>0y, 0f>0z2

fW

fA � 0fC � � U

NC

NA

NW

C

W

A
optic axis

(a) (b)

φ = const.
crossover

Figure 1 Illustration of the electron gun. (a) Lines of constant potential and (b) electron trajectories
in relation to the cathode C, the Wehnelt cylinder W, and anode A. After [7].

f
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the relationship between accelerating potential and electron wavelength , correct-
ing for relativistic effects, is

(4)

where m0 is the electron rest mass, c is the speed of light and h is Planck’s constant.
Accelerating potentials of 100 kV or greater are normally used, and Table 1 lists
potentials and corresponding wavelengths. Note that, unlike in x-ray diffraction,
wavelengths and d-spacings in electron microscopy conventionally are given in nm.

Filaments can be made from W or more exotic materials such as LaB6. In most
TEM’s, electrons are produced by thermionic emission as they are in x-ray tubes.
Field emission of electrons from a very sharp W tip can also be used in the gun; no
heating is required. Field emission guns provide much greater current density but
require a much better vacuum than thermionic emission guns.

l � h 32m0 eU11 � eU>52 m0 c262 4�0.5

l

4 MAGNETIC LENSES

In considering the operation of the magnetic lenses of a TEM, the focus is on the
second term of Eq. 1 which states that the force F from a magnetic field H on an
electron moving with velocity v is perpendicular to both v and the component of H
perpendicular to v. Note that any component of H parallel to v produces no force.
If , a circular trajectory results. More complex helical paths result when uni-
form motion along the field is superimposed on uniform rotation in the plane per-
pendicular to the field. This occurs when v makes a slight angle with the magnet-
ic field H (Fig. 2a); at z=0 the electron is r away from the z-axis, and the force at any
instant deflects the electron toward the z-axis (in a direction out of the plane of the
page) as it spirals around a cylinder of radius r.

A spatially varying magnetic field is required for focusing, and a typical field dis-
tribution is shown in Fig. 2b for a magnetic lens. The z-axis is the center of the 
cylindrically symmetric lens, and H has mirror symmetry across the plane z=0.
Below the diagram of H(r,z), the values of the components Hz and Hr are plotted

a

v�H

Accelerating voltage (kV) Wavelength (nm)

100 0.00370

150 0.00335

200 0.00251

300 0.00197

400 0.00164

1000 0.00087

Table 1
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Figure 3 Illustration of concentration of a rotationally symmet-
ric magnetic field by the gap in the electron lens and the result-
ing image rotation. After [7].
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Figure 2 (a)  Projection of the electron trajectory in a constant magnetic field H, with the direction of
the force F on the electron indicated. (b) Variation of H in a magnetic lens, showing components Hr and
Hz (radial and along the optic axis, respectively), as a function of z. (c) Projection of the electron path
on the initial plane, showing lenses and crossover point z0. After [1].

for a position near the optic axis (i.e., r approaching 0). This magnetic field distri-
bution is obtained using a coil carrying electrical current centered on the optic axis
(Fig. 3).The gap in the iron pole piece containing the windings allows magnetic field
leakage not only directly across the gap but also out into the bore of the pole piece.
The design of magnetic lenses has become quite sophisticated, and more detailed
discussion of lenses and their design appears in texts on electron microscopy [1, 2].
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The dashed line in Fig. 2c illustrates schematically the trajectory of electrons
traveling parallel to but off of the optic axis. Actually, the electron spirals toward
the optic axis and then crosses it with r steadily decreasing and then increasing
again; therefore, the dashed line is the projection of the electron’s path onto the ini-
tial plane (r,z) containing the electron.The closer the electrons are to the optic axis,
the smaller their deflection, and electrons traveling exactly on the optic axis expe-
rience no deflection. Note that the electrons off the plane shown and off the optic
axis in Fig. 2c also spiral toward the optic axis. If the focussing action of the lens is
perfect, all of the electrons traveling parallel to z and lying on the plane intersect-
ing the page along the line z = z′ (Fig. 2c) will converge to a point at z = z0, and the
line z = z′ will rotate as the electrons travel through the lens (Fig. 3). In other words,
the image of the sample formed by the electrons rotates as it travels through the
lens. If the strength of the lens changes, i.e., if H increases or decreases, the amount
rotation will alter must be known for correct interpretation of diffraction patterns
and images. This rotation is not present in glasses lenses.

Various aberrations exist in all lenses, to a greater or lesser degree, and spherical
and chromatic aberrations, astigmatism and distortion all contribute to degrading
image quality. Spherical aberration results because the lens field acts inhomoge-
neously on electrons following off-axis paths and spreads the image of a point into
a disk. Chromatic aberration exists because a lens deflects lower energy electrons
more strongly than higher energy electrons; the range of energy for the
incident beam and increases to 15-20 eV for some of the electrons emerging from
a 50-100 nm thick sample [2]. Astigmatism arises from the inevitable deviations of
the lens from cylindrical symmetry. Finally, image distortion can sometimes occur,
e.g., a set of orthogonal lines can appear concave inward to the center of the image
(pincushion) or bulge outward (barrel).

¢E 6 1 eV

5 TRANSMISSION ELECTRON MICROSCOPES

Any TEM is a complex assembly of magnetic lenses (in addition to an electron gun
described in Sec. 3), several apertures, a sample holder and an image
recording/viewing system (Fig. 4).The magnetic lenses can be grouped into those of
the illumination system between the electron gun and sample and those of the
imaging system after the sample. Typically one finds two condenser lenses in the
illumination system and three lenses in the imaging system; the descriptions below
refer to this kind of TEM.

Consider first the illumination system, shown at the top of Fig. 4. The traditional
TEM mode adjusts the condenser lenses C1 and C2 to illuminate the sample with
a nearly parallel beam (convergence angle rad compared to electron dif-
fraction angles on the order of 10-2 rad). This beam covers sample areas several
micrometers in diameter at magnifications between 20,000X and 100,000X.Without
the action of the condenser lens concentrating the electron beam into the area of
interest, the images would be too dim to be useful. For applications other than
imaging, highly convergent beams can be produced, but discussion of this is post-

a 6 10�4
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Figure 4 Ray diagram for viewing the diffraction pattern (a) and the image of the sample (b). The
strength of the intermediate lens is changed to focus on the back focal plane or on the image plane,
respectively. After [2].

poned until Sec. 7. Pre-specimen scanning or deflection coils are often used to con-
trol beam position or angle.

When the electrons encounter the sample, some are diffracted in various direc-
tions depending on the orientation of the crystal(s) through which the incident
beam travels. The formation of the diffraction pattern, i.e., the action of the objec-
tive lens bringing parallel rays to a point focus in the back focal plane (see also Fig
4). The objective lens simultaneously brings differently directed rays (that is, elec-
trons) emanating from a single point on the sample back to a single point in the first
intermediate image plane.

In TEM one can switch between imaging the sample and viewing its diffraction
pattern by changing the strength of the intermediate lens.To see the diffraction pat-
tern, the intermediate lens is adjusted to focus on the back focal plane of the objec-
tive lens; i.e., the back focal plane acts as the object plane for the intermediate lens.
In the imaging mode the intermediate lens is adjusted so that its object plane is the
image plane of the objective lens.

When viewing a diffraction pattern, an aperture limiting the area contributing to
the pattern is typically inserted into the first intermediate image plane; this diffrac-
tion mode is therefore called selected area diffraction or SAD, and the aperture is
called the SAD aperture. While SAD is the most common diffraction mode, other
modes including convergent beam diffraction can be very valuable. A typical SAD
pattern was shown, and experienced microscopists can readily recognize patterns
recorded with the electron beam along high symmetry, low index directions.

Depending on the amount of magnification provided by the intermediate and
projector lenses, 1 cm on the diffraction pattern recorded on film may correspond
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to various nm–1. Convenience dictates using standardized settings for most work,
and the camera length L is used to describe the magnification of the diffraction pat-
tern. While L is a calculated rather than a physical distance, the concept of a cam-
era length arose from x-ray diffraction projection cameras which operate without
lenses and in which the diffraction pattern is magnified by moving the recording
medium farther from the sample. Figure 5 shows the Ewald sphere construction and
the direct space diagram relating distance R between the incident beam O and the
diffracted beam G (on the film) and the camera length L. From the figure,

and

(5)

with and L known from the TEM’s operating parameters, simple measurement of
distances R on the film is sufficient to determine d for the diffraction spot of inter-
est. Each investigator should do this calibration for her- or himself and should not
rely on factory calibrations because the conditions used may be different. If the
sample is of a known material, the indices of two non-collinear spots G1 and G2 can
be quickly assigned, and the incident beam direction B can be determined from the
cross product of G1 and G2. An example is provided in Fig. 6.

l

Rd � lL

tan 2uhkl � R>L � 11>d2> 11>l2

2θ 2θ

sample

1/λ

1/dR

L

Ewald
sphere

Figure 5 Direct space and reciprocal space illustrations of the camera length L.

595
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Transmission Electron Microscopy

R1

R2R3

CsCI structure

allowed hkl:  100, 110, 111, 200, ...

spot

1

2

3

Ri

1.25

1.28

1.78

R2
i

1.56

1.64

3.17

R2
i/R

2
1

1.00

1.05

2.03

hkl

100

100

110

110

110

010 100

100 010

110110

(a) (b)

(c)

g R1, R2 � 46°
g R1, R3 � 91°

i
1
1

j
1
0

k
0
0

B � R2 � R1 � � �k � [100]
–

Figure 6 Indexing the diffraction pattern (NiAl which has the CsCl structure). The diffraction pattern is
reproduced in (a), and a schematic of it appears in (b) with separations Ri between O and three dif-
fracted beams indicated. In (c) the values of and of the angles between Ri are used to determine the
incident beam direction B. The resulting indices for several diffraction spots are shown in (b).

R i
2

If all of the diffracted beams and the transmitted beam were allowed to recom-
bine in the first intermediate image plane, there would be relatively little contrast
in the resulting image. Some contrast might exist because varying thickness or vary-
ing composition would lead to different amounts of absorption, but relatively little
could be learned. Instead, an objective aperture is placed around one of the spots
in the back focal plane. Bright field (BF) imaging centers the aperture around the
transmitted or O beam while dark field (DF) imaging positions the aperture around
one of the diffracted beams Gi (Fig. 7). Centered dark field (CDF) imaging, depict-
ed in Fig. 7b, improves DF images by tilting the incident beam (via the pre-sample
deflection coils) to an angle from the optic axis so that the hkl diffracted beam
exits the sample parallel to the TEM’s optic axis. Thus, the hkl diffracted beam
would appear on the viewing screen where the O beam would be seen normally.
The aperture is placed around the centered diffracted beam, and the effect of the
various lens aberrations on the DF image is reduced considerably from that in con-
ventional DF imaging.

A wide variety of sample holders are available including heating, cooling and
straining stages. Holders for multiple specimens find use as well as bulk sample
holders for samples larger than the conventional 3 mm diameter disks. Most TEM’s
now incorporate side entry specimen holders, and these provide at least one axis of
sample rotation (about the axis of the rod-like holder). This single degree of free-

2uhkl
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Figure 7  Aperture position and ray paths for (a) conventional dark field (DF) imaging and (b) centered
dark field (CDF) imaging.

dom is enough to allow identification of defect character in some cases. Often, how-
ever, tilt-rotate holders or double tilt holders are more convenient for defect stud-
ies.

Real time observation is invaluable when surveying a sample or when adjusting
viewing conditions, and fine-grained screens such as ZnS are used to convert the
two-dimensional distribution of electrons comprising the image or diffraction pat-
tern into light which can be viewed by the operator. The TEM viewing screen can
be observed directly by eye or through a low light TV camera (which is a real
advantage for faint images or for recording dynamically changing images).
Recording images on photographic emulsions continues for the vast majority of
TEM work. The resolving power of photographic emulsions is no better than about

due to electron spreading which is a factor of about two greater than the
grain size of the film. Nonetheless, there are more than 107 pixels (picture elements)
in a image. The two chief drawbacks of photographic emulsions are
their inherently limited dynamic range and the necessity of digitizing the images for
quantitative comparison with simulations. Charge-coupled device (CCD) chips
have been incorporated into a few TEM’s and can provide more than 106 pixels,
orders of magnitude higher dynamic range and direct digitization of images.
Conventional read-out speeds of CCDs and related detector arrays can be bother-
somely slow for viewing, but most chips allow rapid, albeit noisy readout.

10 cm � 10 cm

10 mm
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Figure 8  Simplified illustration of the production of Kikuchi lines. (a) Polar plot of the magnitude of
inelastic electron scattering as a function of scattering angle. (b) Diffraction of the inelastically scattered
electrons and the production of excess and deficient lines.

6 KIKUCHI LINES

Kikuchi lines are an important feature of diffraction patterns, and, because they are
used so frequently to orient samples precisely, it is worth describing their origin.
They appear as pairs of parallel light and dark lines in diffraction patterns.
Inelastically scattered electrons are responsible for the phenomenon, and Kikuchi
lines are, therefore, more prominent in thicker rather than thinner sections of foils.
The electrons scatter (inelastically) in all directions, but there is a much greater
probability of scattering close to the forward direction than in other directions. The
intensity scattered inelastically in each direction is represented by the length of the
vector in the polar plot of Fig. 8a. The amount of energy lost by the scattered elec-
trons is, however, not very great.

The diagram in Fig. 8b shows that some of the inelastically scattered electrons
travel in directions where they can be re-scattered elastically through . Since
the inelastic scattering has a three-dimensional distribution, the locus of the result-
ing Bragg diffracted electrons are a pair of cones, which intersect the Ewald sphere
as a pair of parallel arcs which are so slightly curved as to appear straight.There will
be a pair of lines for diffraction vectors , etc.The intensity of one of the
pair of lines is greater than background (excess line) and the other is less than back-
ground (deficient line). Figure 8b shows that the inelastically scattered electrons on
path 1 (OB) are closer to the incident beam direction than those along path 2 (OA);
before the second scattering event (diffraction), the intensity along path 1 is high-
er. Diffraction redirects the intensities as shown in Fig. 8b, and the result is that the
left-most Kikuchi line, from path 1, has the larger intensity.

Geometry dictates that the projection of (hkl) lies midway between the excess
and deficient (hkl and , respectively) Kikuchi lines. The angle between the
excess and deficient lines is twice the Bragg angle and not four times the Bragg
angle. As the crystal is rotated, the projection of (hkl) onto the diffraction pattern

hkl

� g, � 2g

2uhkl
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moves and the pair of Kikuchi lines move with it. This last point has enormous con-
sequences in TEM of crystalline materials, and this section will end with a discus-
sion of what these are.

At the exact Bragg condition for reflection hkl, where the deviation parameter
S is zero, the excess or hkl Kikuchi line passes through the center of the diffraction
spot G and the deficient or Kikuchi line passes through the incident beam spot
O. If the sample is rotated so that the direct beam is exactly parallel to (hkl), the
hkl and Kikuchi lines are symmetrically displaced about O with the excess line
lying midway between O and G and the deficient line midway between O and -G
(here S ).1 Figure 9a shows a diffraction pattern recorded with S , and Ewald
sphere diagrams for S , S and S appear in Fig. 9b. In other words, S

whenever the excess line is on the same side of O as G and the excess line is farther
from O than G. Optimum defect contrast, as will be seen later, requires aligning the
sample to certain S , so Kikuchi lines are an invaluable tool.

Small changes in specimen orientation are very difficult to see in SAD patterns,
but the displacement of Kikuchi lines from the spot centers are easy to see and
allows straight-forward calculation of the magnitude of the deviation parameter.
Knowing the diffracted beam’s indices, the magnitude of 1/d for the reflection, the
separation between the centers of the O and G spots and the displacement of the
pair of Kikuchi lines from their positions at S = 0 and forming appropriate ratios
allows calculation of the magnitude of S.

So far the discussion focused on one pair of Kikuchi lines, but many pairs appear
simultaneously especially when the beam direction B is close to a low index direc-
tion. The pattern of Kikuchi lines reflects the symmetry of the crystal, and Kikuchi
maps are often constructed to help microscopists rotate/tilt from one low index B
to another. With the TEM in the SAD mode, a pair of Kikuchi lines leading to the
desired low index direction are found and followed to the desired low index direc-
tion. One essentially “drives” along the lines by rotating/tilting the crystal. Some
workers find it faster to construct a stereographic projection representing the foil
orientation (if B is at the center of the projection, the various G in the diffraction
pattern lie on the projection’s perimeter) and to use it to tilt directly to the new
beam direction.

7 07 0 � 06 0, 
7 06 0

hkl

hkl

7 CONVERGENT BEAM DIFFRACTION PATTERNS

1 In this geometry the simple model of excess and deficient lines presented above predicts that the lines
will have intensities indistinguishable from the background. The lines are visible, however, and a more
complex explanation is required than can be presented here.

Convergent beam electron diffraction (CBED) offers considerable advantages
over SAD, and its development transformed electron crystallography into a tech-
nique with power comparable to neutron or x-ray crystallography. To demonstrate
how features arise within CBED patterns, differences between CBED and SAD
are discussed first, the existence of higher order diffraction zones are described
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Figure 9 (a) Diffraction pattern recorded with the deviation parameter of greater than zero. (b)
Orientation of the incident beam, the Ewald sphere, g and hkl relrod for deviation parameter less than
zero (left), equal to zero (middle) and greater than zero (right).

next and the use of higher order Kikuchi lines to determine point and space groups
is covered last.

A spatially wide ( diameter) nearly parallel beam (with a single inci-
dent wave vector k and a very small convergence angle ) is normally used in SAD
while CBED uses a convergent beam (range of k and ) and a relatively
small area ( diameter). Parallel illumination means that an SAD
pattern consists of an array of sharp maxima in the back focal plane of the objec-
tive lens. A convergent beam, however, produces disks of high intensity in the back
focal plane, and at some point, increasing leads to overlap of disks. For thin sam-
ples, kinematical diffraction dominates and the disks are featureless. Thicker sam-
ples allow dynamical diffraction effects to be observed, and complex contrast
appears within the disks. Figure 10 compares 111 SAD pattern from Si and the
corresponding CBED pattern, and both are most useful when B is along a zone axis
of the crystal.

To understand the origin of the dark lines in the CBED disks, one needs to con-
sider diffraction spots other than those near the direct beam. The section of the
Ewald sphere in Fig. 11a shows the incident beam along 001 and demonstrates that
the diffraction spots near the incident beam are from relrods extending from the
hk0 plane. The farther from O, the farther the Ewald sphere curves from (hk0),
until the hk0 spots from the zero order Laue zone (ZOLZ) are no longer promi-
nent. Still farther from the origin of reciprocal space, the relrods from the hk1 recip-
rocal lattice plane begin to intersect the Ewald sphere and produce the spots of the
first order Laue Zone (FOLZ). Normally, SAD and CBED patterns do not include
FOLZ spots because the camera length L is too large, i.e., the angular field of view
is too small to record these large reciprocal distances (Fig. 11b).

a

a

� 10 � 100 nm
2a f 2uB

a

1 � 10 mm
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(b)

(a)

Figure 10 Silicon 111 diffraction patterns: (a) Selected area diffraction (SAD) pattern and (b)
Convergent beam electron diffraction (CBED) pattern.

Each of the FOLZ and higher order Laue zones (HOLZ) reflections has
Kikuchi lines associated with them. In zone axis patterns, many reflections appear
at the exact Bragg condition, including HOLZ reflections which have small S. The
excess HOLZ Kikuchi lines, as well as the HOLZ spots, are outside the image field
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Figure 11 Origin of the zero order Laue zone (ZOLZ) and first order Laue zone (FOLZ). (a) Section
of reciprocal lattice showing intersection of relrods in ZOLZ and FOLZ. (b) Diffraction pattern record-
ed with a much smaller than normal camera length L and showing appearance of the Laue zones.

normally used in CBED while the deficient Kikuchi lines lie near the direct beam;
in fact the deficient HOLZ Kikuchi lines cut the disks of the CBED pattern. The
symmetry of the HOLZ lines reflects the space group of the sample: the three-
dimensional crystallography of the sample can be inferred because the HOLZ lines
include information off the hk0 plane of the reciprocal lattice. Exactly how this is
done and how foil thickness is precisely measured is thoroughly covered elsewhere
[2, 3].
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8 IMAGING AND AMPLITUDE CONTRAST

As mentioned in Sec. 5, defect characterization is normally done by allowing only
one beam to form the image: the objective aperture is centered around either the
transmitted beam O for BF imaging or a diffracted beam for DF imaging. Good
defect visibility results for two-beam conditions, that is, when the crystal is tilted so
that only one diffracted beam has S and has strong intensity and the other dif-
fracted beams have S or S . The length of the relrods, due to the small sam-
ple thickness normal to the plane of the foil, dictates that SAD patterns never con-
sist of only two spots, but the intensity of one diffracted beam can be made much
stronger than that of all of the others.

During a typical TEM session, the microscopist finds a transparent area of the
sample and alters the specimen orientation until a low-index zone axis is seen in
SAD patterns. This assumes, of course, that there are features of interest to be seen.
Slight tilts from the zone axis are then required to obtain several different two-
beam conditions. For an incident beam direction B = [001], g = [200], [020], [110],
and are readily obtained two-beam conditions (Fig. 12).3110 4

W 0V 0
� 0

0

g  �  [110]
_

g  �  [010]

g  �  [110]

g  �  [100]

Figure 12 Diffraction pattern recorded with B = [001] (upper left). Small tilts are used to obtain the
two beam conditions shown.

603
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Transmission Electron Microscopy

An important advantage of imaging under two-beam conditions is the simplici-
ty in calculating how different factors alter how defects appear. Also, BF and DF
images show complementary contrast under conditions where absorption can be
neglected. Tilting to S produces best defect contrast. Remembering that high
contrast describes situations where there is a large difference in signal from the fea-
ture of interest and its surroundings, Fig. 13 a)-d) show micrographs of dislocations
in NiAl for various S and e) illustrates why S slightly positive (i.e., the excess
Kikuchi line just outside of G) offers best contrast. Near the dislocation core, the
strain field locally distorts the planes into the Bragg condition for . Far from
the core, the planes do not satisfy the Bragg condition, and only the existence of rel-
rods leads to any intensity being diffracted at positions away from the dislocation
core. At larger |S | too little of the volume around the core can diffract; while such
“weak beam” imaging is useful in high resolution TEM, it typically limits contrast
too much to be desirable for everyday imaging. The fact that imaging with S < 0
makes the defects difficult to see is a consequence of dynamical diffraction and of
absorption, and, after some development, this will be seen below.

For two-beam dynamical diffraction of electrons, the intensity Ig of the Bragg dif-
fracted beam is given by

� g

g 0

(a)

(b)

(c)

(d)

B
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a b
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Figure 13 (a-d) Illustration of the effect of deviation parameter on contrast from dislocations. (e)
Local distortions around a dislocation core allow that volume to continue to diffract strongly when the
crystal is tilted slightly from the exact Bragg condition. (f) Intensity profiles showing displacement of
dislocation image from its projected position. (e and f after [2]).
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(6)

where I0 is the intensity of the incident beam, t is thickness of the sample through
which the electrons have traveled, is a constant called the extinction distance and
has units of inverse length and S is the effective deviation parameter given by

S (S  (7)

Note the similarity of Eq. 6 to the interference function defined; also, the diffract-
ed intensity is periodic in two independent quantities t and S and the treatment
neglects absorption. In the absence of absorption, Eq. 6 predicts that BF and DF
images will be complementary.

The extinction distance can be regarded as a characteristic length for diffrac-
tion vector g, and this scalar quantity is given by

(8)

The value of depends on the lattice parameter(s) of the specimen through Vc, the
volume of the unit cell, on the atomic number of the sample through Fg, the struc-
ture factor for diffraction vector g, and the kV through . Table 2 lists values of 
for commonly used reflections of some frequently encountered materials.

Because diffracted intensity is a function of deviation parameter, small specimen
tilts can change the appearance of images substantially.This result is very important
in TEM since the foils are so thin that some bending seems inevitable.As the       ori-

jgl

jg

jg � 1pVc cos uB 2> 1lFg2

jg

eff

2 � jg
�22eff � 2

eff

jg

I g � 1 � I 0 � 1pt>jg2
2
sin21ptS eff2

1ptS eff2
2

(a) (b)

Material Extinction distance �g E (keV)  v/v100

hkl = 110 111 200 220 400  30 0.5990

Al – 56.3 68.5 114.4 202.4  50 0.7528

Au – 18.3 20.2  27.8  43.5 80 0.9164

Si – 60.2  –  75.7 126.8 100 1

MgO – 272.6 46.1 66.2 103.3 200 1.268

Fe 28.6  – 41.2 65.8 116.2 300 1.416

W 18.0  – 24.5 35.5 55.6 400 1.510

1000 1.717

Table 2 (a) Values of the extinction distance (in nm) for several commonly encountered materials and
diffraction vectors g after [2]. The dashes mark reflections with F=0, and all values are for 100 keV elec-
trons. Multiplication by the correction term v/v100, see (b), is needed to convert the values listed below
to an energy E other than 100 keV [6].

jg
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Figure 14 Bend contours. (Courtesy of Z.L. Wang).

entation in a bent sample varies with position, i.e., S varies locally, diffracted inten-
sity can change quite abruptly and the resulting bend contours can overwhelm con-
trast from other features. An example of bend contours appears in Fig. 14; these
contours are often a nuisance but can also be a useful tool.

Plots of intensity I vs. S· · ξ
g

are termed rocking curves and are a good way of see-
ing why imaging of defects is best done with S slightly positive. When absorption is
considered in the dynamical diffraction calculations, the BF rocking curve no
longer is symmetric around S = 0 while the DF rocking curve remains symmetric
(Fig. 15). In BF images, S should be small and positive: better transmission and
sharper images are obtained than if S S . Indeed, BF images with S < 0
show very low average intensity.

6 0� 0 or

�2 �1 10 2

DF

BF

Intensity

�S 
Figure 15 Bright field (BF) and dark field (DF) rock-
ing curves, very schematic (After [5]).
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Periodicity in t means that the intensity of both the O and G beams oscillates
with depth below the surface on which the beam is incident. Initially I0 starts at
unity (it is normalized to one) and gradually decays while Ig gradually increases
from zero until it contains all of the intensity after traveling into the specimen.
The process then repeats with Ig decreasing while I0 increases.These oscillations can
be visualized as thickness fringes in wedge-shaped crystals but not in samples with
constant thickness. The intensity that the G or O beam has at the exit surface dic-
tates the intensity of that beam outside the sample, that is, when the beam is
observed. It is possible, therefore, that an image may appear to be black or white
depending on the thickness of the sample. Defects which might otherwise be visible
in images, may not produce contrast if they lie parallel to the entrance surface of
the foil and at a depth where the intensity is zero in that beam.

Defects which extend through different depths often show alternating light and
dark contrast; this is a result of the oscillation in intensity between diffracted and
incident beam. In dislocations this modulation in intensity is termed zig-zag con-
trast. In stacking faults or other planar defects alternating light and dark fringes are
seen. Comparison of BF and DF images of stacking faults and other planar defects
(changes of fringes from light to dark in corresponding micrographs) is an impor-
tant part of identifying the character of these faults [2 - 6]. The contrast between
light and dark thickness fringes in wedge-shaped crystals decreases to zero for
thicknesses , and this phenomenon is also seen in contrast from stacking
faults extending through foils. Explaining this effect, termed anomalous absorption
in TEM and anomalous transmission in x-ray diffraction, requires referring to
results from dynamical diffraction theory.

In many respects, dynamical diffraction theory for electrons and for x-rays are
quite similar. The interference of the two Bloch waves (for two beam conditions
which are difficult to avoid for x-rays and require some effort to achieve for elec-
trons) set up by the dynamic transfer of energy to/from the diffracted beam leads
to the dependence of intensity on thickness described in Eq. 6. Consideration of
where these Bloch waves localize spatially in the specimen reveals that the maxima
in the probability distribution function for one Bloch wave coincides with the rows
of atoms of the diffracting planes while that of the second centers on the channel
between the planes of atoms. Because interaction between electrons of the beam
and electrons of the sample’s atoms leads to scattering and absorption, the former
Bloch wave is heavily attenuated while the latter suffers relatively little absorption.
After several of propagation only one Bloch waves remains, and the interference
leading to intensity oscillation with depth disappears.

The BF images of Fig. 16 show several dislocations in NiAl, a material with the
CsCl structure. Dislocations B and F are clearly in contrast with , [010]
and [001] and cannot be seen with g = [110]. In the image, the contrast
along the length of dislocations B and F is uniform while zig-zag contrast appears
for dislocation B and for the lower right-hand portion of dislocation F in the other

g � 3110 4
g � 3110 4

jg

t g 5jg

jg>2
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Figure 16 Bright field micrographs of a NiAl sample recorded with four diffraction vectors.
Identification of the Burgers vectors of dislocations A-F are discussed in the text. Clockwise from upper
left, , [010], [100], and [110].g � 3110 4

two images. Dislocations A and C exhibit no contrast with and are visi-
ble in the other three BF images shown in Fig. 16.

Contrast of well-separated dislocation dipole D and dislocation loop E is more
complex. Double images are seen for all g of Fig. 16, and this shows that the value
of g·b differs for D and E compared to A, B, C, and F. Very strong zig-zag contrast
of D is seen with g = [100]. Two sides of the square loop E are completely extinct
with g = [100] and [010] while opposite corners of the loop disappear completely
with g = [110] and . The references give more details.

When discussing whether images appear light or dark, it is important to know
whether BF or DF images are under discussion. Because dislocations diffract
greater intensities than the perfect regions of the crystal, there should be more
intensity at the dislocation positions in DF images and less at these positions in BF
images. Thus, the expected BF dislocation images in Fig. 12 and 16 consist of white
lines against a dark background. In fact, this is what is seen on BF negatives.
Printing positives from the negatives, therefore, produces dark dislocations images
on a light background.

3110 4

g � 3110 4
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9 IMAGING AND PHASE CONTRAST

Thus far in the discussion of imaging, consideration has been limited to only one
beam passing through the objective aperture. If two or more beams are allowed
through the aperture, phase contrast can result. While detailed understanding of
various modes of TEM phase contrast imaging requires a somewhat lengthy devel-
opment (e.g., [2]), a straight-forward and short explanation for this type of imaging
is possible [6].

Let the aperture allow the incident plus one diffracted beam to reach the image.
The total wave function for the electrons (i.e., the amplitude) is

(9)

where the incident wave has unit amplitude and wave vector k in the crystal and
k = k + g is the wave vector of the diffracted wave in the crystal. Factoring pro-
duces

(10)

and the intensity is, for ,

(11)

Both R and are functions of S and thickness t, and from Eq. 6,

(12)

and

(13)

Next consider how intensity varies along direction x (in direct space, i.e., in the
image) chosen parallel to g, that is in the plane normal to the incident beam B. Since
g is nearly perpendicular to B, little error is introduced. The result of Eq. 11 then
becomes

S t) (14)

Thus, a modulation in intensity exists along x with periodicity proportional to d, a
spacing in the crystal, and the lattice is “resolved” if the TEM has sufficient resolv-
ing power.

When more beams reach the image, the interference sharpens, and more details
are visible in the pattern. One-dimensionally modulated lattice fringe images (from
collinear diffraction spots plus the incident beam) are rarely used. More often non-
collinear G contribute to form two-dimensional lattice fringe images

I � 1 � R 2 � 2R  sin 152px>d6 � p 

d � p>2 � p t S

R � 1p>jg2
sin p t S
p S

d

I � 1 � R2 � 2R  cos 12pg � r � d2

fg � R  exp 1id2

° � exp 12pik � r2 31 � fgexp 12pig � r2

¿

° � exp 12pik � r2 � fgexp 12pik¿ � r2
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Transmission Electron Microscopy

Figure 17 110 lattice fringe image of an epitaxial layer (ZnS, top) grown on a GaAs substrate; the bound-
ary, identified with an arrow, is parallel to the bottom of the micrograph. (Courtesy Z.L. Wang.) 

(Fig. 17).The reader should always remember that the visibility of fringes depends
on orientation and on foil thickness and should never forget that individuals atoms
(or even columns of atoms are not being imaged. Image simulation is often required
for correct interpretation of lattice fringe and other phase contrast images.
Discussion of this topic and of other interesting topics in TEM is beyond the scope
of this chapter and can be found elsewhere (e.g., [2], [7], [8]).
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Appendix 

Electron and Neutron Diffraction

A1 INTRODUCTION

Just as a beam of x-rays has a dual wave-particle character so, inversely, does a
stream of particles have certain properties peculiar to wave motion. In particular,
such a stream of particles can be diffracted by a periodic arrangement of scattering
centers. This was first predicted theoretically by de Broglie in 1924 and demon-
strated experimentally by Davisson and Germer in 1927 (for electrons) and by Von
Halban and Preiswerk in 1936 (for neutrons).

If a stream of particles can behave like wave motion, it must have a wavelength
associated with it. The theory of wave mechanics indicates that this wavelength is
given by the ratio of Planck’s constant to the momentum of the particle, or 

(1)

where m is the mass and v the velocity of the particle. If a stream of particles is
directed at a crystal under the proper conditions, diffraction will occur in accor-
dance with Bragg’s law just as for x-rays, and the directions of diffraction can be
predicted by the use of that law and the wavelength calculated from Eq. (1).
Numerous applications of electron and neutron diffraction have been found in
materials science/engineering, solid state physics and chemistry. The differences
between x-ray, electron, and neutron diffraction by crystals are such that these three
techniques supplement one another to a remarkable degree, each giving a particu-
lar kind of information which the others are incapable of supplying.

l �
U

mv
,

U

A2 ELECTRON DIFFRACTION

A stream of fast electrons is obtained in a tube operating on much the same prin-
ciples as an x-ray tube. The wavelength associated with the electrons depends on
the applied voltage, since the kinetic energy of the electrons is given by 

(2)

where e is the charge on the electron and V the applied voltage. Combination of
Eqs. (1) and (2) shows the inverse relation between wavelength and voltage:

where is in angstroms and the applied voltage V is in volts. This equation requires
small relativistic corrections at high voltages, due to the variation of electron mass

l

l �
B

150
V

,

1
2mv2 � eV

From Appendix 2 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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with velocity. At an operating voltage of 100 kV, the electron wavelength is about
0.04 Å, or considerably shorter than the wavelength of x-rays used in diffraction.

Electron diffraction differs from x-ray diffraction in the following ways:
1. Electrons interact much more strongly with matter than x-rays. Therefore,

electrons are much less penetrating than x-rays. They are easily absorbed
by air, which means that the specimen and the photographic film on which
the diffraction pattern is recorded must both be enclosed within the evacu-
ated tube in which the electron beam is produced. Transmission patterns
can be made only of specimens so thin as to be classified as foils or films.
Reflection patterns from thick specimens are recorded by a glancing-angle
technique; such a pattern will be representative only of a thin surface layer,
because diffraction occurs over a depth of only a few hundred angstroms
or less. The angular pattern of back scattered electrons also supplies crys-
tallographic information and has received increasing attention recently.
Electron diffraction is therefore well suited to the study of thin surface lay-
ers.

2. Electrons are scattered much more intensely than x-rays, so that even a
very thin layer of material gives a strong diffraction pattern in a short time.

3. The intensity of electron scattering decreases as increases, as with x-rays,
but much more rapidly. This circumstance, coupled with the very short
wavelength of the electron beam, causes the entire observable diffraction
pattern to be confined to an angular region of about .

Experimentally, electron diffraction has developed in three stages:

1. The earlier work, before the invention of the transmission electron micro-
scope, was done with homemade apparatus called “electron diffraction
cameras.” Many important studies were made of the structures of metal
foils, electrodeposits, films deposited by evaporation, oxide films on metals,
and surface layers due to polishing.

2. Much work is done with the transmission electron microscope. Here,
microscopy and diffraction go hand in hand. The diffraction pattern dis-
closes the orientation of the crystal (grain) under examination and thus the
proper imaging conditions required to disclose what the microscopist
wishes to see. Another application is in the determination of the structure
of very small crystals revealed by the microscope.

3. Still another application is low-energy electron diffraction, called LEED,
carried out in special apparatus with an operating voltage of the order of
100 volts. The electron beam then has such low energy that it can penetrate
only a monolayer or so of atoms at the specimen surface. The resulting dif-
fraction pattern reveals the arrangement of these surface atoms, an
arrangement often quite different from that of the underlying material.

;4°2u

2u
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Such studies are important in the understanding of phenomena such as
catalysis.

A3 NEUTRON DIFFRACTION

By making a small opening in the wall of a nuclear reactor, a beam of neutrons can
be obtained. The neutrons in such a beam have kinetic energies extending over a
considerable range, but a “monochromatic” beam, i.e., a beam composed of neu-
trons with a single energy, can be obtained by diffraction from a single crystal and
this diffracted beam can be used in diffraction experiments. If E is the kinetic ener-
gy of the neutrons, then 

(3)

where m is the mass of the neutron ( ) and v is its velocity.
Combination of Eqs. (1) and (3) gives the wavelength of the neutron beam:

(4)

The neutrons issuing from a reactor have their kinetic energies distributed in much
the same way as those of gas molecules in thermal equilibrium; i.e., they follow the
Maxwell distribution law.The largest fraction of these so-called “thermal neutrons”
therefore has kinetic energy equal to kT, where k is Boltzmann’s constant and T the
absolute temperature. If this fraction is selected by the monochromating crystal,
inserting E = kT in Eq. (4) yields

(5)

T is of the order of 300 to 400K, which means that is about 1 or 2 Å, i.e., of the
same order of magnitude as x-ray wavelengths. Diffraction experiments are per-
formed with a neutron diffractometer, in which the intensity of the beam diffracted
by the specimen is measured with a defectors optimized for neutrons.

Neutron diffraction differs markedly from x-ray or electron diffraction in sever-
al ways:

1. A neutron beam is highly penetrating. An iron plate, 1 cm thick, is opaque
to electrons, virtually opaque to 1.5 Å x-rays, but transmits 35 percent of
1.5 Å neutrons which diffract at the same as the x-rays. Note that syn-
chrotron radiation from insertion devices at storage rings such as the
Advanced Photon Source can produce x-ray photon energies high enough
to penetrate considerably more than 1 cm of iron; the corresponding 
angles are quite small for these photons, which may be a disadvantage for
certain applications.

2. The intensity of neutron scattering varies quite irregularly with the atomic

2u

u

l

l �
h

2mkT
.

l �
h

22mE
.

1.68 � 10�27 kg

E � 1
2mv2,
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number Z of the scattering atom. Elements with almost the same values of
Z may have quite different neutron-scattering powers, and elements with
widely separated values of Z may scatter neutrons equally well.
Furthermore, some light elements, such as carbon, scatter neutrons more
intensely than some heavy elements, such as tungsten. It follows that struc-
ture analyses can be carried out with neutron diffraction that are impossi-
ble, or possible only with great difficulty, with x-ray or electron diffraction.
In a compound of hydrogen or carbon, for example, with a heavy metal, x-
rays will not “see” the light hydrogen or carbon atom because of its rela-
tively low scattering power, whereas its position in the lattice can be
determined with ease by neutron diffraction. Neutrons can also distinguish
in many cases between elements differing by only one atomic number, ele-
ments which scatter x-rays with almost equal intensity; neutron diffraction,
for example, shows strong superlattice lines from ordered FeCo, whereas
with x-rays they are practically invisible.

3. Neutrons have a small magnetic moment. If the scattering atom also has a
net magnetic moment, the two interact and modify the total scattering. In
substances that have an ordered arrangement of atomic moments (antifer-
romagnetic, ferrimagnetic, and ferromagnetic materials) neutron diffrac-
tion can disclose both the magnitude and direction of the moments. Only
neutron diffraction can furnish such information, and it has had a major
impact on studies of magnetic structure.

Diffuse scattering at small angles (in transmission), also occurs with neutrons.
Neutron small-angle scattering has certain advantages over x-rays as a means of
studying inhomogeneities in materials, particularly because thick specimens, rather
than thin foils, can be examined.

Neutron diffraction would doubtless have wider application if all potential inves-
tigators had easy access to high-intensity neutron sources, but the number of such
sources is very limited.

Appendix: Electron and Neutron Diffraction

614
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



A1 PLANE SPACINGS

The value of d, the distance between adjacent planes in the set (hkl), may be found
from the following equations.

Cubic:

Tetragonal:

Hexagonal:

Rhombohedral:

Orthorhombic:

Monoclinic:

Triclinic:

In the equation for triclinic crystals,

S13 � ab2c1cos g cos a � cos b2.

S23 � a2bc1cos b cos g � cos a2,

S12 � abc21cos a cos b � cos g2,

S33 � a2b2sin2 g,

S22 � a2c2sin2 b,

S11 � b2c2sin2 a,

  V � volume of unit cell 1see below2,

1
d2 �

1
V 2 1S11h

2 � S22k
2 � S33l

2 � 2S12hk � 2S23kl � 2S13hl2

1
d2 �

1
sin2 b

a
h2

a2 �
k2sin2 b

b2 �
l2

c2 �
2hl cos  b

ac
b

1
d2 �

h2

a2 �
k2

b2 �
l2

c2

1
d2 �

1h2 � k2 � l22sin2 a � 21hk � kl � hl2cos2 a � cos  a2

a211 � 3 cos2 a � 2 cos3 a2

1
d2 �

4
3
a

h2 � hk � k2

a2 b �
l2

c2

1
d2 �

h2 � k2

a2 �
l2

c2

1
d2 �

h2 � k2 � l2

a2
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From Appendix 3 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
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A2 CELL VOLUMES

The following equations give the volume V of the unit cell.

Cubic:

Tetragonal:

Hexagonal:

Rhombohedral:

Orthorhombic:

Monoclinic:

Triclinic: V � abc21 � cos2 a � cos2 b � cos2 g � 2 cos a  cos b  cos g

V � abc sin b

V � abc

V � a321 � 3 cos2a � 2 cos2a

V �
23a2c

2
� 0.866a2c

V � a2c

V � a3

A3 INTERPLANAR ANGLES

The angle between the plane (h1k1l1), of spacing d1, and the plane (h2k2l2), of spac-
ing d2, may be found from the following equations. (V is the volume of the unit cell.)

Cubic:

Tetragonal:

Hexagonal:

cos f �

h1h2 � k1k2 � 1
2 1h1k2 � h2k12 �

3a2

4c2l1l2

B
ah1

2 � k1
2 � h1k1 �

3a2

4c2l1
2b

 

ah2
2 � k2

2 � h2k2 �
3a2

4c2l2
2b

cos f �

h1h2 � k1k2

a2 �
l1l2

c2

B
a

h1
2 � k1

2

a2 �
l1

2

c2ba
h2

2 � k2
2

a2 �
l2

2

c2b

cos f �
h1h2 � k1k2 � l1l2

21h1
2 � k1

2 � l1
22 1h2

2 � k2
2 � l2

22

f
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Appendix: Lattice Geometry

Rhombohedral:

Orthorhombic:

Monoclinic:

Triclinic:

�S231k1l2 � k2l12 � S131l1h2 � l2h12 � S121h1k2 � h2k12�

cos f �
d1d2

V2 �S11h1h2 � S22k1k2 � S33l1l2

cos f �
d1d2

sin2 b
c
h1h2

a2 �
k1k2sin2 b

b2 �
l1l2

c2 �
1l1h2 � l2h12cos b

ac
d

cos f �

h1h2

a2 �
k1k2

b2 �
l1l2

c2

B
a

h1
2

a2 �
k1

2

b2 �
l1

2

c2ba
h2

2

a2 �
k2

2

b2 �
l2

2

c2b

� 1cos2 a � cos a2 1k1l2 � k2l1 � l1h2 � l2h1 � h1k2 � h2k12�

cos  f �
a4d1d2

V2 � sin2 a1h1h2 � k1k2 � l1l22
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Appendix 

The Rhombohedral-Hexagonal
Transformation

The lattice of points shown in Fig. A1 is rhombohedral, that is, it possesses the sym-
metry elements characteristic of the rhombohedral system. The primitive rhombo-
hedral cell has axes a1(R), a2(R), and a3(R). The same lattice of points, however,
may be referred to a hexagonal cell having axes a1(H), a2(H), and c(H). The hexag-
onal cell is no longer primitive, since it contains three lattice points per unit cell (at
0 0 0, and ), and it has three times the volume of the rhombohedral cell.

If one wishes to know the indices (HK · L), referred to hexagonal axes, of a plane
whose indices (hkl), referred to rhombohedral axes, are known, the following equa-
tions may be used:

Thus, the (001) face of the rhombohedral cell (shown shaded in the figure) has
indices . when referred to hexagonal axes.

Since a rhombohedral lattice may be referred to hexagonal axes, it follows that
the powder pattern of a rhombohedral substance can be indexed as a hexagonal
substance. How then can the true nature of the lattice be recognised? From the
equations given above, it follows that

If the lattice is really rhombohedral, then k is an integer and the only lines appear-
ing in the pattern will have hexagonal indices (HK L) such that the sum (- H + K
+L) is always an integral multiple of 3. If this condition is not satisfied, the lattice is
hexagonal.

When the pattern of a rhombohedral substance has been so indexed, i.e., with
reference to hexagonal axes, and the true nature of the lattice determined, the
indices (hkl) of the diffraction peeks referred to rhombohedral axes often are
required. The transformation equations are

l � 1
3 1�H � 2K � L2.

k � 1
3 1�H � K � L2,

h � 1
3 12H � K � L2,

�

�H � K � L � 3k.

101 � 12

L � h � k � l.

K �  k � l,

H � h � k,

1
3

2
3

2
3

2
3

1
3

1
3,

From Appendix 4 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
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Appendix: The Rhombohedral-Hexagonal Transformation

1
3

2
3

2
3( )

2
3

1
3

1
3( )

c(H)

a2(R)

a2(H)

a3(R)

a1(R)

a1(H)

�

Figure A1 Rhombohedral and hexagonal unit
cell in a rhombohedral lattice.

There is then the problem of determining the lattice parameters aR and of the
rhombohedral unit cell. But the dimensions of the rhombohedral cell can be deter-
mined from the dimensions of the hexagonal cell, and this is an easier process than
solving the rather complicated plane-spacing equation for the rhombohedral sys-
tem. The first step is to index the pattern on the basis of hexagonal axes. Then the
parameters aH and c of the hexagonal cell are calculated in the usual way. Finally,
the parameters of the rhombohedral cell are determined from the following equa-
tions:

Finally, it should be noted that, if the c/a ratio of the hexagonal cell in Fig. A1
takes on the special value of 2.45, then the angle of the rhombohedral cell will
equal 60° and the lattice of points will be face-centered cubic.

Further information on the rhombohedral-hexagonal relationship and on unit
cell transformations in general may be obtained from the International Tables for
X-Ray Crystallography [G1].

a

sin
a

2
�

3

233 � 1c>aH2
2

aR �
1
3
23aH

2 � c2
  ,

a
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Appendix 

X-Ray Wavelengths

All the following values are extracted from much longer tables on pp. 6-43 of Vol.
4 of the International Tables for X-Ray Crystallography [G.1], which are in turn
taken from J. A. Bearden, Rev. Mod. Phys., 39, 78 (1967).

E( ) is the energy hv of the unresolved line to the nearest 0.01 keV. (The
values in [G.1] are of higher accuracy.) In computing E( ), is given twice the
weight of .

The wavelengths are given in Å* units. This unit is defined by the wavelength of
the W line = 0.2090100 Å*. The Å* unit is believed to be equal to the angstrom
Å to within 5 parts per million and involves a conversion factor of 1.002056 ±
0.000005 Å/kX. Because of the still remaining uncertainty in this conversion factor,
it was decided to introduce the Å* unit. The distinction between Å and Å* is neg-
ligible except in work of the very highest accuracy.

Ka1

Ka2

Ka1Ka
KaKa

Wavelengths (in Å* units) and Energies (in keV) of Some Characteristic Emission Lines and
Absorption Edges

Element
E(Kα) 
(keV) 

Kα2 
strong 

Kα1 
very strong 

Kβ1 
week 

K 
edge Lα1 

L111 
edge

1 H     
2 He      
3 Li 0.05 228 226.5 
4 Be 0.11 114 111 
5 B 0.18 67.6  

6 C 0.28 44.7 43.68 
7 N 0.39 31.6 30.99 
8 O 0.52 23.62 23.32 
9 F 0.68 18.32   

10 Ne 0.85 14.610 14.452 14.3018 

11 Na 1.04 11.9101 11.575 11.569 405
12 Mg 1.25 9.8900 9.521 9.5122 250.7
13 Al 1.49 8.34173 8.33834 7.960 7.94813 170.4
14 Si 1.74 7.12791 7.12542 6.753 6.738 123
15 P 2.01 6.160 6.157 5.796 5.784 94

16 S 2.31 5.37496 5.37216 5.0316 5.0185  
17 Cl 2.62 4.7307 4.7278 4.4034 4.3971  
18 A 2.96 4.19474 4.19180 3.8860 3.87090  
19 K 3.31 3.7445 3.7414 3.4539 3.4365  42.1
20 Ca 3.69 3.36166 3.35839 3.0897 3.0703 36.33 35.49

21 Sc 4.09 3.0342 3.0309 2.7796 2.762 31.35 
22 Ti 4.51 2.75216 2.74851 2.51391 2.49734 27.42 27.29
23 V 4.95 2.50738 2.50356 2.28440 2.2691 24.25 
24 Cr 5.41 2.293806 2.28970 2.08487 2.07020 21.64 20.7
25 Mn 5.90 2.10578 2.101820 1.91021 1.89643 19.45 

26 Fe 6.40 1.939980 1.936042 1.75661 1.74346 17.59 17.525
27 Co 6.93 1.792850 1.788965 1.62079 1.60815 15.972 15.915
28 Ni 7.47 1.661747 1.657910 1.500135 1.48807 14.561 14.525
29 Cu 8.04 1.544390 1.540562 1.392218 1.38059 12.336 13.288
30 Zn 8.63 1.439000 1.435155 1.29525 1.2834 12.254 12.131

From Appendix 7 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
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Appendix: X-Ray Wavelengths

Element
E(Kα) 
(keV) 

Kα2 

strong 
Kα1 very 

strong 

Kβ1 

week 
K 

edge Lα1 
L111 

edge

31 Ga 9.24 1.34399 1.340083 1.20789 1.1958 11.292 11.100
32 Ge 9.88 1.258011 1.254054 1.12894 1.11658 10.4361 10.187
33 As 10.53 1.17987 1.17588 1.05730 1.0450 9.6709 9.367
34 Se 11.21 1.10882 1.10477 0.99218 0.97974 8.9900 8.646
35 Br 11.91 1.04382 1.03974 0.93279 0.9204 8.3746 7.984

36 Kr 12.63 0.9841 0.9801 0.8785 0.86552 7.817 7.392
37 Rb 13.38 0.92969 0.925553 0.82868 0.81554 7.3183 6.862
38 Sr 14.14 0.87943 0.87526 0.78292 0.76973 6.8628 6.387
39 Y 14.93 0.83305 0.82884 0.74072 0.72766 6.4488 5.962
40 Zr 15.75 0.79015 0.78593 0.70173 0.68883 6.0705 5.579

41 Nb 16.58 0.75044 0.74620 0.66576 0.06298 5.7243 5.230
42 Mo 17.44 0.713590 0.709300 0.632288 0.61978 5.40655 4.913
43 Tc 18.33 0.67932 0.67502 0.60130 0.58906 5.1148 4.630
44 Ru 19.24 0.647408 0.643083 0.572482 0.58061 4.84575 4.389
45 Rh 20.17 0.617630 0.613279 0.545605 0.53395 4.59743 4.1299

46 Pd 21.12 0.589821 0.585448 0.520520 0.6092 4.36767 3.9074
47 Ag 22.11 0.563798 0.5594075 0.497069 0.48589 4.15443 3.6999
48 Cd 23.11 0.539422 0.535010 0.475105 0.48407 3.95635 3.5047
49 In 24.14 0.516544 0.512113 0.454545 0.44371 3.77192 3.3237
50 Sn 25.20 0.495053 0.490599 0.435236 0.42467 3.59994 3.1557

51 Sb 26.28 0.474827 0.470354 0.417085 0.40868 3.43941 3.0003
52 Te 27.38 0.455784 0.451295 0.399995 0.30074 3.28920 2.8555
53 I 28.51 0.437829 0.433318 0.383905 0.37381 3.14860 2.7196
54 Xe 29.67 0.42087 0.41634 0.36872 0.3584 3.0166 2.5926
55 Cs 30.86 0.404835 0.400290 0.354364 0.36451 2.8924 2.4740

56 Ba 32.07 0.389668 0.385111 0.340811 0.33104 2.77595 2.3629
57 La 33.31 0.375313 0.370737 0.327983 0.31844 2.66570 2.261
58 Ce 34.57 0.361683 0.357092 0.315816 0.30643 2.5615 2.166
59 Pr 35.87 0.348749 0.344140 0.304261 0.29518 2.4630 2.0791
60 Nd 37.19 0.336472 0.331846 0.293299 0.28453 2.3704 1.9967

61 Pm 38.54 0.324803 0.320160 0.28290 0.27431 2.2822 1.9191
62 Sm 39.92 0.313698 0.309040 0.27301 0.26464 2.1998 1.8457
63 Eu 41.33 0.303118 0.298446 0.263577 0.25553 2.1209 1.7761
64 Gd 42.77 0.293038 0.288353 0.25460 0.24681 2.0468 1.7117
65 Tb 44.24 0.283423 0.278724 0.24608 0.23841 1.9765 1.6497

66 Dy 45.73 0.274247 0.269533 0.23788 0.23048 1.90881 1.5916
67 Ho 47.26 0.265486 0.260756 0.23012 0.22291 1.8450 1.5368
68 Er 48.83 0.257110 0.252365 0.22266 0.21567 1.78425 1.4835
69 Tm 50.42 0.249095 0.244338 0.21556 0.20880 1.7268 1.4334
70 Yb 52.04 0.241424 0.236655 0.20884 0.20224 1.67189 1.3862

71 Lu 53.70 0.234081 0.229298 0.20231 0.19595 1.61951 1.3405
72 Ht 55.40 0.227024 0.222227 0.19607 0.18982 1.56958 1.2972
73 Ta 57.11 0.220305 0.215497 0.190089 0.18394 1.52197 1.2553
74 W 58.87 0.213828 0.2090100 0.184374 0.17837 1.47639 1.2155
75 Re 60.67 0.207611 0.202781 0.178880 0.17302 1.43230 1.1773

76 Os 62.50 0.201639 0.196794 0.173611 0.16787 1.39121 1.1408
77 Ir 64.36 0.195904 0.191047 0.168542 0.16292 1.35128 1.1058
78 Pt 66.26 0.190381 0.185511 0.163675 0.15818 1.31304 1.0723
79 Au 68.20 0.185075 0.180195 0.158982 0.153693 1.27640 1.04000
80 Hg 70.18 0.179958 0.175068 0.154487 0.14918 1.24120 1.0091

81 Ti 72.19 0.175036 0.170136 0.150142 0.14495 1.20739 0.9793
82 Pb 74.25 0.170294 0.165376 0.145970 0.140880 1.17501 0.95073
83 Bi 76.34 0.165717 0.160789 0.141948 0.13694 1.14386 0.9234
84 Po 78.48 0.16130 0.15636 0.13807  1.11386 
85 At 80.66 0.15705 0.15210 0.13432  1.08500 

86 Rn 82.88 0.15294 0.14798 0.13069  1.05723 
87 Fr 85.14 0.14896 0.14399 0.12719  1.03049 
88 Ra 87.46 0.14512 0.14014 0.12382  1.00473 0.8028
89 Ac 89.81 0.14141 0.136417 0.12055  0.97993 
90 Th 92.22 0.137829 0.132813 0.117396 0.11307 0.95600 0.7607

91 Pa 94.67 0.134343 0.129325 0.114345  0.93284 
92 U 97.18 0.130968 0.125947 0.111394 0.10723 0.910639 0.7223
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Appendix: X-Ray Wavelengths

Some commonly used K wavelengths

Characteristic L Lines of Tungsten

Element Kα (weighted average)*

*Kα1 is given twice the weight of Ka2.

Kα2 strong Kα1 very strong  Kβ1 week

Cr 2.29100 2.293606 2.28970 2.08487
Fe 1.937355 1.939980 1.936042 1.75661
Co 1.790260 1.792850 1.788965 1.62079
Cu 1.541838 1.544390 1.540562 1.392218
Mo 0.710730 0.713590 0.709300 0.632288

Line Relative Intensity Wavelength

Lα1 Very Strong 1.47639
Lα2 Weak 1.48743
Lβ1 Strong 1.281809
Lβ2 Medium 1.24460
Lβ3 Weak 1.26269
Lγ1 Weak 1.09855

REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.1 International Tables for Crystallography, Ed. A.J.C Wilson, Vol. A-C
(Dordrecht Kluwer Academic Pub. for International Union of
Crystallography, 1995). The reference ‘’book” for crystallography and dif-
fraction.
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Cubic Hexagonal

h2 + k2 + l2 hkl
h2 + hk + k2 hk

Simple Face-centered Body-centered  Diamond

1 100 1 10
2 110 .   .   . 110 2
3 111 111 .   .   . 111 3 11
4 200 200 200 4 20
5 210 5
6 211 .   .   . 211 6
7 7 21
8 220 220 220 220 8
9 300, 221 9 30

10 310 .   .   . 310 10
11 311 311 .   .   . 311 11
12 222 222 222 12 22
13 320 13 31
14 321 .   .   . 321 14
15 15
16 400 400 400 400 16 40
17 410, 322 17
18 411, 330 .   .   . 411, 330 18
19 331 331 .   .   . 331 19 32

20 420 420 420 20
21 421 21 41
22 332 .   .   . 332 22
23 23
24 422 422 422 422 24
25 500, 430 25 50
26 510, 431 .   .   . 510, 431 26
27 511, 333 511, 333 .   .   . 511, 333 27 33
28 28 42
29 520, 432 29

30 521 .   .   . 521 30
31 31 51
32 440 440 440 440 32
33 522, 441 33
34 530, 433 .   .   . 530, 433 34
35 531 531 .   .   . 531 35
36 600, 442 600, 442 600, 442 36 60
37 610 37 43
38 611, 532 .   .   . 611, 532 38
39 39 52

40 620 620 620 620 40
41 621, 540, 443 41
42 541 .   .   . 541 42
43 533 533 .   .   . 533 43 61
44 622 622 622 44
45 630, 542 45
46 631 .   .   . 631 46
47 47
48 444 444 444 444 48 44
49 700, 632 49 70, 53

Appendix 

Quadratic Forms of Miller Indices

From Appendix 9 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Appendix: Quadratic Forms of Miller Indices

Cubic Hexagonal

h2 + k2 + l2
hkl

h2 + hk + k2 hk
Simple Face-centered Body-centered  Diamond

50 710, 550, 543 .   .   . 710, 550, 543 50
51 711, 551 711, 551 .   .   . 711, 551 51
52 640 640 640 52 62
53 720, 641 53
54 721, 633, 552 .   .   . 721, 633, 552 54
55 55
56 642 642 642 642 56
57 722, 544 57 71
58 730 .   .   . 730 58
59 731, 553 731, 553 .   .   . 731, 553 59
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Appendix 

Atomic Scattering Factors

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

H 1 0.81 0.48 0.25 0.13 0.07 0.04 0.03 0.02 0.01 0.00 0.00
He 2 1.88 1.46 1.05 0.75 0.52 0.35 0.24 0.18 0.14 0.11 0.09

Li+ 2 1.96 1.8 1.5 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.3
Li 3 2.2 1.8 1.5 1.3 1.0 0.8 0.6 0.5 0.4 0.3 0.3

Be+2 2 2.0 1.9 1.7 1.6 1.4 1.2 1.0 0.9 0.7 0.6 0.5

Be 4 2.9 1.9 1.7 1.6 1.4 1.2 1.0 0.9 0.7 0.6 0.5

B+3 2 1.99 1.9 1.8 1.7 1.6 1.4 1.3 1.2 1.0 0.9 0.7
B 5 3.5 2.4 1.9 1.7 1.5 1.4 1.2 1.2 1.0 0.9 0.7
C 6 4.6 3.0 2.2 1.9 1.7 1.6 1.4 1.3 1.16 1.0 0.9

N+5 2 2.0 2.0 1.9 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.16

N+3 4 3.7 3.0 2.4 2.0 1.8 1.66 1.56 1.49 1.39 1.28 1.17
N 7 5.8 4.2 3.0 2.3 1.9 1.65 1.54 1.49 1.39 1.29 1.17
O 8 7.1 5.3 3.9 2.9 2.2 1.8 1.6 1.5 1.4 1.35 1.26

O–2 10 8.0 5.5 3.8 2.7 2.1 1.8 1.5 1.5 1.4 1.35 1.26
F 9 7.8 6.2 4.45 3.35 2.65 2.15 1.9 1.7 1.6 1.5 1.35

F– 10 8.7 6.7 4.8 3.5 2.8 2.2 1.9 1.7 1.55 1.5 1.35
Ne 10 9.3 7.5 5.8 4.4 3.4 2.65 2.2 1.9 1.65 1.55 1.5

Na+ 10 9.5 8.2 6.7 5.25 4.05 3.2 2.65 2.25 1.95 1.75 1.6
Na 11 9.65 8.2 6.7 5.25 4.05 3.2 2.65 2.25 1.95 1.75 1.6

Mg+2 10 9.75 8.6 7.25 5.95 4.8 3.85 3.15 2.55 2.2 2.0 1.8

Mg 12 10.5 8.6 7.25 5.95 4.8 3.85 3.15 2.55 2.2 2.0 1.8

Al+3 10 9.7 8.9 7.8 6.65 5.5 4.45 3.65 3.1 2.65 2.3 2.0
Al 13 11.0 8.95 7.75 6.6 5.5 4.5 3.7 3.1 2.65 2.3 2.0

Si+4 10 9.75 9.15 8.25 7.15 6.05 5.05 4.2 3.4 2.95 2.6 2.3
Si 14 11.35 9.4 8.2 7.15 6.1 5.1 4.2 3.4 2.95 2.6 2.3

P+5 10 9.8 9.25 8.45 7.5 6.55 5.65 4.8 4.05 3.4 3.0 2.6
P 15 12.4 10.0 8.45 7.45 6.5 5.65 4.8 4.05 3.4 3.0 2.6

P–3 18 12.7 9.8 8.4 7.45 6.5 5.65 4.85 4.05 3.4 3.0 2.6

S+6 10 9.85 9.4 8.7 7.85 6.85 6.05 5.25 4.5 3.9 3.35 2.9
S 16 13.6 10.7 8.95 7.85 6.85 6.0 5.25 4.5 3.9 3.35 2.9

S–2 18 14.3 10.7 8.9 7.85 6.85 6.0 5.25 4.5 3.9 3.35 2.9
Cl 17 14.6 11.3 9.25 8.05 7.25 6.5 5.75 5.05 4.4 3.85 3.35

Cl– 18 15.2 11.5 9.3 8.05 7.25 6.5 5.75 5.05 4.4 3.85 3.35
A 18 15.9 12.6 10.4 8.7 7.8 7.0 6.2 5.4 4.7 4.1 3.6

K+ 18 16.5 13.3 10.8 8.85 7.75 7.05 6.44 5.9 5.3 4.8 4.2

K 19 16.5 13.3 10.8 9.2 7.9 6.7 5.9 5.2 4.6 4.2 3.7 3.3

Ca+2 18 16.8 14.0 11.5 9.3 8.1 7.35 6.7 6.2 5.7 5.1 4.6 
Ca 20 17.5 14.1 11.4 9.7 8.4 7.3 6.3 5.6 4.9 4.5 4.0 3.6

Sc+3 18 16.7 14.0 11.4 9.4 8.3 7.6 6.9 6.4 5.8 5.35 4.85 
Sc 21 18.4 14.9 12.1 10.3 8.9 7.7 6.7 5.9 5.3 4.7 4.3 3.9

Ti+4 18 17.0 14.4 11.9 9.9 8.5 7.85 7.3 6.7 6.15 5.65 5.05 
Ti 22 19.3 15.7 12.8 10.9 9.5 8.2 7.2 6.3 5.6 5.0 4.6 4.2
V 23 20.2 16.6 13.5 11.5 10.1 8.7 7.6 6.7 5.9 5.3 4.9 4.4
Cr 24 21.1 17.4 14.2 12.1 10.6 9.2 8.0 7.1 6.3 5.7 5.1 4.6
Mn 25 22.1 18.2 14.9 12.7 11.1 9.7 8.4 7.5 6.6 6.0 5.4 4.9

θsin
λ----------- A°

1–
( )

From Appendix 10 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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Fe 26 23.1 18.9 15.6 13.3 11.6 10.2 8.9 7.9 7.0 6.3 5.7 5.2
Co 27 24.1 19.8 16.4 14.0 12.1 10.7 9.3 8.3 7.3 6.7 6.0 5.5
Ni 28 25.0 20.7 17.2 14.6 12.7 11.2 9.8 8.7 7.7 7.0 6.3 5.8
Cu 29 25.9 21.6 17.9 15.2 13.3 11.7 10.2 9.1 8.1 7.3 6.6 6.0
Zn 30 26.8 22.4 18.6 15.8 13.9 12.2 10.7 9.6 8.5 7.6 6.9 6.3

Ga 31 27.8 23.3 19.3 16.5 14.5 12.7 11.2 10.0 8.9 7.9 7.3 6.7
Ge 32 28.8 24.1 20.0 17.1 15.0 13.2 11.6 10.4 9.3 8.3 7.6 7.0
As 33 29.7 25.0 20.8 17.7 15.6 13.8 12.1 10.8 9.7 8.7 7.9 7.3
Se 34 30.6 25.8 21.5 18.3 16.1 14.3 12.6 11.2 10.0 9.0 8.2 7.5
Br 35 31.6 26.6 22.3 18.9 16.7 14.8 13.1 11.7 10.4 9.4 8.6 7.8

Kr 36 32.5 27.4 23.0 19.5 17.3 15.3 13.6 12.1 10.8 9.8 8.9 8.1

Rb+ 36 33.6 28.7 24.6 21.4 18.9 16.7 14.6 12.8 11.2 9.9 8.9 
Rb 37 33.5 28.2 23.8 20.2 17.9 15.9 14.1 12.5 11.2 10.2 9.2 8.4
Sr 38 34.4 29.0 24.5 20.8 18.4 16.4 14.6 12.9 11.6 10.5 9.5 8.7
Y 39 35.4 29.9 25.3 21.5 19.0 17.0 15.1 13.4 12.0 10.9 9.9 9.0

Zr 40 36.3 30.8 26.0 22.1 19.7 17.5 15.6 13.8 12.4 11.2 10.2 9.3
Nb 41 37.3 31.7 26.8 22.8 20.2 18.1 16.0 14.3 12.8 11.6 10.6 9.7
Mo 42 38.2 32.6 27.6 23.5 20.8 18.6 16.5 14.8 13.2 12.0 10.9 10.0
Tc 43 39.1 33.4 28.3 24.1 21.3 19.1 17.0 15.2 13.6 12.3 11.3 10.3
Ru 44 40.0 34.3 29.1 24.7 21.9 19.6 17.5 15.6 14.1 12.7 11.6 10.6

Rh 45 41.0 35.1 29.9 25.4 22.5 20.2 18.0 16.1 14.5 13.1 12.0 11.0
Pd 46 41.9 36.0 30.7 26.2 23.1 20.8 18.5 16.6 14.9 13.6 12.3 11.3
Ag 47 42.8 36.9 31.5 26.9 23.8 21.3 19.0 17.1 15.3 14.0 12.7 11.7
Cd 48 43.7 37.7 32.2 27.5 24.4 21.8 19.6 17.6 15.7 14.3 13.0 12.0
In 49 44.7 38.6 33.0 28.1 25.0 22.4 20.1 18.0 16.2 14.7 13.4 12.3

Sn 50 45.7 39.5 33.8 28.7 25.6 22.9 20.6 18.5 16.6 15.1 13.7 12.7
Sb 51 46.7 40.4 34.6 29.5 26.3 23.5 21.1 19.0 17.0 15.5 14.1 13.0
Te 52 47.7 41.3 35.4 30.3 26.9 24.0 21.7 19.5 17.5 16.0 14.5 13.3
I 53 48.6 42.1 36.1 31.0 27.5 24.6 22.2 20.0 17.9 16.4 14.8 13.6
Xe 54 49.6 43.0 36.8 31.6 28.0 25.2 22.7 20.4 18.4 16.7 15.2 13.9

Cs 55 50.7 43.8 37.6 32.4 28.7 25.8 23.2 20.8 18.8 17.0 15.6 14.5
Ba 56 51.7 44.7 38.4 33.1 29.3 26.4 23.7 21.3 19.2 17.4 16.0 14.7
La 57 52.6 45.6 39.3 33.8 29.8 26.9 24.3 21.9 19.7 17.9 16.4 15.0
Pr 59 54.5 47.4 40.9 35.2 31.1 28.0 25.4 22.9 20.6 18.8 17.1 15.7

Nd 60 55.4 48.3 41.6 35.9 31.8 28.6 25.9 23.4 21.1 19.2 17.5 16.1
Pm 61 56.4 49.1 42.4 36.6 32.4 29.2 26.4 23.9 21.5 19.6 17.9 16.4
Sm 62 57.3 50.0 43.2 37.3 32.9 29.8 26.9 24.4 22.0 20.0 18.3 16.8
Eu 63 58.3 50.9 44.0 38.1 33.5 30.4 27.5 24.9 22.4 20.4 18.7 17.1
Gd 64 59.3 51.7 44.8 38.8 34.1 31.0 28.1 25.4 22.9 20.8 19.1 17.5

Tb 65 60.2 52.6 45.7 39.6 34.7 31.6 28.6 25.9 23.4 21.2 19.5 17.9
Dy 66 61.1 53.6 46.5 40.4 35.4 32.2 29.2 26.3 23.9 21.6 19.9 18.3
Ho 67 62.1 54.5 47.3 41.1 36.1 32.7 29.7 26.8 24.3 22.0 20.3 18.6
Er 68 63.0 55.3 48.1 41.7 36.7 33.3 30.2 27.3 24.7 22.4 20.7 18.9
Tm 69 64.0 56.2 48.9 42.4 37.4 33.9 30.8 27.9 25.2 22.9 21.0 19.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
θsin

λ
----------- A°

1–
( )
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Yb 70 64.9 57.0 49.7 43.2 38.0 34.4 31.3 28.4 25.7 23.3 21.4 19.7
Lu 71 65.9 57.8 50.4 43.9 38.7 35.0 31.8 28.9 26.2 23.8 21.8 20.0
Hf 72 66.8 58.6 51.2 44.5 39.3 35.6 32.3 29.3 26.7 24.2 22.3 20.4
Ta 73 67.8 59.5 52.0 45.3 39.9 36.2 32.9 29.8 27.1 24.7 22.6 20.9
W 74 68.8 60.4 52.8 46.1 40.5 36.8 33.5 30.4 27.6 25.2 23.0 21.3

Re 75 69.8 61.3 53.6 46.8 41.1 37.4 34.0 30.9 28.1 25.6 23.4 21.6
Os 76 70.8 62.2 54.4 47.5 41.7 38.0 34.6 31.4 28.6 26.0 23.9 22.0
Ir 77 71.7 63.1 55.3 48.2 42.4 38.6 35.1 32.0 29.0 26.5 24.3 22.3
Pt 78 72.6 64.0 56.2 48.9 43.1 39.2 35.6 32.5 29.5 27.0 24.7 22.7
Au 79 73.6 65.0 57.0 49.7 43.8 39.8 36.2 33.1  30.0 27.4 25.1 23.1

Hg 80 74.6 65.9 57.9 50.5 44.4 40.5 36.8 33.6 30.6 27.8 25.6 23.6
Ti 81 75.5 66.7 58.7 51.2 45.0 41.1 37.4 34.1 31.1 28.3 26.0 24.1
Pb 82 76.5 67.5 59.5 51.9 45.7 41.6 37.9 34.6 31.5 28.8 26.4 24.5
Bi 83 77.5 68.4 60.4 52.7 46.4 42.2 38.5 35.1 32.0 29.2 26.8 24.8
Po 84 78.4 69.4 61.3 53.5 47.1 42.8 39.1 35.6 32.6 29.7 27.2 25.2

At 85 79.4 70.3 62.1 54.2 47.7 43.4 39.6 36.2 33.1 30.1 27.6 25.6
Rn 86 80.3 71.3 63.0 55.1 48.4 44.0 40.2 36.8 33.5 30.5 28.0 26.0
Fr 87 81.3 72.2 63.8 55.8 49.1 44.5 40.7 37.3 34.0 31.0 28.4 26.4
Ra 88 82.2 73.2 64.6 56.5 49.8 45.1 41.3 37.8 34.6 31.5 28.8 26.7
Ac 89 83.2 74.1 65.5 57.3 50.4 45.8 41.8 38.3 35.1 32.0 29.2 27.1

Th 90 84.1 75.1 66.3 58.1 51.1 46.5 42.4 38.8 35.5 32.4 29.6 27.5
Pa 91 85.1 76.0 67.1 58.8 51.7 47.1 43.0 39.3 36.0 32.8 30.1 27.9
U 92 86.0 76.9 67.9 59.6 52.4 47.7 43.5 39.8 36.5 33.3 30.6 28.3
Np 93 87 78 69 60 53 48 44 40 37 34 31 29
Pu 94 88 79 69 61 54 49 44 41 38 34 31 29

Am 95 89 79 70 62 55 50 45 42 38 35 32 30
Cm 96 90 80 71 62 55 50 46 42 39 35 32 30
Bk 97 91 81 72 63 56 51 46 43 39 36 33 30
Cf 98 92 82 73 64 57 52 47 43 40 36 33 31
 99 93 83 74 65 57 52 48 44 40 37 34 31
 100 94 84 75 66 58 53 48 44 41 37 34 31

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
θsin

λ
----------- A°

1–
( )
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REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.1 International Tables for Crystallography, Ed. A.J.C Wilson, Vol. A-C
(Dordrecht Kluwer Academic Pub. for International Union of
Crystallography, 1995). The reference ‘’book” for crystallography and dif-
fraction.

From Peiser, Rooksby, and Wilson (see [10]). More extensive tables, at smaller intervals of (sin �)/�, are given in [G.1].
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Appendix 

Multiplicity Factors for the Powder Method

Note that, in cubic crystals, for example, hhl stands for such indices as 112 (or 211), 0kl for such indices
as 012 (or 210), 0kk for such indices as 011 (or 110), etc.

* These are the usual multiplicity factors. In some crystals, planes having these indices comprise two
forms with the same spacing but different structure factor, and the multiplicity factor for each form is
half the value given above. In the cubic system, for example, there are some crystals in which permuta-
tions of the indices (hkl) produce planes which are not structurally equivalent; in such crystals (AuBe
is an example), the plane (123), for example, belongs to one form and has a certain structure factor,
while the plane (321) belongs to another form and has a different structure factor. These are 48/2 = 24
planes in the first form and 24 planes in the second. This question is discussed more fully by Henry,
Lipson, and Wooster [G.15].

Cubic:

Hexagonal and 
Rhombohedral:

Tetragonal:

Orthorhombic:

Monoclinic:

Triclinic:

hkl

48∗
--------- hhl

24
--------

0kl
24∗
--------- 0kk

12
---------

hhh
8

---------
00l
6
--------

hk l⋅
24∗
------------

hh l⋅
12∗
------------

0k l⋅
12∗
------------

hk 0⋅
12∗
------------- hh 0⋅

6
-------------

0k 0⋅
6

-------------
00 l⋅
2

------------

hkl

16∗
--------- hhl

8
--------

0kl
8
--------

hk0
8∗
--------- hh0

4
---------

0k0
4

---------
00l
2
--------

hkl
8
--------

0kl
4
--------

h0 l
4
--------

hk0
4

---------
h00
2

---------
0k0
2

---------
00l
2
--------

hkl
4
--------

h0l
2
--------

0k0
2

---------

hkl
2
--------

From Appendix 11 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
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Appendix: Multiplicity Factors for the Powder Method

REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.15 N. F. M. Henry, H. Lipson, and W. A. Wooster. The Interpretation of X-Ray
Diffraction Photographs (London: Macmillan, 1951). Rotating and oscillat-
ing crystal methods, as well as powder methods, are described. Good sec-
tion on analytical methods of indexing powder photographs.

634
www.iran-mavad.com 

مرجع تخصصی مهندسین مواد و متالورژی



Appendix 
Lorentz-Polarization Factor a1 � cos2 2U

sin2 U cos U
b

�° .0 .1 .2 .3 .4 .5 .6 .7 .8  .9

2 1639 1486 1354 1239 1138 1048 968.9 898.3 835.1 778.4
3 727.2 680.9 638.8 600.5 565.6 533.6 504.3 477.3 452.3 429.3
4 408.0 388.2 369.9 352.7 336.8 321.9 308.0 294.9 282.6 271.1

5 260.3 250.1 240.5 231.4 222.9 214.7 207.1 199.8 192.9 186.3
6 180.1 174.2 168.5 163.1 158.0 153.1 148.4 144.0 139.7 135.6
7 131.7 128.0 124.4 120.9 117.6 114.4 111.4 108.5 105.6 102.9
8 100.3 97.80 95.37 93.03 90.78 88.60 86.51 84.48 82.52 80.63
9 78.79 77.02 75.31 73.66 72.05 70.49 68.99 67.53 66.12 64.74

10 63.41 62.12 60.87 59.65 58.46 57.32 56.20 55.11 54.06 53.03
11 52.04 51.06 50.12 49.19 48.30 47.43 46.58 45.75 44.94 44.16
12 43.39 42.64 41.91 41.20 40.50 39.82 39.16 38.51 37.88 37.27
13 36.67 36.08 35.50 34.94 34.39 33.85 33.33 32.81 32.31 31.82
14 31.34 30.87 30.41 29.96 29.51 29.08 28.66 28.24 27.83 27.44

15 27.05 26.66 26.29 25.92 25.56 25.21 24.86 24.52 24.19 23.86
16 23.54 23.23 22.92 22.61 22.32 22.02 21.74 21.46 21.18 20.91
17 20.64 20.38 20.12 19.87 19.62 19.38 19.14 18.90 18.67 18.44
18 18.22 18.00 17.78 17.57 17.36 17.15 16.95 16.75 16.56 16.36
19 16.17 15.99 15.80 15.62 15.45 15.27 15.10 14.93 14.76 14.60

20 14.44 14.28 14.12 13.97 13.81 13.66 13.52 13.37 13.23 13.09
21 12.95 12.81 12.68 12.54 12.41 12.28 12.15 12.03 11.91 11.78
22 11.66 11.54 11.43 11.31 11.20 11.09 10.98 10.87 10.76 10.65
23 10.55 10.45 10.35 10.24 10.15 10.05 9.951 9.857 9.763 9.671
24 9.579 9.489 9.400 9.313 9.226 9.141 9.057 8.973 8.891 8.810

25 8.730 8.651 8.573 8.496 8.420 8.345 8.271 8.198 8.126 8.054
26 7.984 7.915 7.846 7.778 7.711 7.645 7.580 7.515 7.452 7.389
27 7.327 7.266 7.205 7.145 7.086 7.027 6.969 6.912 6.856 6.800
28 6.745 6.692 6.637 6.584 6.532 6.480 6.429 6.379 6.329 6.279
29 6.230 6.183 6.135 6.088 6.042 5.995 5.950 5.905 5.861 5.817

30 5.774 5.731 5.688 5.647 5.605 5.564 5.524 5.484 5.445 5.406
31 5.367 5.329 5.292 5.254 5.218 5.181 5.145 5.110 5.075 5.040
32 5.006 4.972 4.939 4.906 4.873 4.841 4.809 4.777 4.746 4.715
33 4.685 4.655 4.625 4.595 4.566 4.538 4.509 4.481 4.453 4.426
34 4.399 4.372 4.346 4.320 4.294 4.268 4.243 4.218 4.193 4.169

35 4.145 4.121 4.097 4.074 4.052 4.029 4.006 3.984 3.962 3.941
36 3.919 3.898 3.877 3.857 3.836 3.816 3.797 3.777 3.758 3.739
37 3.720 3.701 3.683 3.665 3.647 3.629 3.612 3.594 3.577 3.561
38 3.544 3.527 3.513 3.497 3.481 3.465 3.449 3.434 3.419 3.404
39 3.389 3.375 3.361 3.347 3.333 3.320 3.306 3.293 3.280 3.268

40 3.255 3.242 3.230 3.218 3.206 3.194 3.183 3.171 3.160 3.149
41 3.138 3.127 3.117 3.106 3.096 3.086 3.076 3.067 3.057 3.048
42 3.038 3.029 3.020 3.012 3.003 2.994 2.986 2.978 2.970 2.962
43 2.954 2.946 2.939 2.932 2.925 2.918 2.911 2.904 2.897 2.891
44 2.884 2.878 2.872 2.866 2.860 2.855 2.849 2.844 2.838 2.833

From Appendix 12 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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From Henry, Lipson, and Wooster [G.15].

45 2.828 2.824 2.819 2.814 2.810 2.805 2.801 2.797 2.793 2.789
46 2.785 2.782 2.778 2.775 2.772 2.769 2.766 2.763 2.760 2.757
47 2.755 2.752 2.750 2.748 2.746 2.744 2.742 2.740 2.738 2.737
48 2.736 2.735 2.733 2.732 2.731 2.730 2.730 2.729 2.729 2.728
49 2.728 2.728 2.728 2.728 2.728 2.728 2.729 2.729 2.730 2.730

50 2.731 2.732 2.733 2.734 2.735 2.737 2.738 2.740 2.741 2.743
51 2.745 2.747 2.749 2.751 2.753 2.755 2.758 2.760 2.763 2.766
52 2.769 2.772 2.775 2.778 2.782 2.785 2.788 2.792 2.795 2.799
53 2.803 2.807 2.811 2.815 2.820 2.824 2.828 2.833 2.838 2.843
54 2.848 2.853 2.858 2.863 2.868 2.874 2.879 2.885 2.890 2.896

55 2.902 2.908 2.914 2.921 2.927 2.933 2.940 2.946 2.953 2.960
56 2.967 2.974 2.981 2.988 2.996 3.004 3.011 3.019 3.026 3.034
57 3.042 3.050 3.059 3.067 3.075 3.084 3.092 3.101 3.110 3.119
58 3.128 3.137 3.147 3.156 3.166 3.175 3.185 3.195 3.205 3.215
59 3.225 3.235 3.246 3.256 3.267 3.278 3.289 3.300 3.311 3.322

60 3.333 3.345 3.356 3.368 3.380 3.392 3.404 3.416 3.429 3.441
61 3.454 3.466 3.479 3.492 3.505 3.518 3.532 3.545 3.559 3.573
62 3.587 3.601 3.615 3.629 3.643 3.658 3.673 3.688 3.703 3.718
63 3.733 3.749 3.764 3.780 3.796 3.812 3.828 3.844 3.861 3.878
64 3.894 3.911 3.928 3.946 3.963 3.980 3.998 4.016 4.034 4.052

65 4.071 4.090 4.108 4.127 4.147 4.166 4.185 4.205 4.225 4.245
66 4.265 4.285 4.306 4.327 4.348 4.369 4.390 4.412 4.434 4.456
67 4.478 4.500 4.523 4.546 4.569 4.592 4.616 4.640 4.664 4.688
68 4.712 4.737 4.762 4.787 4.812 4.838 4.864 4.890 4.916 4.943
69 4.970 4.997 5.024 5.052 5.080 5.109 5.137 5.166 5.195 5.224

70 5.254 5.284 5.315 5.345 5.376 5.408 5.440 5.471 5.504 5.536
71 5.569 5.602 5.636 5.670 5.705 5.740 5.775 5.810 5.846 5.883
72 5.919 5.956 5.994 6.032 6.071 6.109 6.149 6.189 6.229 6.270
73 6.311 6.352 6.394 6.437 6.480 6.524 6.568 6.613 6.658 6.703
74 6.750 6.797 6.844 6.892 6.941 6.991 7.041 7.091 7.142 7.194

75 7.247 7.300 7.354 7.409 7.465 7.521 7.578 7.636 7.694 7.753
76 7.813 7.874 7.936 7.999 8.063 8.128 8.193 8.259 8.327 8.395
77 8.465 8.536 8.607 8.680 8.754 8.829 8.905 8.982 9.061 9.142
78 9.223 9.305 9.389 9.474 9.561 9.649 9.739 9.831 9.924 10.02
79 10.12 10.21 10.31 10.41 10.52 10.62 10.73 10.84 10.95 11.06

80 11.18 11.30 11.42 11.54 11.67 11.80 11.93 12.06 12.20 12.34
81 12.48 12.63 12.78 12.93 13.08 13.24 13.40 13.57 13.74 13.92
82 14.10 14.28 14.47 14.66 14.86 15.07 15.28 15.49 15.71 15.94
83 16.17 16.41 16.66 16.91 17.17 17.44 17.72 18.01 18.31 18.61
84 18.93 19.25 19.59 19.94 20.30 20.68 21.07 21.47 21.89 22.32

85 22.77 23.24 23.73 24.24 24.78 25.34 25.92 26.52 27.16 27.83
86 28.53 29.27 30.04 30.86 31.73 32.64 33.60 34.63 35.72 36.88
87 38.11 39.43 40.84 42.36 44.00 45.76 47.68 49.76 52.02 54.50

�° .0 .1 .2 .3 .4 .5 .6 .7 .8  .9
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Appendix 

Data for Calculation of the Temperature
Factor

For x greater than 7, φ(x) is given to a good approximation by (1.642/x). (From [G.1].)

x .0 .1 .2 .3 .4 .5 .6 .7 .8  .9

0 1.000 0.975 0.951 0.928 0.904 0.882 0.860 0.839 0.818 0.787
1 0.778 0.758 0.739 0.721 0.703 0.686 0.669 0.653 0.637 0.622
2 0.607 0.592 0.578 0.565 0.552 0.539 0.526 0.514 0.503 0.491
3 0.480 0.470 0.460 0.450 0.440 0.431 0.422 0.413 0.404 0.396
4 0.388 0.380 0.373 0.366 0.359 0.352 0.345 0.339 0.333 0.327
5 0.321 0.315 0.310 0.304 0.299 0.294 0.289 0.285 0.280 0.276
6 0.271 0.267 0.263 0.259 0.255 0.251 0.248 0.244 0.241 0.237

Values  of  f1x2 �
1
x �

x

0

j

ej � 1
 dj  as  a  Function  of  x

Debye Temperatures
James [G.19] gives the following
values of the characteristic Debye
temperature for some cubic
metals

™

Metal Θ(K) Metal Θ (K)

Al 390 Ta 245
Ca 230 Pb 88

Cu 320 Fe 430
Ag 210 Co 410
Au 175 Ni 400

Cr 485 Pd 275
Mo 380 lr 285
W 310 Pt 230

From Appendix 13 of Elements of X-Ray Diffraction, Third Edition. B.D. Cullity, S.R. Stock.
Copyright © 2001 by Pearson Education, Inc. All rights reserved.
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REFERENCES

The following books are listed more or less in the order they are encoun-
tered in the text

G.1 International Tables for Crystallography, Ed. A.J.C Wilson, Vol. A-C
(Dordrecht Kluwer Academic Pub. for International Union of
Crystallography, 1995). The reference ‘’book” for crystallography and dif-
fraction.

G.19 R. W. James. The Optical Principles of the Diffraction of X-Rays
(Woodbridge; CT: Ox Bow Press, 1982). Excellent book on advanced the-
ory of x-ray diffraction. Includes thorough treatments of diffuse scattering
(due to thermal agitation, small particle size, crystal imperfections, etc.),
the use of Fourier series in structure analysis, and scattering by gases, liq-
uids, and amorphous solids.
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Index
Page references followed by "f" indicate illustrated
figures or photographs; followed by "t" indicates a
table.

#, 52, 100-101, 289

A
Abscissa, 337
Accelerated, 4, 120, 209, 590
Acceleration, 4, 24, 120, 127, 209, 590
Acceptance, 235, 298, 540
Accounting, 543
Accuracy, 74, 106, 108, 142, 161, 199, 225-227, 229,

239-240, 298, 315, 335, 353-355, 359, 365,
369-373, 375, 377, 383, 394-395, 436, 470,
481-484, 506, 512, 547, 623

mapping, 199
Activity, 25, 221, 285
Addition, 47-49, 68, 91, 115, 136, 138, 144, 182, 219,

229, 255, 284-285, 296, 298, 312, 343-344,
346-348, 350, 386, 421, 514, 532, 538, 552,
567, 569, 585, 593

Adjustment, 248, 273, 383, 431
Advanced, 26, 156, 169, 188, 242, 340-341, 360, 374,

448, 478, 555, 588, 613, 640
Aggregates, 363, 399-449, 480, 561, 586
Aging, 587
Agitation, 156-157, 159, 169, 188, 337, 340, 374, 555,

640
Air, 12, 19, 24, 29-30, 240, 246-247, 254, 265-266,

269, 281, 388, 394, 473, 584, 612
Algorithms, 196

written, 196
Allowance, 351
Alloy, 57, 63, 248, 255, 305, 318, 325-332, 334, 338,

343-349, 352-355, 357, 359, 365, 373, 385,
400, 405-406, 409, 464-465, 487, 587

steels, 365, 464
Alloying, 307

mechanical, 307
Alloys, 58, 66-67, 120, 247, 263, 284-285, 325, 327,

330-332, 336, 340, 344-349, 353-355, 357,
359-360, 367, 373, 404-405, 416, 418-419,
452, 456, 464-465, 481, 483, 579, 587

aluminum, 418, 465
amorphous, 284, 340
copper, 325, 327, 330-332, 336, 355, 359, 418, 465
lead, 247
nickel, 464-465, 483
titanium, 367, 465
zinc, 330-331, 336, 359

Alum, 267
Aluminum, 87, 110, 156, 211, 213, 259-261, 265,

275-276, 281, 337-338, 352, 387, 401, 418,
423-424, 426, 429, 435, 438-442, 447, 465,
480, 493, 514-516, 520, 526-527, 536, 544

and alloys, 418
production, 276

Amorphous, 31, 124, 169, 171, 186-188, 241-242,
265, 269-270, 284, 303, 340-341, 374,
396-397, 403, 413, 445, 448, 486, 555,
557-558, 561, 573, 588, 640

alloys, 284, 340
polymers, 171, 445, 557-558, 561, 573

Amorphous polymers, 557
Amplification, 209-210, 212, 215, 516
Amplifier, 210
Amplitude, 2, 4, 93, 95, 127, 130-132, 135-138, 145,

156-158, 172, 175, 208, 217, 220-221, 224,
228, 320, 325, 328, 529, 576-580, 589, 603,
609

Analog, 135, 221, 238, 589
instruments, 221

and, 1-30, 31-44, 46-80, 82-88, 91-124, 125-170,
171-188, 191-242, 243-270, 271-282,
283-301, 303, 305-323, 325-341, 343-357,

359-374, 375-397, 399-449, 451-486,
487-491, 493-497, 499-506, 509-518,
519-555, 557-571, 573-588, 589-610,
611-614, 616, 619-621, 623, 625, 631,
633-634, 636-637, 640

Angle:, 543
Angle:

Bragg, 543
diffraction, 543

Angles, 2, 32, 38, 42-44, 47, 51, 65, 70, 72, 80, 82-83,
87, 91, 94-98, 103-104, 106, 116, 121-122,
128, 147-151, 154-155, 157, 159, 172-175,
178, 180, 186, 191, 193, 197, 200-203, 211,
224, 232-233, 237, 240, 261, 264, 267, 273,
277, 279-280, 288, 308, 329, 334, 337, 347,
360, 380, 382-383, 385, 403, 419, 421-424,
426, 428, 430-431, 433, 437, 443, 447, 459,
461, 475-476, 483, 488, 490-491, 494-496,
499, 503, 506, 510, 512, 514, 516, 519, 521,
523, 529, 534-535, 543, 547, 560, 563,
568-569, 573, 576-577, 579, 582-586, 593,
596, 613-614, 616

computing, 237, 288, 385
convergence, 279-280, 593
corrections, 426, 430, 569
deflection, 593, 596
measurement, 2, 80, 82, 91, 106, 193, 197,

200-203, 211, 224, 232-233, 237, 240,
267, 380, 403, 426, 459, 461, 475-476,
483, 490, 499, 547

measurements, 106, 155, 191, 200, 224, 240, 264,
267, 380, 382-383, 385, 403, 423, 426,
433, 459, 475, 483, 503, 547, 582

phase, 94-96, 98, 148-149, 172-173, 175, 288,
347, 360, 516, 529, 568-569, 576

random errors, 380
Anisotropy, 479, 557

normal, 479
Annealing, 67-68, 247, 406-407, 409, 415-417,

523-524, 544
cold work, 406
grain growth, 68, 406
recovery, 406
recrystallization, 67-68, 406, 416-417

Anode, 5, 19-20, 23, 25, 27, 29, 208-209, 211-212,
223-224, 471, 590

Arc, 119, 183-184, 200, 233, 255, 422-424, 473, 514,
519, 522, 540, 542-543, 545, 550-551

Arcs, 73, 243, 422, 424, 496, 512, 515, 519, 522-523,
564, 568, 598

area, 4, 6, 19, 22-25, 72, 148-150, 153-154, 160, 199,
202, 224, 227, 234, 238, 243, 245, 261, 293,
360, 400-401, 403, 419-422, 424-425,
438-440, 442, 452, 455, 466, 475, 478-479,
516, 523, 525, 527, 534, 538-539, 543-544,
553-554, 562, 565, 569, 573-574, 577,
581-584, 586-587, 593-594, 600-601, 603

Arguments, 156, 217
Arithmetic mean, 387
ARM, 469, 548
Arrays, 31, 102, 203, 222, 573-574, 597
Arrival times, 224
Artificial, 416-417, 545
Asbestos, 370
Ash, 585
Assembly, 197, 201, 247, 452-453, 535, 575, 593

flexible, 201
Assumptions, 181, 334, 455, 462, 483, 547-548
Atactic, 559-560
Atmosphere, 254, 343
Atomic, 3, 6-7, 9, 12, 15-18, 31, 42, 54, 57, 60-63, 66,

105-106, 126, 130-133, 135, 138, 142, 148,
157-158, 162, 178, 235, 265, 271, 275, 305,
319-321, 323, 325-331, 334-337, 339, 345,
350-351, 353-354, 365, 536, 558, 563, 570,
576, 605, 613-614, 629-631

density, 54, 63, 106, 319-321, 350-351, 536, 576

Atomic bonding, 320
Atomic number, 6-7, 9, 12, 15, 17-18, 130-132, 235,

265, 271, 334-336, 353, 563, 605, 614
Atomic numbers, 323, 334, 353-354
Atomic weight, 158, 319, 351
Atomic weights, 106, 162, 319, 350
Atoms, 4, 6, 10-12, 17, 31-32, 41, 49, 52-66, 68, 70,

85-86, 91-96, 98, 100, 105-107, 125-127,
131-133, 135, 138-145, 148-149, 156-159,
163, 167, 171-172, 178, 182, 185-186, 204,
208-209, 212-213, 222, 237, 271, 289,
306-307, 310, 312, 318-323, 325-337, 345,
350-353, 445, 529, 546, 558-560, 563, 573,
576, 607, 610, 612

Attenuation, 112, 183, 185, 210, 455, 563, 584
Austenite, 283, 318, 350, 359, 363-367, 371-373

retained, 359, 363, 367
Automated, 193, 198, 437, 511-512
Automatic, 296-297, 377, 432, 537
Automatic control, 537
Automation, 198, 544
Availability, 312, 452, 544
Average, 4, 6-7, 12, 62-63, 115, 127, 156, 194, 198,

205, 216-217, 220, 224-225, 228-230, 237,
240, 294-295, 298-299, 307, 325-328, 332,
336-337, 371, 373, 385, 387, 394-395, 400,
413, 423, 439, 445, 465, 480, 523, 543, 545,
547, 570, 579, 581, 585, 606, 625

Average value, 4, 240, 465, 547
Avogadro’s number, 106, 158
Axis, 2, 34, 36-37, 41-44, 47-48, 50-53, 59, 67-69, 74,

76-77, 80-82, 85-87, 98, 105, 110-111,
113-116, 119-121, 123, 136-137, 145, 147,
152, 165-166, 192-193, 196-199, 203, 208,
224, 232, 237-239, 243, 247-248, 256, 259,
262, 274, 294, 316-317, 377-380, 383, 387,
394, 417-427, 429-432, 434, 437-438,
440-443, 446-447, 453, 456-457, 467,
469-470, 472-473, 477, 480, 482-484,
488-490, 494, 496-499, 503-504, 506, 508,
510-514, 517-518, 519, 521, 523, 527-528,
531, 537, 539-544, 547-555, 560, 563, 565,
567-568, 570-571, 575, 584, 590-593,
596-597, 600-601, 603

B
Back, 2, 4, 77, 109-112, 118, 149, 155, 157-158, 183,

197, 201-202, 247, 256-258, 260-262, 264,
266-267, 272-277, 281, 290, 376-377,
381-386, 390, 400-401, 403, 405, 407,
409-413, 424, 436, 446-447, 456, 475, 483,
487-489, 491, 493-494, 500-503, 505-506,
512, 514-516, 518, 519-523, 536, 561, 563,
594, 596, 600, 612

etching, 276, 409-411
striking, 272, 520

Backward, 109, 112, 128-129, 131, 150-151, 153, 247,
521

Ball, 63, 66, 403, 415
Band, 67-70, 150, 213, 215, 235-237, 251, 260, 424,

538, 553
Bandwidth, 25
Bar, 35, 37, 178, 254, 452, 456-457, 459, 552
Barrel, 593
Bars, 53, 294
Basal plane, 50-51
Basal planes, 300
base, 44-47, 49, 54, 57, 60-61, 125-126, 140-142,

167, 185, 221, 275-276, 296, 405
Basic, 19, 31, 52, 58, 72-74, 111, 192, 209, 217, 284,

305, 315, 319, 350, 360, 364, 371-372, 501,
548

size, 209, 217, 305, 319, 372
Batch, 394
Beads, 417
Beams, 13, 18, 23, 27-28, 91, 94-96, 101-103, 105,

108-109, 111-115, 121, 123, 125-170,
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185-186, 191, 193, 199-200, 208, 224, 226,
235, 243, 245-249, 253-254, 261, 263,
266-267, 274, 276-278, 280-281, 319, 360,
372, 376, 410, 421, 424-426, 428, 430, 432,
437, 441, 452, 458, 467, 469, 475, 488, 497,
499-500, 504, 511-512, 515, 523, 529,
540-541, 545, 547-548, 563, 565, 568, 587,
593, 596, 603, 607, 609

compact, 139, 153-154, 156, 160
composite, 235, 248
continuous, 18, 28, 109, 111, 247-249, 523
edge, 13, 18, 111-112, 132, 261, 263, 281, 421,

488, 497, 511
function of, 133, 147, 151, 153, 156-158, 185, 224,

249, 253, 281, 452, 540-541, 568
shear, 540
size of, 105, 142, 193, 208, 224, 246, 253, 274,

280, 372
stresses in, 452
tapered, 247
three-dimensional, 123, 135

Bend, 606
Bending:, 454

force, 25
Bias, 215, 590
binding, 64
Biological, 27, 49, 305, 573, 585, 587
Black, 56, 207, 537, 539, 553, 607
Blackening, 4, 192, 249-250, 254, 260, 268, 272, 275,

425, 532
block diagram, 195
Blocking, 582
Blow, 527
Body-centered cubic, 45, 54, 309, 312, 316, 318, 330,

334, 346, 348, 365, 464
Boltzmann’s constant, 158, 613
Bond angle, 560
Bonding, 320, 322-323, 325, 561
Bonds, 559-561
Bone, 1, 587
Bottle, 321
Bottom, 40, 53, 153, 172, 181, 238, 267, 297, 328,

403-404, 420-421, 431, 453, 473, 490-491,
514-515, 537-538, 541, 545, 551-552, 562,
568, 575, 584, 610

Boundary, 68, 352-354, 405, 538, 610
Bragg angle, 93, 102-103, 109, 113, 115-116, 122,

129, 147-148, 150-152, 156, 159, 172-173,
175, 182, 185, 232-234, 257, 264, 273, 280,
319, 360, 375, 488, 529, 533-535, 542, 545,
547, 564, 567, 576, 598

Bragg’s law, 95-97, 99, 101, 103, 105-106, 108-109,
118, 121-122, 125, 127, 133-134, 138,
147-148, 150, 172, 174, 181, 186, 188, 222,
234, 245, 258, 264, 271, 273, 308-309, 328,
375-376, 389, 391, 421, 506, 537, 547, 564,
611

Brass, 58, 67, 330-331, 339, 405-406, 408, 418, 434,
443-444, 465

Breakdown, 159
Bridge, 574
Brittle, 247-248, 348, 403, 446, 454
Bromide, 29, 249
Bromine, 112, 249-250
buffer, 225, 545, 552-553

layer, 545, 552-553
Building Blocks, 487, 557
Bulk, 156, 367, 377, 409-410, 471, 547, 554, 561, 596
Burgers vector, 530-532

C
Cables, 475, 516
Cadmium, 322-323, 325
Calculations, 128, 140, 142, 144, 146, 151-152, 157,

161, 163-164, 231, 237, 283, 311, 323, 331,
339, 412-413, 443, 606

rotation, 443
Calculators, 380
Calibration, 206, 251-252, 262, 359, 362, 368-370,

373, 451, 479-481, 547, 595
Cameras, 124, 188, 191, 241, 243, 246-247, 249,

251-254, 256, 259, 262-263, 266-267, 270,
272, 278, 280, 303, 373, 381, 386, 397, 403,
411, 448, 475, 486, 537-538, 595, 612

cones, 243, 253-254, 259
Cancer, 27
Capacitance, 228, 231
capacitor, 209, 228-229

voltage across, 228

Capacitors, 21, 24
Carbides, 340, 363, 365, 367, 373
Carbon, 26, 62, 132, 142, 144-145, 167, 283, 318,

350, 365-366, 373, 403, 418, 435, 446-447,
559-560, 563, 614

Carbon atom, 144, 560, 614
Carriage, 193
Carriers, 215, 217
carry, 120, 320
Cast, 73, 251, 254, 348, 477, 536
Casting, 1, 348, 532

defects, 532
process, 532

Catalysts, 18, 403
Cathode, 19-20, 27, 29, 208-209, 212, 590
Cation, 284
cell, 28, 32-35, 38-39, 43-44, 46-49, 51, 53-54, 56,

58-62, 64-65, 85-86, 98, 100, 104-107, 116,
125-126, 133, 135, 138-145, 156, 163, 167,
175, 289, 306-307, 310, 312-313, 316-322,
326-328, 331-334, 350-351, 360, 365, 471,
529-530, 546, 561, 563, 576, 587, 605,
615-616, 619-620

Cells, 27, 32, 34-35, 42-44, 46-49, 53, 57, 59, 62, 64,
86, 125, 141-142, 167, 175-177, 179, 183,
188, 326, 332-333, 529, 561, 587

Cement, 370
Center, 20, 41-42, 44, 71, 73, 76-77, 80, 82, 86, 101,

105, 110, 112, 153, 198, 200, 219, 221,
238-240, 250-251, 256, 258, 260, 273-274,
279, 281, 317, 348, 377-378, 382-384, 387,
419, 422-424, 426, 431-432, 443, 470-471,
479, 489-490, 496-497, 499, 501-503, 506,
511, 513-514, 516, 522, 535, 539, 547,
560-561, 578, 584, 591, 593, 599

Center of gravity, 238, 578
Central meridian, 426
Centroids, 379
Ceramic, 62, 106
Ceramics, 160, 247, 399, 404, 415-416, 452, 571, 573

crystalline, 399, 452, 571, 573
structure, 399, 404, 415-416, 571

Certification, 28
Chain, 557-563, 568, 570
Chains, 557, 560-562, 570
changing, 196, 222, 229-230, 263, 594, 597
Channel, 218-219, 221, 224, 231, 583-585, 607

height, 218-219, 221, 231
width, 218, 224, 231, 584

Channels, 221-222, 224
Charge carriers, 215, 217
Charge density, 576
Charge-coupled device (CCD), 224, 597
Chemical, 11, 18, 57, 63, 91, 124, 188, 222, 241, 270,

283-284, 286-287, 289, 297, 299, 303, 306,
319-321, 325, 359, 364, 372-373, 397, 399,
412, 445, 448, 486, 544, 589

vapor deposition, 544
Chemical elements, 222, 283
Chemical vapor deposition, 544
Chlorine, 58-59, 107, 143, 559, 561
Chromium, 61, 338, 365-366

carbide, 365
Circles, 33, 68, 71, 73-74, 76-77, 80, 82, 85-87, 424,

426, 493-494, 497, 499-500, 514
Circuits, 21, 195, 199, 204, 217-218, 224

short, 199
Circular, 24, 73, 77, 233-234, 243, 260, 274, 278,

280-281, 286, 478-479, 521, 565, 591
Circular arcs, 73
Clay, 370
CLOCK, 25

sources, 25
Coal, 585-586
Coated, 275-276, 527
Coatings, 416, 418

metal, 416, 418
Coefficient, 11-14, 18, 29, 97, 112, 153-154, 156, 158,

198, 220, 248-249, 262, 264, 360-361, 363,
368, 372, 387, 394-395, 426-427, 446,
535-536, 563, 584

Cold, 67, 254, 348, 404-411, 416, 418, 423, 434,
437-439, 444, 479

working, 348, 409
Cold working, 348
Collection, 25, 63, 156, 199, 213, 284, 387, 582, 584
Columnar, 418
Columns, 162-164, 300, 310, 387, 610
Complex function, 185

Complex numbers, 136, 138
component, 18-19, 41, 52, 128, 130, 136, 174, 191,

203, 231-232, 234-235, 247, 257-258,
264-266, 271, 279, 292, 301, 307, 333, 377,
379, 385, 402, 405, 424, 434, 438, 440-441,
455, 473, 484, 551, 577, 591

type, 41, 203, 234, 307, 551
Component parts, 41, 203, 377, 379
Composites, 540
Compound, 11, 57-58, 60, 63, 213, 248, 283, 319,

370, 614
Compressed, 7, 452, 457, 575
Compression, 181, 405, 418, 453-455, 484, 496

test, 496
Computer, 60, 161, 195, 198, 221, 225, 227, 286, 288,

296-297, 299, 316, 380, 433, 437, 490, 499,
503, 511-512, 516, 518, 544

simulation, 499
Computer revolution, 296
Computers, 25, 192, 229, 293, 312, 487, 544, 584
Concentration, 215, 234, 346, 350, 359-361, 365,

368-369, 375, 403, 577, 592
Conduction, 29, 213, 215, 251
Conduction band, 213, 215, 251
Constants, 9, 38, 157, 217, 229-231, 313, 315-316,

346, 373, 380, 390, 451, 459, 463-464,
480-481, 483, 531, 582

exponential, 380
special, 463

Construction, 20, 77, 80, 86, 101-102, 111, 113, 123,
136, 164, 176, 263, 352, 383, 424, 500,
513-514, 516, 565, 595

Continuous, 4-8, 10, 16-18, 24-25, 28, 109, 111, 116,
174, 194-196, 198, 211, 219, 229-230,
247-250, 262, 264-265, 271, 273, 299, 344,
349-351, 367, 379, 402, 417, 446, 519, 523,
527, 537, 567

improvement, 219
path, 28

Continuous distribution, 265
Contours, 178, 444, 540, 551-553, 606
Contrast, 120, 158, 173, 254, 261, 274-275, 529-532,

534, 539, 589, 596, 599-600, 603-604,
606-610

Control, 66, 162, 198, 231, 261, 371, 394, 400, 417,
437, 475, 483, 512, 537, 544, 571, 590, 594

Controlling, 194, 225, 239, 305, 470
Controls, 21
Conversion, 108, 455, 623
Convolution, 543
Cooling, 20-21, 24, 29, 198, 216, 222, 253-254, 332,

347-349, 452, 475, 479, 596
Cooling water, 20
Coordinate systems, 459
Coordinates, 35, 39-40, 48-49, 57, 60, 86-87, 135,

138, 140, 443, 457, 489-490, 493, 505, 516,
576, 579-580

Coordination number, 64, 325, 351
Coping, 503
Core, 464, 529, 604
Cores, 416
Corners, 32, 34-35, 43, 46, 51, 64, 331, 558, 608
Correction for, 394-395, 414, 485
Corrections, 239, 246, 252, 335-336, 339, 425-426,

430, 470, 472, 569, 611
Corundum, 289, 370, 394
cost, 83, 199, 222, 246, 286, 372, 469, 544
Cotton, 445
Covalent bonding, 325
Covalent bonds, 559-560
Covers, 124, 188, 221, 241, 267, 270, 287, 303, 343,

373, 397, 400, 433, 448, 452, 473, 486, 531,
589, 593

Cracks, 106
Creep, 487, 587
Cross, 20, 22-23, 39, 85, 152-154, 267, 275, 277,

279-281, 286, 360, 401, 413, 420, 427, 437,
452, 455, 540, 561, 577, 582, 595

Crucible, 65
Crystal, 31, 37, 40-44, 46-47, 49-50, 52-53, 57-58,

60-71, 73, 75-76, 80, 82-83, 85-88, 91-97,
100-116, 118, 120, 122-124, 125-126,
132-133, 138, 142, 146-150, 156-161,
164-165, 167-169, 171-175, 177-188,
191-192, 198-199, 211, 213-215, 222, 225,
231-237, 241, 245, 253-254, 262, 264-266,
270, 271-272, 275, 277, 279-282, 284, 299,
303, 305-341, 343-345, 348, 356-357, 364,
367, 372-374, 379, 394, 397, 399-402,
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404-406, 416-418, 421-422, 434, 436-437,
441-443, 445, 448, 457, 463, 485-486,
487-491, 493, 496-497, 499, 502-506,
509-518, 519-555, 561-562, 565, 568, 571,
582, 584-585, 594, 598-600, 603-604,
608-609, 611-613, 634, 637, 640

growing, 68
structure of metals, 88, 340, 485, 517-518

Crystal systems, 37, 43-44, 50, 53, 105, 306, 316
Crystallites, 174, 402-403, 413, 445, 561-562, 565,

574-575
Crystals, 1, 23, 31-89, 91, 96, 98, 101, 105, 112, 115,

119, 122, 147, 150, 156, 160, 167, 169, 171,
174, 178-179, 181-182, 185-186, 188, 191,
198, 231, 234-235, 242, 265, 272, 280, 300,
305, 308-309, 312-313, 340-341, 359,
371-374, 380, 394, 399-403, 416-418, 420,
448, 479-480, 483, 487-518, 519, 522-523,
527-528, 532, 536-540, 542-543, 547-549,
553, 555, 561, 571, 583, 588, 607, 611-612,
615, 633

cube, 35, 41-42, 49, 60-63, 82, 84-85, 87, 107, 326,
329, 331, 419, 421, 496, 517

current density, 591
Curvature, 70, 120, 201, 233, 348, 455, 528
Curve fitting, 481
Curves, 5-7, 9, 109, 163, 173-174, 181, 183, 185-186,

199, 214, 219-220, 246, 249, 344, 352-356,
362, 381, 406, 408, 415, 441, 463, 490-491,
543-546, 548, 551, 568, 585, 600, 606

Cutoff, 223

D
data, 10, 25, 147, 162-163, 186, 193, 196, 198-199,

214, 224-225, 227, 229, 238-239, 260,
284-288, 290, 293-297, 300-301, 307-308,
310, 316, 323, 325, 330, 335-336, 355, 360,
370-372, 378, 380, 387, 389-390, 392-393,
395, 403, 415, 430, 433, 439, 441, 462,
464-466, 470, 473, 475, 481-482, 486, 487,
495, 515-516, 544, 546, 548, 567, 569, 582,
584, 587, 639-640

sample of, 300, 323
Data collection, 25, 199, 387, 582, 584
Data files, 296
Debye temperature, 639
Decade, 224-225
Decimal places, 387
Decomposition, 253, 367, 587
Deep drawing, 416-417
Defects, 66, 171, 175, 184, 250, 305, 529, 532,

535-536, 540, 589, 604, 606-607
surface, 535-536, 540, 607

Deflections, 542
Deformation, 66-69, 181, 305, 349, 367, 405-406, 409,

416-419, 434, 440, 484, 519, 522-523, 526,
529-530, 538, 540, 570, 574, 587

plastic, 66, 305, 349, 367, 409, 416, 419, 484, 519,
526, 538

single crystals, 416
Degree, 4, 42, 54, 74, 96, 120, 174, 178, 225, 294,

318, 329, 332, 337, 372-373, 381, 416-417,
419, 422, 425, 445, 480, 483, 497, 520, 525,
544, 547, 561, 593, 596, 611

of crystallinity, 445
Degree of crystallinity, 445
Degree of freedom, 497
density, 11, 29, 37-38, 54, 63, 65, 106-107, 153, 156,

171, 179, 268-269, 306, 312, 318-321,
350-352, 361, 372, 418, 420, 425-426, 429,
431, 433-434, 437-441, 443-444, 519, 527,
536, 538, 568, 573-574, 576-577, 579, 591

Deposition, 544
chemical vapor, 544

Depth, 88, 96, 124, 154, 188, 241, 270, 303, 373, 397,
401, 409-413, 427, 446, 448, 453, 459,
471-472, 486, 528, 533, 607, 612

Design, 23-24, 27, 192-193, 204, 234, 246-247,
253-254, 259, 263, 265, 426, 547, 592

Design principles, 193
Deviation, 122, 175-178, 200, 217, 225-226, 380, 469,

473, 478, 481-482, 599-600, 604-605
standard, 217, 225-226, 473, 478, 481-482

Diagrams, 175, 343, 345, 386, 599
Diamond cubic structure, 59, 145
Die, 484
Differential equations, 183
Diffraction, 1-2, 7, 9, 11, 13, 18-19, 23-25, 27-30, 31,

39-40, 52, 62, 87-88, 91-124, 125-170,

171-189, 191-196, 198-199, 202-204,
211-212, 214, 218-219, 221-227, 230-235,
237-242, 243-249, 251, 253-257, 259-270,
271, 274-275, 277, 280-281, 283-303,
305-312, 316-318, 321, 323, 325-327, 332,
334, 336-337, 340-341, 343-344, 346,
348-349, 353, 355-356, 359-360, 362-365,
367, 369-370, 372-374, 375, 377-380, 382,
386-387, 390, 393-394, 396-397, 399-407,
409-414, 420-427, 431-432, 435-438,
445-448, 451-452, 454-459, 462, 464,
466-467, 469-471, 473, 477-483, 485-486,
487-494, 496, 501-507, 509-511, 515, 517,
519-522, 527, 529-530, 533, 535, 537,
540-548, 550-552, 555, 557, 562-568, 571,
573-575, 587-588, 589, 591, 593-609,
611-614, 615, 619, 621, 623, 625, 627, 629,
631, 633-634, 635, 637, 639-640

Diffraction angle, 97, 103, 148, 172, 195, 211, 230,
235, 266, 288, 574

Diffusion, 22, 348, 359, 561
bonding, 561
bulk, 561
volume, 561

Digital, 196, 221, 227, 276, 316, 475, 516, 584
camera, 196, 475, 516
signals, 221

Digitizing, 221, 268, 597
Dihedral angle, 77
Dimension, 98, 177, 252, 316, 581
diode, 225
Dipole, 608
Direct, 38-40, 43, 87, 100-103, 112, 121-122, 164,

175-179, 251, 285, 306, 320, 327, 336, 352,
361, 363-364, 367, 371-373, 380, 392, 425,
429, 442, 469, 481, 516, 529, 535-536, 540,
543, 546, 564, 574-575, 582, 584-585, 595,
597, 599-600, 602, 609

emulsion, 535
Directing, 540
Discontinuities, 14, 249
Discrepancies, 289-290
Discrimination, 218
Dislocations, 66, 123, 171, 178-180, 519, 527, 529,

531-532, 534-538, 540, 554, 589, 604,
607-608

Dispersion, 132, 335, 587
Displacement, 156, 158-159, 175, 378-379, 382-383,

386, 389, 393, 469, 482, 530-531, 599, 604
Distances, 35-36, 42, 63, 70, 73, 80, 180, 195, 281,

323, 325, 419, 445, 451, 477, 490, 502, 519,
525, 595, 600

perpendicular, 42
Distribution, 7, 96, 120, 150, 156, 208, 214, 216-217,

219-221, 225, 235, 265, 299, 328-329,
336-337, 371, 416, 420, 437, 441-444, 479,
535, 540, 551, 565-566, 569-570, 573-574,
576, 579-582, 587, 591-592, 597-598, 607,
613

continuous distribution, 265
identification, 120, 220, 299, 597
probability, 225, 299, 441, 598, 607

Distributions, 219
Dividers, 86
Double, 62, 147, 199, 275-276, 391, 394, 418, 424,

436, 438, 440-441, 459, 540-544, 547-554,
559, 561, 597, 608

Double bond, 559, 561
Draw, 85-87, 116, 137, 167, 496
Drawing, 35, 39, 55-56, 67-70, 72, 75, 82, 85-86, 93,

106, 115, 133, 145, 147, 154, 179, 192, 201,
213, 215, 232-233, 267, 280, 348, 416-417,
421, 431, 439, 454, 457, 484, 496, 500, 505,
525, 533, 535, 560

strip, 192, 201
tube, 192, 213, 232-233, 267, 525, 533

Drift, 215, 388
Drop, 173, 239-240, 406, 529, 563
dual, 4, 272, 386, 611
Ductility, 66
Dust, 12, 369-370, 564
Dusts, 284, 369, 403

E
Earth, 87
Edge dislocation, 530
Efficiency, 29, 131, 204, 206-207, 214, 216, 561
Elastic limit, 453-454, 481
Elastic modulus, 181, 481

Elasticity, 459, 479
Electric, 2-4, 27, 93, 126-127, 136, 192, 208-209,

211-212, 344, 356, 416, 451, 454, 458,
589-590

shock, 27
Electrical resistivity, 215, 487
Electrodes, 4-5, 19, 208, 479
Electromagnetic, 2-4, 24, 91, 126
Electromagnetic spectrum, 2-3
electron, 5-6, 10-18, 21-25, 30, 63, 101, 120-121,

126-131, 135, 138, 159, 186, 209, 211-213,
215-217, 282, 287, 321, 360, 413, 529, 568,
573-574, 576-577, 580, 589-610, 611-614

Electron-hole pair, 216
Electronic counter, 212
Electrons, 4-6, 10-11, 15-17, 19-21, 23-25, 28-29, 64,

88, 96, 101, 120-121, 126, 129-133, 156,
185, 204, 208-209, 211-213, 215-216,
250-251, 321, 335, 340, 396, 447, 485, 517,
576, 580, 589-591, 593-594, 597-598,
604-605, 607, 609, 611-613

density of, 29, 156, 321
transfer of, 607

Electroplating, 418
Elements, 1, 10, 12-13, 31, 41-43, 46-47, 53-54, 57,

59, 88, 91, 125, 132, 158, 171, 191, 222,
237, 243, 251, 271, 283-285, 305, 320, 325,
334, 336, 338, 343-344, 350, 353, 359, 375,
399, 451, 485, 487, 518, 519, 557, 563, 573,
589, 597, 611, 614, 615, 619, 623, 627, 629,
633, 635, 639

cubic, 43, 46-47, 54, 57, 59, 158, 320, 334, 338,
350, 375, 615, 627, 633, 639

one-dimensional, 53
quadratic, 627
two-dimensional, 53, 597

Elevation, 56, 70
Elongation, 456
Emery, 543
Emitter, 9
Emulsion, 29, 111, 249, 271, 275-276, 400, 527, 532,

535
Emulsions, 27, 166, 199, 249, 386, 420, 540, 584, 597
energy, 3-6, 10-17, 19, 22, 25-26, 28-30, 66, 95, 129,

132, 147-150, 153-155, 183, 204, 206-209,
212-217, 219-223, 234-235, 240, 279-280,
282, 329, 360, 365, 413, 427-428, 446, 536,
560, 590, 593, 598, 605, 607, 611-613, 623

coefficient, 11-14, 29, 153-154, 220, 360, 427, 446,
536

joules, 4-5, 28, 360
kinetic, 4-6, 10-11, 14, 17, 19, 28, 129, 611, 613
latent, 29
limited, 25, 204
potential, 19, 208, 213, 590
specific, 29, 204, 219, 221, 560
work, 11, 15, 19, 28, 132, 612, 623

Energy loss, 220
Engineering, 66, 343, 377, 400, 585, 589, 611

stress, 66
value, 377

Engineering materials, 377, 400, 585
Engineers, 1
Entity, 576
Epitaxial layers, 542, 544
Epitaxy, 544
Epoxy, 277, 387
Equations, 15, 47, 74, 80, 98-99, 101, 104-105, 136,

141, 144, 160, 167, 173, 181, 183, 237, 308,
318-319, 329, 361, 364, 369, 390, 392-393,
430, 461, 490, 506, 531, 573, 615-616,
619-620

Equilibrium, 156, 180, 229, 343, 345-349, 352-354,
452, 461, 528-529, 613

Equilibrium diagram, 343
Equipment, 22, 25, 27-28, 75, 97, 244, 249
Equity, 44
Error, 108, 226, 229-230, 240, 251, 306, 308, 310,

319-320, 322, 355, 367, 371, 375-386,
389-390, 394, 396, 424, 429, 431, 441, 469,
481-482, 484-485, 494, 499, 609

loading, 251, 382, 481
reading, 229
scale, 230, 320, 367, 377

Errors, 96, 196, 226, 230, 292, 297-299, 301, 308-309,
315, 323, 369-371, 377-378, 380-384,
386-389, 391, 395, 433, 436, 463, 469, 475,
481-483, 585

refraction, 395
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standard deviation, 226, 481-482
Estimating, 481
Estimation, 244, 402
Etching, 276, 367, 409-411, 426, 471, 543

wet, 367
Eutectic, 344, 540
Eutectoid, 344, 349
Evaluation, 24, 440
event, 240, 598
Events, 96
Experiments, 9, 18, 23, 25, 27, 91-92, 234, 353, 568,

573, 584, 613
Exposed, 4, 27-28, 197, 199, 250, 263, 441, 471
Exposure, 23, 196, 199, 246-249, 253-255, 262-263,

266-267, 269, 273, 275, 280, 475, 478, 482,
490, 504, 515, 523, 536, 538, 540, 584

Extinction, 160-161, 182-183, 372-373, 528-529, 534,
605

Extreme values, 400
Extrusion, 417, 570-571

F
Face-centered cubic, 45, 48-49, 54, 59-60, 63,

141-142, 161, 309, 312, 318, 322, 326-327,
338, 346-348, 350-351, 419, 464-465, 494,
620

Factors, 19, 25, 111, 122, 126, 128, 132, 139, 142,
144, 146-147, 151, 159-161, 164, 167, 181,
230-231, 236, 239, 287, 321, 328-331, 335,
339, 361, 365, 371, 391, 399, 402, 433, 470,
561, 576, 581, 585, 604, 629-631, 633-634

combined, 151, 470
Fading, 285
Failure, 297, 454, 469
Failures, 454
Family of planes, 49
Fatigue, 452, 454

failure, 454
limit, 454

Fatigue failure, 454
Ferrite, 62, 70, 283, 318, 413, 523-524
Fiber, 248, 265, 417-424, 434, 437-438, 440-442,

445-447, 557, 565-568, 575
Fibers, 191, 248, 416-417, 445, 453, 557, 561, 565,

568, 575
Fibrous, 565
Fiducial marks, 477, 488
Field, 1-2, 25, 29, 52, 91, 93, 126, 136, 208-209,

211-212, 215, 346-347, 352, 354-355, 379,
431-432, 437, 529-530, 589-593, 596-597,
600-601, 604, 606, 608

Figures, 42, 107-108, 193, 238, 314, 370, 395, 409,
418-419, 425, 433, 436-437, 441-443, 457,
485, 573

Filing, 161, 247, 348-349, 372, 403
Film, 1, 4, 23, 27-29, 109-114, 116-117, 123, 146-147,

150-151, 162, 164, 191-192, 199, 203, 207,
224, 243-260, 262-268, 271-277, 281, 285,
288, 311, 347-348, 360, 381-382, 384-386,
390, 402, 409, 420, 422-425, 445, 447, 466,
475-478, 482-483, 487-493, 496-499,
501-509, 515-516, 520-527, 532, 535,
539-542, 547, 562-565, 574, 594-595, 597,
612

diamond, 311
Filters, 18-19, 29, 231, 235-237, 240, 271, 436
Filtration, 18, 211, 265
Fine, 1, 16, 23, 115, 119, 161, 173, 198, 208, 247-249,

259, 275, 279, 287, 349, 365, 385, 403, 420,
446, 451, 469, 525, 527, 554, 564, 582, 584,
597

Fit, 61-62, 91, 201, 238, 380, 462, 470, 545
Fits, 514
Fitting, 238, 371, 380, 452, 473, 481
Flash, 24, 213
Flat, 65-66, 70, 72, 109, 113, 116-117, 154-155, 167,

183-184, 192-193, 196, 198, 200-201, 243,
251, 253, 259, 268, 355, 360, 367, 378, 380,
386, 421, 424, 446, 475, 478, 480, 487, 510,
519-520, 540, 562, 564

Flexible, 201, 249, 516, 557
Fluorescence, 17, 219-220, 222, 240-241, 264, 270,

470
Flux, 22, 25, 155
Fluxes, 455
Focal plane, 594, 596, 600
Fog, 263
Foil, 19, 29, 206, 211, 213, 237, 265, 387, 451, 554,

599, 602-603, 607, 610

Force, 25, 29, 126, 452, 455, 589, 591-592
body, 126

Forging, 66
Format, 285-286, 347
Forming, 7, 237, 265, 284, 400, 416, 459, 534-535,

565, 599
Fourier coefficients, 405
Fourier series, 169, 188, 320-321, 340, 374, 405, 555,

640
Four-point bending, 480-481
Fracture, 1
Frames, 75, 493
framework, 58
Free electrons, 215
Frequency, 2-4, 6, 9, 13, 15, 28, 126, 136, 335, 512,

581, 587
reference, 512

Full, 46, 49, 52, 60, 136, 173, 181, 216, 230, 288,
298-299, 402, 437, 439, 448, 457, 470, 520

Functions, 122, 139, 221, 238, 377, 379, 381,
385-386, 443, 548, 569, 609

Fusion, 29

G
Gain, 213, 233, 266, 452, 456, 516
Gamma rays, 3, 214
Garbage, 387
Gases, 31, 169, 171, 186-188, 340, 374, 445, 555,

640
Gaussian, 217, 225, 238, 414
General, 1, 4, 25, 28, 31, 35, 42, 48-49, 70, 85, 88, 94,

97-98, 103, 105, 108, 135, 138-140, 144,
146, 152, 154, 158, 164, 192, 199, 202, 204,
237, 259, 265-266, 274, 288-289, 306,
315-316, 319-320, 325, 330, 337, 344, 349,
362-363, 370, 375, 377, 380, 390, 394, 400,
402, 409-410, 416, 420, 422, 435-436, 442,
452, 454-455, 459, 469, 478, 496, 503,
519-521, 530, 547, 561, 620

Generation, 307
Generator, 493
Geometric, 47, 100, 566
Geometry, 31-39, 41-69, 71-72, 74-89, 91-124, 141,

152, 183-185, 192, 200-201, 203, 224, 245,
259, 266, 279, 318, 377, 381, 421-422, 441,
447, 457, 468-469, 472, 525, 540-543, 546,
553, 562-565, 568-569, 575, 582-584,
598-599, 615-617

Germanium, 214-215, 231, 551-552
Glass, 20, 31, 197, 203, 247-248, 263, 265, 267, 300,

485, 516, 527, 558, 569-570, 589
point, 203, 248, 265
sheet, 516

Glasses, 171, 445, 557, 569, 593
Gold, 60, 63, 65, 318, 325-334, 336-337
Grain, 65-68, 70, 116, 121-122, 160, 171, 180-181,

244, 249, 262, 271, 275, 277, 287, 348, 365,
367, 400-402, 404-407, 409, 411, 416,
418-420, 435-436, 440, 451, 483, 597, 612

boundaries, 68
Grain boundary, 68
Grain growth, 68, 406
Grain size, 171, 244, 249, 262, 287, 348, 365, 367,

400-402, 406-407, 409, 420, 436, 483, 597
Grains, 65-67, 115, 123, 160-161, 166, 179-180, 199,

250, 261-262, 294, 300, 360, 372, 399-403,
405-407, 416-421, 424-425, 427, 429, 436,
441, 451-452, 457, 478, 480, 483, 522

Grain-size number, 400, 402, 411
graph, 479, 516
Graphite, 232, 234, 299-300
Gravity, 238, 578
Greater than, 25, 93, 106, 129, 173, 181-182, 205,

267, 293, 297, 323, 325, 336, 348, 385, 469,
528, 531, 539, 568, 597-598, 600, 639

Grinding, 161, 247-248, 348, 367, 372, 403, 409, 426,
454, 471-472, 484, 543

Group, 15, 43, 46, 53-54, 62, 64, 132, 179, 285,
287-288, 290-291, 300, 318, 320-321, 559,
602

Groups, 31, 42, 54, 180, 285, 287, 318, 320-321, 380,
426, 561, 600

Gun, 590-591, 593

H
Habits, 300
Hand, 1, 15, 22, 32, 42, 47, 49, 52, 55, 62, 73, 91, 95,

97, 108, 132-133, 140, 145, 180, 193, 196,

202, 222, 230, 249, 259, 261, 263, 267, 276,
313, 323, 328, 332-334, 346, 353-354, 363,
373, 380, 403, 409, 430, 439-440, 451-452,
484, 491, 502, 504, 506, 512, 521, 535, 553,
559, 607, 612

Hard, 3, 12, 25, 60, 158, 207, 219, 309, 363, 436, 452
Hardening, 363
Hardness, 400, 406-407, 409, 472
Harmonic, 91

order, 91
Hazards, 27
Head, 475, 478, 516
Heart, 228
heat, 5, 19, 22-23, 29, 133, 253, 344, 355, 367, 472
Height, 56, 151, 204, 208, 214, 216-221, 231, 279,

403, 409, 434, 436, 473, 543
Helium, 246, 266
Help, 259, 298, 488, 502, 599
Hertz, 3
Hexagonal close-packed, 54-55, 311, 341
Hexagonal close-packed (hcp) structure, 54
High-speed, 19
Histogram, 413-414
Histograms, 587
Horizontal axis, 166, 430
Hot, 19, 21, 418, 452, 479

dipping, 418
Human, 1, 27, 316, 587
Humidity, 240
Hydrogen, 132, 246, 266, 350, 559-561, 563, 614

bonds, 559-561
Hydrostatic pressures, 254
Hysteresis, 349

I
Id, 155, 330, 338, 428, 433, 438
Illumination, 250, 593, 600
Impact, 5-6, 70, 129, 544, 614
Impurities, 66, 215, 308, 458
Incoloy, 464
Incomplete, 46, 172, 363, 423, 503
Inconel, 464-465
Index, 32, 37, 52, 140, 167, 286-287, 290-291, 294,

296, 299, 307, 312, 315, 338, 394, 400, 423,
493, 496, 499, 503, 594, 599, 603, 620

Industrial, 284, 369, 403, 416, 434, 467, 481, 483
Industrial products, 483
Inference, 123
Information, 105, 142, 158, 171, 186, 191-192, 196,

221, 251, 261-262, 268, 276, 283, 310, 321,
340, 349, 359, 373, 399-400, 405-406,
410-413, 417, 420-421, 425, 437, 443, 445,
496-497, 512, 527, 538, 546, 553, 569, 571,
573, 585, 589, 602, 611-612, 614, 620

Ingots, 348
Input, 21, 23-24, 29, 210, 229, 316, 516
Installation, 27
Installations, 21
Instruments, 88, 188, 191-193, 199, 203, 221,

230-231, 244, 274, 296, 388, 395, 437, 514,
588

integer, 32, 35, 61, 98-99, 140, 146, 172, 319,
350-351, 619

Integrated, 148-150, 153, 155, 159-162, 167-168, 177,
179-180, 183, 202, 227, 235, 239, 268, 288,
329, 334, 339, 360, 364-365, 367, 369-370,
373, 403, 410, 428-429, 433, 435, 445, 470,
528, 544, 576, 582

Integration, 11, 153, 262, 428
Interest, 67, 92, 121, 148, 150, 156, 195, 204, 224,

226, 314, 323, 349, 363, 370-371, 394, 419,
433-434, 454, 458, 496, 512, 527, 540, 544,
547, 593, 595, 603-604

Interference, 95-96, 98, 100, 122, 129, 131, 135,
144-145, 156, 159, 171-172, 175, 177,
185-186, 188, 529-530, 537, 546, 573, 579,
605, 607, 609

Interlock, 28
Intermediate, 57, 60, 63-64, 66, 73, 150-151, 168,

173, 216, 279, 281, 319, 321, 325, 340,
345-346, 351-352, 356, 373, 574, 585, 594,
596

shape, 66, 173, 279, 281, 319
Internal, 1, 20, 65, 96, 255, 298, 308, 359, 361, 367,

369-370, 373, 405, 453, 527, 564
Internal forces, 453
Interplanar spacing, 37-38, 564
Interstitial solid solution, 350
Intervals, 73, 75, 77, 86, 345, 426, 490, 631
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Inverse matrix, 391
Ionization, 19, 64, 208-210, 212, 215, 219
Ionizing radiation, 28
IP, 128, 140, 207, 371

use, 140
Iron, 29, 62-64, 92, 95, 157, 223, 232, 264, 283, 288,

350, 367, 419, 426, 440, 447, 458, 464,
479-480, 485, 524, 592, 613

Iron oxide, 29
Isolation, 236
Isothermal, 332

J
Joining, 42, 68, 82, 112, 513

K
Kinetic energy, 4-6, 10-11, 14, 17, 19, 28, 129, 611,

613
Kinetics, 587

L
Label, 167, 545
Lag, 229
Land, 249
Large errors, 371
Laser, 250, 277, 286
Latent heat of, 29
Latex, 575, 587
Lattice planes, 37, 39, 49, 70, 105, 113, 115-116, 174,

233, 284, 411, 451-452, 457, 521, 523
Lattice points, 31-35, 38, 44, 46-49, 59, 62-63, 65, 87,

98, 100, 102, 116, 120, 166, 177-178,
565-567, 619

Lattice translations, 41
Laws, 225, 479

Per, 225
Lay, 434
layers, 18, 54, 56, 66, 68, 156, 198, 215, 235, 249,

271, 275, 299, 328, 436, 447, 449, 455, 471,
484, 542, 544, 546, 551, 586, 612

Lead, 14, 20, 28-29, 93, 96, 123, 157, 160, 169, 196,
247-248, 272, 298-299, 301, 323, 377, 394,
516, 596

Leading, 20, 131, 143, 156, 158, 164, 217, 381, 599,
607

Leakage, 229, 592
Least squares, 239, 380, 390-391, 462, 481
Least-squares method, 380, 389
Legend, 165
Lens, 121, 248, 267, 516, 591-594, 596-597, 600
Less than, 5-6, 9, 11, 13-14, 17-18, 22-24, 70, 77, 97,

106, 129-131, 134, 173, 181, 201, 204-205,
210-212, 214, 220, 231, 292, 295, 330, 336,
350, 353, 361, 372, 387, 394, 402, 429, 440,
457, 463, 519, 533, 546, 568, 585, 587, 598,
600

Lever rule, 352
Light, 1-6, 12-13, 26, 57, 68, 73, 91, 96, 107, 132,

212-213, 225, 243-244, 246, 248-251,
266-268, 271-272, 275-277, 286, 409, 487,
515-516, 519, 535, 591, 597-598, 607-608,
614

monochromatic, 2, 96, 132, 266
speed of, 591

Limits, 3, 22, 299, 330, 395, 400, 413, 577, 604
Line voltage, 196
Linear, 9, 11, 24, 29, 66, 112, 153-154, 173, 184, 198,

205-206, 210-211, 224, 230, 236, 240, 262,
298, 351, 353, 357, 360-362, 364, 368-369,
372, 376, 380, 385, 387, 390, 395, 415,
426-427, 446, 463, 466, 471, 475, 535, 559,
563, 579, 584

array, 66
linear region, 579
Linearity, 385
Lines, 1, 7, 9-10, 13, 15, 29, 31-32, 35, 38, 46, 48-49,

51, 53-54, 60, 68, 71, 73-74, 77, 86, 109,
113, 115-116, 122-123, 132-133, 136, 146,
148, 153, 156-161, 163, 167-168, 179, 181,
187, 196, 202-203, 211, 216, 219, 222-223,
227, 230-231, 239-240, 243, 245-248,
251-259, 262, 264-265, 267, 269, 283-292,
294, 298-301, 306-313, 315-318, 321-323,
326-329, 331, 334, 336-339, 346-348,
351-352, 355-356, 365, 367, 369, 371-372,
376, 379-383, 385-386, 390-391, 395,
402-403, 405-407, 409, 412, 425-426,
433-435, 437, 441, 445-447, 451, 466, 470,

477, 482, 489-490, 505-506, 513-514, 520,
523, 525, 527, 534-535, 538-539, 548, 561,
565, 568, 575, 589-590, 593, 598-602, 608,
614, 619, 623, 625

inclination, 202, 489, 527, 575
Lipids, 587
Liquid, 11, 31, 187, 216, 225, 254, 344-346
Liquid nitrogen, 216, 254
Liquids, 31, 169, 171, 186-188, 340, 374, 445, 555,

640
List, 46, 48, 60, 123, 187, 295, 297, 301, 365, 482,

488, 515
bottom, 297, 515
top, 297

Loading, 251-252, 382, 481, 538
Logarithms, 389
Long-range order, 325, 328-330, 332, 336-337, 339,

558
Loop, 608
lot, 144, 395
Low-carbon steel, 446
Lower, 3, 6-7, 12, 18, 27, 63, 66, 111, 120, 153-154,

160-161, 180, 182, 186, 193, 199, 202, 209,
211, 220, 222, 231, 254, 258, 264, 308, 332,
334-335, 346, 353, 355-356, 367, 379, 422,
434, 444, 454-455, 489-490, 493, 539, 543,
552-554, 560, 582, 586, 593, 607

M
Machine, 454-455, 473, 479
Machining, 66, 199, 454, 459, 471
Magnesium, 341
Magnetic, 2-3, 25, 60, 120, 286, 359, 416, 419, 448,

487, 537, 589-593, 614
Magnification, 73, 267, 400, 526-527, 594-595
Main beam, 247
Management, 356
Manganese, 216, 283
Manual, 285, 287-289, 296, 437
Manufacturing, 571
Mapping, 102, 164, 199
Maraging, 464
Marking, 502
Martensitic, 283, 464
Mass, 5, 11-12, 18-19, 29, 66, 115-116, 127, 130,

158-159, 209, 249, 271, 277, 360, 362-363,
399, 405, 487, 587, 590-591, 611, 613

Material, 7, 10-11, 18, 65-66, 87, 123, 167, 181, 191,
196, 213, 215, 220, 232, 248, 255, 261, 263,
265, 275-276, 292-293, 299-300, 307, 310,
343, 361-362, 367, 370, 375, 394-395,
399-400, 402-403, 405-406, 409-411,
416-417, 419-422, 427, 429, 431, 435, 441,
443, 446, 451-452, 454, 456, 458-459,
461-463, 467, 469-471, 473, 479-484, 499,
529, 531, 557, 561-562, 575, 595, 605, 607,
612

cost, 469
movement, 467, 473

Materials, 1, 8, 12, 19, 25, 65-66, 88, 115, 120,
123-124, 132, 146, 169, 171, 188, 191-192,
196, 222, 224, 236, 241, 253, 261, 264-265,
270, 271, 284, 303, 305, 307, 309, 320, 340,
343, 359, 367, 372, 374, 375, 377, 394, 397,
399-400, 403, 405, 416-417, 425, 441, 445,
448, 451, 455, 463, 470, 480, 486, 487-488,
510, 531, 537, 544, 555, 557-558, 569, 573,
585, 587-588, 589, 591, 599, 605, 611, 614

evolution of, 587
selection of, 320, 377

Materials science and engineering, 66, 343
Matrices, 390, 393
Matrix, 235, 391-392, 403-404, 413, 416, 459, 540,

542, 550, 577
Mean, 4, 29, 126, 156-159, 191, 208, 217, 238,

245-246, 257-258, 271, 385, 387, 395,
399-400, 451-452, 466, 482, 520, 523

Mean value, 245, 257-258, 395, 451, 482
Measurement, 2, 4, 39, 71, 76-77, 79-80, 82, 88, 91,

106, 108, 124, 166, 181, 185, 188, 192-242,
244, 251, 256, 267-268, 270, 296, 303, 320,
340, 349, 355, 359, 364-365, 367, 369, 372,
374, 375, 379-380, 386-387, 390, 394,
396-397, 400, 403, 405, 425-426, 429, 448,
451-486, 487, 490, 499, 518, 536, 547, 564,
587, 595

experimental, 124, 192, 218, 222-223, 241, 367,
369, 390, 396, 403, 405, 448, 475,
481-482

hardware, 296
Measurements, 4, 24, 75, 105-107, 119, 155, 166,

191-192, 195, 198, 200, 205, 224-228, 236,
238, 240, 249, 252-253, 256, 262, 264, 267,
300, 332, 341, 344, 355-356, 359, 362-363,
368, 375-397, 403, 405-406, 409, 413, 423,
426, 432-433, 436, 439-440, 445, 455,
458-460, 466, 470-472, 475, 478-484, 487,
503, 536, 546-547, 582

angles, 106, 155, 191, 200, 224, 240, 264, 267,
380, 382-383, 385, 403, 423, 426, 433,
459, 475, 483, 503, 547, 582

errors in, 377-378, 380-381, 384, 386, 475, 482
of precision, 377

Mechanical, 11, 22, 66, 199-200, 277, 307, 399, 436,
455, 469, 483, 497, 570

advantage, 22, 199-200, 455
alloying, 307

Mechanical properties, 307
Melting point, 29, 63, 157, 265
memory, 32, 221, 224-225, 487
Mer, 558-559, 561
Metal, 1, 4, 6-7, 9, 13, 17-23, 27, 54-56, 59-60, 106,

116, 156-157, 160, 196-197, 201-202, 205,
208, 213, 251, 271-272, 277, 327, 340, 345,
350, 373, 400, 403-406, 409, 411, 416-418,
436, 445, 451-452, 454, 471, 479, 519, 586,
612, 614, 639

Metal powders, 116, 403
particle size, 403

Metal structures, 54
hexagonal close-packed (hcp), 54

Metallic, 62, 64, 235, 320, 351, 404, 586
Metals, 18-19, 22, 54-55, 66-67, 70, 88, 92, 247, 271,

299, 336, 340, 343-344, 351-352, 357, 373,
396, 399, 404-405, 410, 416, 418-419, 447,
452, 456, 478, 485, 517-518, 571, 573, 612,
639

Metastable, 350, 363, 587
Meter, 3, 6, 194-195, 228-229, 511
Method of, 76, 79, 126, 157, 191, 197, 227, 235, 239,

247, 251-252, 283, 308, 319, 321, 348,
352-354, 364, 382, 390-391, 400, 403, 418,
426, 451, 470-471, 475-476, 490, 493, 496,
499, 502, 506, 510, 515, 548, 584

variables, 126, 390
Methods, 23, 30, 80, 88, 96, 108-109, 111, 119, 124,

146, 166, 168, 188, 191, 195, 211, 222,
237-238, 241, 243-244, 248, 251-252, 261,
263, 270, 275-276, 282, 286, 303, 305, 312,
316, 320, 340-341, 343, 348, 352, 359, 361,
363, 370, 374, 375, 377, 379, 381-382, 387,
394, 396-397, 402, 417-418, 420, 425-426,
430, 433, 436, 443, 445, 447-448, 451,
454-455, 466, 470, 478, 480, 483, 485-486,
487, 496, 502-503, 506, 512, 517, 519, 527,
553, 567, 570-571, 585, 634, 637

arbitrary, 108, 370, 433
direction, 109, 111, 348, 417-418, 426, 443, 447,

455, 483, 496, 502, 519, 570
indirect, 375

Microelectronics, 351, 452
Micrometers, 316, 533, 547, 593
Microscopes, 589, 593
Microscopic scale, 180, 528
Milling, 66, 403, 415
Minutes, 195, 198, 222, 270
model, 82, 390, 599
Models, 272, 480
Modulation, 546, 607, 609
Module, 475
Mole, 29
Molecular weight, 319, 322
Molybdenum, 5, 7, 26, 29, 61-62, 249, 271, 539
Moments, 614
Momentum, 129, 611
Monomer, 561
Monomers, 559
Motion, 4, 6, 66, 70, 76, 91, 96-97, 126, 195, 468-469,

472, 516, 521, 536, 591, 611
relative, 70, 76

Mounting, 198, 547
Mullite, 87
Multilayer, 235
multiplier, 463
Mutations, 27

N
Nanoparticles, 404, 413
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Natural, 65-66, 160, 175, 188, 316, 416-417, 445, 512,
531, 543

Natural frequency, 512
Neutral, 15-16, 64, 142, 453, 455, 484, 528

axis, 453, 484, 528
Newton, 590
Nickel alloys, 464, 483
Niobium, 538, 540, 542
Nitrides, 340, 373
Nitrogen, 29, 216, 254, 350
Noise, 196, 216-217, 294
Noncrystalline solids, 560
Normal, 7, 10, 17, 23, 39, 42, 47, 66-68, 70, 72-73, 76,

80, 82, 86, 93-94, 97, 101, 113, 115, 119,
121, 147, 150, 154, 158, 175, 177, 182, 192,
196, 200-201, 217, 219-220, 225, 239-240,
267, 287, 294, 336, 352, 370, 378, 390,
392-393, 399, 402, 405, 412, 421-422,
424-427, 430-434, 436-438, 441-443, 447,
455, 457-462, 467, 471-472, 475, 479, 482,
488-490, 496-497, 500, 502-504, 510-511,
514-515, 520-523, 540, 543, 546, 548, 562,
602-603, 609

anisotropy, 479
Normal equations, 390, 392-393
Normal mode, 196
Normalizing, 291, 391, 433
Not equal to, 102, 172
Notation, 34, 39, 254, 418-419
Nucleation, 416, 562
Nucleus, 10-11, 15, 63, 96, 130-131
Numbers, 1, 35-36, 49, 56, 65, 88, 123, 136-138, 147,

171, 226, 241, 252, 296, 307, 313-314, 323,
334, 350, 353-354, 357, 400, 402, 419, 438,
512, 545

Nylon, 575

O
Objective lens, 121, 594, 597, 600
Objects, 1, 42, 91
Observations, 126, 315, 354, 380, 409-410, 554
Observer, 73, 86, 409, 445, 515-516, 523
Offset, 469, 538, 550-551
One, 1-2, 4-6, 10-11, 15, 17-25, 27, 29, 32-37, 39-44,

46-51, 53-56, 58-59, 61-64, 66-68, 70, 74,
77, 80, 82-83, 86-88, 91, 93-96, 98-99,
101-102, 105, 107, 109-113, 115-116,
118-119, 121-122, 125-126, 128-131,
134-135, 138-142, 145, 149-151, 153-154,
156-158, 160-161, 164-167, 172-175,
177-178, 180-181, 183-187, 196-206,
208-213, 215, 218-219, 221, 223-225, 229,
231-233, 235-237, 239, 244-245, 248-251,
254-257, 259, 262-268, 271-272, 274-279,
281, 283-285, 287, 289, 291, 294, 296-298,
300, 306-307, 309, 312-313, 315-316,
318-321, 323, 325, 327, 329-330, 333-334,
336-338, 340, 344-345, 348-353, 355,
360-363, 368, 370-373, 375, 380, 382-386,
389-392, 394, 396, 399-406, 409-411, 415,
417-419, 421, 423-424, 426, 429-430,
433-434, 436, 440-441, 443, 445-447,
451-452, 454-455, 459, 461, 467, 470-471,
473, 475, 478-480, 482, 485, 487-488, 490,
494, 496-497, 502-503, 505, 510-512, 514,
517, 519, 522-523, 525, 527-528, 530,
532-533, 535-536, 538-539, 547, 550-552,
554, 559-560, 565, 570, 573, 575-576,
580-581, 583, 585-586, 593-594, 596,
598-600, 603, 607, 609, 611, 614, 619, 633

Open, 28, 32, 55, 68, 83, 388, 452, 494, 513
Optical, 66, 169, 185, 188, 261, 276, 286, 340, 353,

359, 374, 415, 487, 516, 525, 527, 534, 544,
555, 589, 640

Optimum, 261-262, 436, 447, 535, 563, 599
OR plane, 509
Order, 1-2, 7, 19, 21-24, 29-30, 31, 39, 51, 70, 73, 77,

87, 91, 95, 97-99, 101-103, 106, 120-124,
135, 155-156, 160-161, 168-169, 174-175,
178, 183, 186-188, 193, 198, 208-209,
212-214, 216, 218, 225, 231, 233, 239-241,
244, 247, 249, 253-256, 261-264, 269,
273-274, 282, 284-285, 287, 290, 294, 301,
303, 310, 312, 323, 325, 327-330, 332-333,
336-340, 348, 357, 360, 372-374, 375, 377,
390, 394, 396, 401, 422, 426, 429, 433, 436,
447-449, 456, 459, 467, 469-470, 485, 487,
490, 496, 510, 514-515, 517, 519, 525, 540,
542-543, 545-547, 550, 553-555, 557-559,

564, 567, 569, 573, 577, 582-583, 585, 588,
593, 599-602, 612-613, 621, 625, 631, 634,
637, 640

Ordered solid solutions, 62-63
Ordinate, 208, 439
Organic materials, 132
Orientation, 31, 35-36, 39-41, 43, 49, 67-71, 80,

87-88, 102-103, 111, 123, 147, 154, 160,
166, 176, 178, 183, 197-199, 244, 248, 260,
262, 265, 272, 277, 287, 292, 299-300, 307,
340, 367, 369, 371, 396, 399-400, 404,
416-421, 425-427, 429, 432, 434-437,
440-448, 457, 480, 483, 485, 487-518,
519-521, 523, 540-543, 547-549, 551, 557,
561-563, 565, 567, 569-570, 575, 587, 594,
599-600, 603, 610, 612

and etching, 367, 426
Out of, 10, 13, 60, 91, 93, 95, 98, 125, 130-132, 144,

149, 167, 171-173, 175, 187, 209, 212-213,
219, 254, 284, 294, 328, 337, 372, 420, 426,
431, 443, 458, 530-531, 534, 554, 587, 591

Output, 21, 195, 204, 213, 217, 225, 229-230, 238,
259, 297, 379, 424, 516

Overhead, 490
Overlap, 222, 308, 365, 406, 433, 438, 536, 540, 600
Oxide ceramics, 415
Oxide films, 612
Oxygen, 29, 132, 558

P
Parabola, 238-239, 470, 473, 481, 503
Parallelogram, 136
Parameters, 32, 57, 63, 87, 101-102, 105-106, 108,

120, 123, 198, 253, 307, 312-313, 316, 318,
326, 338, 346, 350-351, 355, 357, 360,
364-365, 375, 377, 379-380, 386-387,
391-392, 394-395, 483, 547, 571, 595, 620

determining, 120, 307, 351, 355, 377, 391-392,
483, 620

Particles, 4, 12, 24, 116, 150, 154, 187, 197-198, 204,
248, 349, 356, 385, 387, 403, 573, 575,
577-579, 581-582, 586-587, 611

Parts, 1, 27, 41, 66-67, 71, 73, 93, 108, 154, 199, 203,
228, 254, 267, 272, 277, 291, 299, 370, 377,
379, 395, 400, 402, 417, 419, 434, 452-454,
520, 539, 548, 623

Patterns, 41, 109-110, 112-113, 115-117, 122-123,
129, 132, 153, 158, 204, 218, 222, 238, 246,
253, 255, 260, 262-263, 265, 267, 271-272,
274-277, 284-285, 287-288, 291, 294,
296-299, 301, 305, 307-309, 311-312,
315-317, 326-328, 332, 338-339, 341,
344-349, 353, 359, 365-366, 369, 387, 401,
404, 406-407, 409-410, 417, 463, 491, 493,
499-500, 503, 505-506, 512, 516, 518,
520-523, 538, 540, 546, 562-563, 568, 571,
573-575, 593-594, 598-601, 603, 612

Peening, 66, 471, 484-485
Pendulum, 536
Period, 25, 191, 212, 224, 227-228, 240, 333, 406,

540, 545-546, 552, 573-575
Period T, 546
Periodic function, 177, 321
Periodic table, 320
Permanent, 27, 512
Permeability, 419
pH, 26
Phase angle, 136
Phase diagrams, 343, 345, 386
Phase field, 346, 352
Phase shift, 181-182
Philips, 244, 274
Photoelectric effect, 13
Photographs, 109, 153, 157, 168, 243-270, 271-282,

340-341, 397, 401-402, 406, 425, 515, 520,
523, 565, 573, 634, 637

photomicrograph, 544
Photomultiplier tube, 213, 251
Photons, 4, 6, 22, 120, 122, 129, 171, 185, 212, 250,

540, 576, 613
Physical properties, 91, 344
Piezoelectricity, 305
Pipes, 25
Pits, 286, 487, 534
pixel, 268
Planar defects, 66, 607
Planck’s constant, 4, 158, 591, 611
Planes, 31, 35-42, 49-53, 55-56, 65-66, 68, 70-71,

76-77, 80, 84-86, 93-99, 103-107, 109-113,

115-116, 118, 120, 123, 125-126, 133, 135,
141-142, 147-148, 150, 158, 163-164, 168,
171-175, 180, 183, 185, 200-201, 222, 231,
233-234, 245-246, 255, 257, 264, 268, 271,
273, 279, 281, 284, 300, 308, 315, 327-328,
332, 334, 363, 375, 405, 411, 416, 418-419,
421, 424-425, 432-434, 441, 444, 451-452,
456-459, 469, 475, 478-480, 487-490,
493-494, 496-498, 503-506, 508, 510-512,
515, 517, 519-523, 525-526, 528, 530-531,
533, 535, 543, 545-547, 554, 597, 604, 607,
615, 633

focal, 233, 281, 469, 533
tangent, 110, 200, 490, 504, 506, 510, 531

Plastic deformation, 66, 305, 349, 367, 416, 419, 484,
519, 526, 538

Platinum, 222-223, 240, 403-404, 413, 421
Plots, 101, 177, 230, 237, 292, 294, 297, 389, 443,

463, 467, 483, 579, 606
Plutonium, 367
Point, 1-2, 5, 29, 32, 34-35, 39-40, 42-44, 47-49,

53-54, 56, 58, 60-61, 63-64, 66, 70-73,
76-77, 85-86, 92-93, 100-103, 105, 108, 110,
112, 116-118, 121, 126, 136, 142, 153, 157,
164-165, 175, 182, 186, 200, 203-206, 211,
230-231, 237-240, 245, 248, 250, 252, 258,
265-266, 273-274, 277-278, 280-281, 305,
316, 320-321, 349, 352-355, 359-361, 370,
377, 382, 393, 405, 437, 440, 442, 445,
453-454, 461-462, 468, 470, 472, 475, 477,
479-482, 490, 496-497, 501-502, 506, 511,
513-514, 525, 535-536, 540, 562, 565, 567,
575, 579, 592-594, 599-600

Point defects, 66, 250, 536, 540
Point lattices, 43-44, 47, 53
Points, 31-35, 38, 41-44, 46-49, 51, 53-54, 59, 62-63,

65, 71, 73, 77, 80, 87, 98, 100-102, 113-116,
118, 120-121, 123, 130, 156-157, 165-167,
177-178, 200, 224, 237-239, 277, 335, 353,
355, 362, 380, 386, 421-422, 424-425, 433,
441, 453, 469, 471, 473, 479-482, 490, 496,
499, 513, 515, 527, 535, 565-567, 575,
619-620

Polar coordinates, 443, 457
Polar plot, 598
Polishing, 367, 387, 471, 612
Polyesters, 559
Polyethylene, 559-563, 571
Polymer, 248, 445, 557-563, 565, 568-570, 587
Polymerization, 575
Polymers, 115, 171, 445, 557-571, 573-575, 587

nylon, 575
polyethylene, 559-563, 571
polymerization, 575
thermoplastic, 561

Polymethylmethacrylate, 563
Polypropylene, 559, 587
Polystyrene, 559-560
Population, 394
Porosity, 106, 585
Porosity in, 106, 585
Positioning, 193, 230, 247, 263, 482, 512
Powder patterns, 117, 123, 153, 267, 307, 312,

316-317, 328, 338-339, 344, 347-348, 366
Power, 23-24, 137, 161, 181, 193, 196, 204-205, 231,

237, 245-246, 248, 255, 257-258, 267, 269,
286, 308, 328, 356, 360, 435, 475, 510, 516,
528-529, 538, 577, 597, 599, 609, 614

Precipitates, 536, 542, 587, 589
Precipitation, 345, 404
Precision machining, 199
Preferred orientation, 88, 160, 197, 199, 244, 248,

260, 262, 287, 292, 299-300, 340, 367, 369,
371, 396, 404, 416-417, 419-421, 429, 437,
440, 445-448, 483, 485, 510, 518, 557, 565,
570

Press, 88, 169, 188, 197, 282, 340, 373-374, 448,
518, 555, 640

Pressure, 197, 211, 240, 253-254, 343
atmospheric, 211

primary, 21, 28, 91, 182, 193, 209, 247, 249, 261, 274,
280, 312, 345, 352, 356, 428, 431, 447, 510,
514, 561-562

Primary bonds, 561
Primitive unit cells, 32
Principal, 10, 27, 80, 199, 238, 297, 307, 459, 529
Principal stresses, 459
Probability, 14, 17, 63, 95, 147, 182, 225-226, 296,

299, 326, 441, 598, 607
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Probability distribution, 299, 607
Probability distribution function, 607
Procedures, 124, 188, 241, 269, 271, 296, 303, 307,

316, 373, 377, 387, 397, 448, 458, 480, 486,
547

Process, 10, 14, 17, 25, 68, 132, 141, 182, 209, 214,
235, 249, 306, 320, 333, 371, 375, 385, 406,
416, 437, 471, 523, 528, 532, 554, 565, 571,
607, 620

information, 406, 437, 571, 620
Processing, 192, 221, 249, 251, 381, 477, 490, 553,

571
Product, 38-39, 66, 144, 149, 153, 162, 177, 206, 228,

308, 481, 532, 578, 595
Production, 14, 17, 19, 194, 204, 215, 228-229, 276,

417, 473, 487, 553, 598
rate, 194, 204, 228-229, 487

Productivity, 511
Products, 120, 284, 416, 483, 487, 530
Profile, 125, 212, 227, 239, 394, 405, 473, 481, 542
Programs, 296-297, 299, 312, 316, 380, 433, 499, 544
Projections, 32, 72-73, 80, 82, 282, 434, 499, 514, 518
Projects, 73
Propagation, 93, 307, 607
Property, 27, 39, 46, 65, 101, 177, 227, 266, 321,

355-356, 487, 497
personal, 227, 497

Proteins, 305, 557
Protractor, 86, 490, 497
Pull, 15
Pump, 22
Pumping, 22

Q
Quality, 111, 199, 262, 286, 289, 297, 301, 385, 387,

394, 399-400, 404, 413, 445, 512, 519-555,
584, 593

circle, 111, 199, 387, 512, 522
Quality control, 537, 544
Quantity, 11-12, 15, 17, 19, 106, 131-132, 137, 147,

149-150, 158, 204, 245, 275, 284, 301, 321,
335, 360, 368, 370, 375, 381, 390, 394, 433,
461, 478-479, 576, 581, 605

Quartz, 65-66, 114, 211, 234, 247, 265, 267-268,
362-363, 369, 512, 526, 528, 558

Quenching, 253, 332, 355, 357, 363, 409, 466, 485,
587

R
Radian, 174, 246, 278-279, 525
Radiation, 1-11, 13-19, 22, 24-29, 97, 102-103, 105,

107-110, 113-117, 119-120, 122-123,
129-130, 132-133, 146, 156-157, 161, 163,
167-168, 184, 188, 191-194, 196, 199, 201,
204, 206-209, 211-212, 214, 217-224,
231-232, 234-237, 240, 243, 245-247, 249,
251, 253, 257, 259-261, 263-266, 269, 271,
273, 275, 278, 281, 288-290, 293, 307-308,
310-311, 316, 321, 328, 335-339, 348, 363,
365-367, 372-373, 377, 385, 387-389, 391,
393-395, 400-402, 405, 407-408, 410,
412-413, 417, 421, 423, 426, 429, 439,
446-447, 452, 467, 485, 506, 510, 512,
515-516, 520, 522-525, 527-528, 533,
535-538, 540, 542-543, 545-546, 550-551,
553-554, 563, 575-576, 582-585, 587, 613

long-wavelength, 520
ultraviolet, 2-3, 13, 97, 212

Radioactivity, 204
Radiography, 1, 24, 275
Radius of gyration, 578-579
random access memory, 487
Random errors, 380-381, 389, 481
Random solid solution, 330, 337
Range, 2, 13, 29, 63, 111, 120, 122, 148-150, 173,

175, 183, 195-196, 199, 202, 214, 219, 221,
224, 226, 230, 235, 240, 247, 251, 256, 259,
267, 284-285, 294, 297, 307, 316, 325,
328-330, 332, 336-339, 346, 355, 357, 363,
385, 396, 400, 402-403, 424, 431, 437, 473,
475, 480-481, 519-520, 522, 533, 538-539,
543, 551-553, 557-558, 567, 569, 573-574,
579, 582-587, 593, 597, 600, 613

rank, 296
Rapid, 6, 10, 126, 198, 212, 244, 249, 276, 293, 312,

332, 349, 354, 516, 532, 597
Ratios, 29, 70, 80, 300, 599
Raw material, 307

Reactors, 455
Reading, 3, 85, 88, 169, 188, 229, 250, 340, 374, 448,

555
Reasonable, 19, 27, 116, 155, 177, 219, 300, 384,

452, 463, 475, 540, 547, 584
Record, 91, 109-110, 191, 195, 198-199, 211, 224,

229-230, 243, 263, 272, 275-276, 299, 377,
406, 466, 478, 512, 516, 538, 540-541, 600

Recovery, 406
Recrystallization, 65, 67-68, 406, 416-419
Reduction, 19, 22, 169, 231, 234, 266, 280, 320, 372,

434, 442
Redundant, 420
Reference frames, 75
Reference lines, 262
Refraction, 394-395

index of, 394
Refractories, 120, 284
register, 212, 281, 475
Registration, 515
regression, 381, 390-391
Reinforcement, 94-95, 132, 156, 186, 328
Relationships, 31, 70, 72, 261, 312, 316, 503
Relative precision, 107
reliability, 286, 290, 293, 301
Repeat, 56, 91, 97, 292, 558-559, 561
Representation, 40, 54, 101, 145, 164, 559
requirements, 43, 57, 413, 467
reset, 210
Residual stresses, 238, 453, 479
Resistance, 208-209, 228, 307, 344, 451, 454, 458,

481, 487
wire, 208-209, 451

Resistivity, 215, 356, 487
Resolution, 96, 122, 198-199, 202-204, 207-208, 214,

216-219, 222, 245-246, 256, 258-259, 267,
269, 365, 406, 475, 527, 533-534, 537, 552,
554-555, 569, 582, 587, 604

instrument, 198-199, 203, 219
Resonance, 335
Response, 205, 229-231, 360, 587
Retained austenite, 359, 363, 367
Reverse bias, 215
Ring, 25, 243-244, 259-262, 265, 402, 406, 411, 417,

420-425, 447, 475, 522-523, 559, 564, 567,
574-575

rise, 10, 128, 132, 198, 245
Risk, 516
Robustness, 462
Rocks, 120, 160, 416, 452, 520-521
Roll, 484
Rolling, 66, 404-405, 407, 416, 419, 426-427, 431,

433-434, 436, 441, 443, 454, 459, 484
shapes, 66

Rotation, 23, 41-42, 47, 49, 51, 53, 59, 67-68, 76-78,
80-81, 86-87, 102, 105, 113-116, 119, 123,
148-150, 183, 193-194, 198, 248, 277, 383,
387, 416, 421-422, 426, 429-433, 437, 443,
467, 472, 489, 497, 503, 505-506, 510,
513-514, 516, 519, 539, 541, 544, 547-548,
550-551, 560, 565, 575, 583-584, 591-593,
596

calculations, 443
Rotations, 77, 122, 179, 194, 198, 277, 430, 511-512,

514, 517, 540, 542
Roughness, 198, 471
Rounding, 296
Rubbers, 559-560
Rules, 47, 57, 62, 141-142, 167

S
Safety, 27-28, 247
Sample, 25, 75, 96, 112, 115-116, 119-123, 160, 174,

176-177, 180, 183, 185, 193-194, 197-198,
202-203, 227, 233, 235, 239, 245, 247-248,
259, 261, 283-284, 286-288, 293-296, 300,
307, 309, 323, 343, 363-364, 367-369,
371-373, 378, 380, 387, 389, 393-394, 400,
403, 413, 436, 443, 452, 459-462, 466,
468-469, 475, 478, 480, 533, 539-543,
545-553, 562-565, 567-571, 573, 575-576,
582-585, 587, 589, 593-597, 599, 602-603,
605-608

mean of, 387, 466
repeated, 478, 547
standard deviation of, 478

Sampling, 119, 177-178, 371, 546, 552
Sands, 31, 88
Satellites, 545

Savings, 196
Scale, 5, 7-8, 73, 102, 106, 148, 162, 180, 193, 206,

211, 230-231, 267-268, 288, 298, 305, 320,
367, 377, 395, 402, 408, 471, 478, 502, 528

Scaling factor, 225
Scope, 13, 27, 100, 115, 119, 149, 165, 183, 222, 308,

320, 349, 353, 359, 403, 445, 463, 467, 558,
571, 610

Screening, 247-248, 349
Screw, 66, 530-531, 535, 554
Screw dislocation, 530-531
Secondary bonds, 561
Seconds, 225, 228, 249, 473, 479, 538
Segments, 570
Segregation, 18, 334, 348
Semiconductor, 59, 204, 214-215, 217, 416, 487
Semiconductors, 404, 573
Separation, 156, 245-246, 251, 257-259, 269, 382,

405, 413-414, 475, 540, 545-546, 563-564,
599

Service life, 455
Shading, 453
Shape, 22, 24, 32, 53, 55, 65-66, 105, 116, 135, 142,

173-174, 183, 185, 196, 228, 239, 249-250,
253, 278-281, 305-308, 316, 318-319, 326,
332, 367, 369, 403-406, 413, 417, 473, 488,
521-522, 535, 587

index, 32, 307
Shapers, 204, 216
Sharpening, 406, 409
Shear, 68, 70, 86, 89, 197, 455, 459-460, 466, 531,

540
plane, 68, 70, 86, 455, 459, 531, 540
true, 86, 197, 459

Shear modulus, 460, 531
Shear strain, 86, 89
Shell, 10, 13-14, 17, 118, 208, 212
shielding, 387-388
Short-range order, 336-338, 558
Short-wavelength radiation, 273, 275, 412
Shot peening, 66, 471, 484
Shrink, 251
Shrinkage, 251-252, 381-382, 384, 386, 477
Side, 1, 5, 22, 39-40, 52, 73-74, 76, 110-111, 137, 153,

155, 178, 180-181, 197, 211-212, 215, 219,
222-224, 227, 231, 239, 256-257, 271, 273,
276, 313, 333, 348, 361, 383, 389, 413, 438,
447, 452-453, 455, 472-473, 475, 488,
490-491, 502, 506, 513, 520, 536, 547,
552-553, 561, 574-575, 582, 596, 599

Signals, 221
Significant figures, 107-108, 370, 395, 485
Signs, 73, 143, 402
Silica, 253, 284, 349, 362, 404, 413-414, 558
silicide, 550
Silicon, 49, 59, 168, 184, 214-216, 219-220, 231, 341,

394-395, 487, 523-524, 536-538, 544,
550-552, 558, 601

Silver, 29, 111-112, 249-250, 275, 337, 394, 537
SIMPLE, 21, 41, 44-46, 49-50, 54, 58, 60-61, 63, 80,

83, 87, 92, 97-98, 102-103, 113, 123,
125-126, 134, 142, 162, 166-167, 177, 224,
229, 251, 272, 305, 307, 309-312, 318-321,
327, 331-332, 345, 372, 387, 395, 405, 417,
419, 432, 445, 472, 475, 487, 503, 531, 547,
564, 569, 576, 584, 595, 599, 627-628

Simulation, 183-184, 413, 499-500, 546, 610
Single, 2, 25, 31, 39-40, 42, 48, 50, 53-54, 65, 88,

102, 106-109, 111, 113, 115-116, 119-121,
124, 126-128, 130, 133, 135, 138, 144, 148,
150, 161, 178-179, 181, 186, 188, 191,
198-199, 202, 205, 209, 211, 218-219,
221-222, 225-226, 229, 231, 235, 237, 239,
241, 255, 257-258, 263, 265-267, 270,
271-272, 288, 299, 303, 305, 307, 312, 316,
318, 336-337, 343-346, 350, 352, 360, 370,
374, 378, 383, 391, 394-395, 397, 399,
405-406, 409, 416, 418, 420-422, 431, 434,
437, 445, 448, 455, 458-459, 463, 470, 473,
475, 478-483, 485-486, 487-518, 519,
522-523, 526, 540, 542, 550-553, 559,
561-562, 565, 569, 576-577, 584-585, 594,
596, 600, 613

Sintering, 435
Size effect, 403
Skeleton, 57, 426
Sketches, 88, 251
Skin, 28
Slip system, 532
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Slitting, 348
Slope, 336, 352, 355, 359, 373, 380, 463, 466, 481,

578-579, 581
Small errors, 469
Smearing, 262, 300, 533, 540
Smoothing, 21, 231
Soft, 3, 12, 157, 207, 211, 265, 294
Software, 184, 193, 196, 199, 225, 227, 229, 231, 238,

267, 286, 288, 294, 297, 387, 433, 480
Solid, 11, 17, 25, 31-33, 53, 57-58, 61-64, 84, 96, 106,

178, 186-187, 204, 215-216, 254, 284, 287,
307, 325, 329-330, 334, 337-338, 340,
344-346, 349-352, 354-357, 359-360, 363,
371-373, 375, 387, 404-406, 415, 434, 446,
459, 493, 505, 513-514, 524, 531, 569, 575,
580, 585, 611

Solidification, 348
Solubility, 62, 344-347, 349, 352, 355-357
Solute, 61-63, 351, 375
Solute atoms, 61-63
Solvent, 61-63, 350

atoms, 61-63, 350
Sources, 24-27, 209, 223, 259, 268, 278, 307, 377,

381, 385-386, 436, 452, 542, 584, 587, 589,
614

Specific heat, 29
Specific volume, 373
specification, 437
Spheres, 33, 54-55, 63, 85, 111-112, 120, 311, 325
Spinel, 60
Spirals, 591, 593
Spread, 19, 22, 211, 218, 221, 267, 291, 395, 550, 576
Spreading, 261, 552, 597
Spreadsheets, 316
Square, 1, 4, 9, 20, 22, 35, 42, 127-128, 130-131,

137-138, 145, 154, 158, 172, 196, 199,
278-279, 293-294, 320, 400, 427, 488, 496,
533, 559, 580, 608

Stability, 63, 240
Stabilizers, 21
stable, 19, 56, 198, 253, 330, 343, 349
Stack, 436, 441, 535
Standard, 3, 80, 82-84, 86-87, 107, 196, 216-217, 222,

225-226, 251, 255, 259, 286, 298, 301, 308,
359, 361, 364, 367-370, 373, 379, 394, 402,
405, 434, 441, 470, 472-473, 475, 477-478,
481-482, 495-496, 499-500, 513, 515, 564

deviation, 217, 225-226, 473, 478, 481-482
Standard deviation, 217, 225-226, 473, 478, 481-482
Standardization, 394
standards, 285, 298, 301, 367, 370, 394
Stationary, 102, 116, 203, 421, 469, 530
Statistical, 186, 217-218, 229-230, 333, 436, 481, 585
Steel, 232, 265, 283, 299, 318, 359, 363-367,

371-373, 409, 413, 416, 418, 435, 441-442,
446-447, 464-467, 470-472, 478-479, 482,
485

tool steels, 365
Steels, 222-223, 363, 365, 464
Steeple, 341
Step size, 224, 293, 387, 393
Stops, 225, 272
Straight lines, 1, 73, 489
Straightening, 453
Strategies, 571
Strength, 126, 400, 406, 487, 593-594
Strengthening, 587
Stress, 24, 66, 88, 124, 180, 188, 238, 241, 270, 303,

340, 348-349, 374, 379, 396-397, 405-406,
446, 448, 451-486, 518, 540

mean, 238, 451-452, 466, 482
principal, 238, 459

Stress-corrosion cracking, 454
Stresses, 169, 180, 188, 238, 340, 349, 374, 405, 448,

451-453, 455-456, 459-463, 466, 471-472,
475, 479-483, 486, 555, 587

Stretching, 317, 587
Striations, 527
String, 417
Strip chart, 196
Structure, 1, 16, 31, 41, 52-67, 85-88, 91-92, 98, 105,

107, 121, 123, 138-146, 158-159, 163-165,
167-169, 178-179, 186, 188, 191-192, 222,
231, 235, 238, 241, 245, 253, 264, 272, 284,
287, 305-341, 343-345, 348-349, 352,
356-357, 360, 364-365, 374, 396, 399-400,
402-449, 454-455, 473, 485, 514-515,
517-518, 523, 527, 529-530, 538, 545-546,
555, 557-560, 563, 568, 571, 575-576, 584,

586, 596, 605, 607, 612, 614, 633, 640
insensitive, 402
of alloys, 344-345, 348
sensitive, 473, 584

Structures, 41, 53-61, 63-64, 66-67, 70, 88, 92, 115,
123, 125, 186, 198, 241, 254, 305-308, 316,
319-320, 322-326, 332, 338, 340, 343, 357,
364, 373, 453, 545-546, 558-559, 561,
573-574, 585, 612

Subdivision, 43
Substitution, 139, 258, 307, 352, 368, 428
Substitutional, 61-62, 66, 325, 344-346, 349-352

atom, 61-62, 325, 346, 350-351
Substitutional solid solution, 62, 350-351
Substitutional solid solutions, 325, 352
substrate, 300, 545-547, 552-553, 610
Subtraction, 48, 174, 477
Superposition, 96, 291-292, 348, 543, 575
Surface, 17-18, 63, 65, 71-72, 76, 93-94, 96, 106, 110,

112-115, 123, 147, 150, 153-154, 172-173,
183, 185, 187, 197-198, 201-203, 213, 215,
233-234, 243, 248, 261-263, 266, 276-277,
299-300, 367, 378-379, 386-387, 400,
409-413, 416, 418-419, 421, 424-425,
430-431, 436-438, 440-441, 447, 451,
454-455, 457-460, 462, 467, 469, 471-473,
475-476, 479-484, 488, 496, 509-512, 528,
533-537, 539-540, 543, 545-546, 553, 563,
573, 581, 586, 607, 612

mount, 261, 488
roughness, 198, 471
texture, 400, 416, 418-419, 421, 424-425, 436-438,

440-441, 447, 483, 540, 573
treatments, 96, 409, 411, 471

Surface damage, 536
Surface roughness, 198, 471
Surfaces, 18, 96, 243, 254, 405, 436, 453, 472, 487,

538, 571, 585
Surveying, 28, 597
Swaging, 417
Switches, 231
Symmetry, 31, 33, 35, 38, 40-44, 46-49, 51, 53-54, 57,

59, 62, 66-68, 82, 102, 121, 282, 310,
316-317, 320, 333-334, 417, 419-421,
433-434, 437, 441, 447, 499-500, 503, 514,
518, 575, 591, 593-594, 599, 602, 619

Synthetic, 362, 368, 370, 394, 536
System, 35, 37, 40, 43-44, 46-53, 57, 60-61, 66, 80,

83, 85, 100, 102, 105, 116, 147, 164, 202,
204, 206, 216-218, 224, 246, 249, 259, 284,
306, 309, 312-313, 315, 319, 321, 325, 331,
333-334, 338, 343-347, 352-353, 356, 376,
384, 389, 443, 459-461, 475, 484, 493, 503,
516, 532, 584-585, 593, 619-620, 633

analogous, 475
Systematic error, 310, 377, 380, 386, 390

T
temperature, 21, 56, 63, 147, 156-160, 162, 167, 198,

215-216, 253-254, 265, 275, 318, 325-326,
328-332, 336-337, 339, 343-349, 352-357,
360, 363, 365, 375, 387, 394-395, 406-407,
417, 452-453, 523, 576, 585, 613, 639-640

fixed points, 156
gradients, 253

Tempered, 318
martensite, 318

Tempering, 409, 465-466
Tensile test, 479
Test, 91, 308, 479, 487, 496
Testing, 284

nondestructive, 284
Texture, 124, 188, 241, 270, 303, 371-372, 374, 397,

400, 416-426, 434, 436-438, 440-442,
445-448, 463, 483, 486, 540, 557, 567-568,
573, 575

thermal, 156-159, 167, 169, 188, 216, 237, 253, 325,
337, 340, 343-344, 374, 375, 387-388,
394-395, 448, 536, 555, 613, 640

Thermal expansion, 156, 253, 375, 387, 394-395, 536
Thermally, 215, 452
Thermocouple, 253
Thermoplastic polymers, 561
Thickness, 11, 19, 29, 32, 154-156, 160, 167, 172-173,

185, 201, 205, 215, 237, 240, 249, 261-262,
275-277, 360, 401, 407, 410, 413, 426-431,
434, 436, 446-447, 488, 515, 528, 533, 535,
553, 563, 584, 596, 602-603, 605, 607,
609-610

Thinning, 554
Three-dimensional, 31-33, 38, 41, 53-54, 98-99, 123,

135, 177, 442, 558-560, 598
Tie line, 346
timer, 195, 225, 228
Tin, 86
Titanium, 367, 393, 465
Titanium alloys, 367, 465
Tool, 1, 40, 92, 115, 118, 316, 336, 365, 599, 606
Tool steels, 365
Tools, 413
Top, 16, 22, 27, 40, 53, 121, 153, 172, 181, 183-184,

230, 238, 267, 277, 297, 316, 328, 387,
403-404, 420, 431, 453, 470, 490-491, 493,
514, 516, 537-538, 541, 545, 547, 551-552,
562, 568, 584, 593, 610

Torsion, 261
Total, 6, 12-13, 22, 42, 49, 60, 62, 95, 107, 128, 143,

147-150, 155, 164, 175-176, 193, 209, 219,
221, 225-227, 249, 262, 264, 283, 287, 346,
351, 354, 360, 372, 383, 393, 409-413, 418,
427-428, 438, 446-447, 481, 523, 569,
581-582, 585, 609, 614

Total count, 225, 227
Total energy, 147-148, 427, 446
Trace, 67, 71, 73, 76, 79, 84, 248, 268, 275, 565
Trade, 584
Trade-offs, 584
Training, 28, 544
Transfer, 6, 72, 183, 213, 499, 515, 536, 587, 607

mechanisms, 587
Transform, 363
Transformation:, 333
Transformations, 88, 305, 318, 332, 340, 396, 448,

485, 518, 538, 620
Transistor, 215, 544
Transpose, 391
Transverse, 180, 419, 426-427, 431, 433, 436, 441,

525-526
Triaxial stresses, 455, 459, 462-463
Tube, 4-8, 10, 16-25, 27-29, 105, 107, 109, 123,

126-127, 191-192, 194-196, 199, 202,
210-213, 223, 231-233, 235, 240, 247-248,
251, 253-254, 263-267, 271-274, 278, 281,
308, 316, 385, 387, 400, 432, 468-469, 473,
475, 478, 516, 525, 533, 540, 546, 611-612

Tubes, 19-25, 27, 122, 203, 247, 263, 278, 349, 475,
527, 591

Tungsten, 6, 9, 20, 22, 110, 117, 153, 157, 168, 250,
257, 271, 274, 281, 308, 395, 465, 515, 520,
523, 614, 625

Turbine blades, 487
Turning, 31, 50, 57, 171, 291
Twinning, 66-67, 69-70, 83
Types, 19, 23, 25, 49, 54, 61, 66, 144, 165-166, 171,

180, 192, 204, 223, 235, 253, 294, 307, 309,
343, 345, 349, 463, 540, 574, 585-586

U
Uncertainty, 108, 220, 359, 381, 403, 440, 481, 547,

623
Uniform, 147, 179-180, 205, 211, 235, 328, 405, 424,

436, 446, 451-452, 484, 591, 607
Uniform deformation, 484
Uniform strain, 180, 451
Unit cell, 32-35, 38-39, 43-44, 46-49, 51, 53-54, 56,

58-62, 64-65, 85-86, 98, 100, 104-107, 116,
125-126, 133, 135, 138-140, 142-143, 145,
156, 163, 167, 175, 289, 306, 310, 312, 316,
318-322, 326-328, 332-333, 350, 360, 365,
529-530, 546, 561, 563, 576, 605, 615-616,
619-620

Unit cells, 32, 34-35, 42-44, 46-49, 53, 57, 59, 62, 86,
125, 175-177, 183, 188, 326, 332-333, 529,
561

Units, 2, 4, 39, 43, 91, 93, 95, 100, 106-108, 159, 194,
298, 334-335, 353, 371, 373, 377, 433-435,
439, 487, 547, 557-559, 576-577, 580, 586,
605, 623

of time, 2
Unity, 95, 97, 308, 350, 394, 576, 607
unknown, 1, 64, 82, 105, 107, 115, 118-119, 195, 200,

205, 222, 230, 284-285, 287-293, 296-301,
305-309, 312, 315-316, 320, 345, 348,
361-362, 364, 368-371, 390, 402, 422, 481,
488, 500, 503, 514, 548

Us, 25, 116, 548
Utility, 47, 146, 261, 320, 386, 445
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V
Vacancy, 10, 13, 15, 17, 250
Vacuum, 20-23, 213, 584, 591
Valence, 16, 213, 215
Valence band, 215
Value, 4, 6-8, 12-14, 19, 22, 52, 57, 80, 93, 95, 97,

106-108, 112, 116, 128, 131, 137-138,
140-141, 143-145, 147-148, 153, 156-157,
162, 164-165, 174-175, 178, 181, 185, 188,
195, 210, 212, 217-218, 220, 225-226,
228-229, 233-234, 239-240, 245, 251, 254,
256-259, 262, 268-269, 271, 273, 275,
279-280, 284-285, 291, 297, 306-308, 310,
312-314, 319-321, 323, 325, 329, 335-337,
339, 347, 349-350, 356, 361, 364-365, 370,
372, 375-377, 379-380, 382-388, 390,
394-396, 402, 413, 426-427, 429, 431, 433,
435-436, 451, 456, 458, 461, 465, 469, 479,
481-483, 490, 497, 501, 510, 515, 525, 528,
543, 547, 564, 567, 580-581, 605, 608, 615,
620, 633

added, 164, 229, 285, 350
Values, 11, 15, 17, 25-26, 35, 37, 43, 46, 52, 57, 61,

80, 95, 103, 108-109, 113, 123, 125, 128,
131, 135, 141-142, 144-147, 149-151, 153,
156-158, 161-165, 167-168, 172-173, 195,
199, 201, 207, 219, 236, 239, 256, 259,
267-268, 280, 284-288, 290-291, 294,
296-298, 301, 307-310, 312-313, 315-316,
321, 323, 327, 329, 334, 336, 338, 364, 367,
370-371, 373, 376-377, 380, 384-385,
389-395, 400, 412-413, 420, 422-424, 429,
431, 433, 440, 446, 455, 462-463, 466, 470,
472, 479-480, 482-483, 490, 503, 505, 511,
543, 576, 591, 596, 605, 614, 623, 639

Variability, 380, 564
Variables, 126, 148, 202, 273, 390, 402, 417, 551
Variance, 226
Variations, 2, 109, 115, 136, 156, 196, 336, 367-368,

370, 394, 402, 427, 445, 472, 478, 510, 573
vector, 2, 32, 34-35, 38-39, 48, 88, 93, 100-101, 112,

121, 125, 127, 136-137, 144-145, 175-177,
181-182, 391, 457-458, 460, 529-532, 542,
551, 567-569, 571, 577, 590, 598, 600, 605,
609

Vectors:, 35
Velocity, 2, 5-6, 28-29, 147, 193, 195, 332, 565,

590-591, 611-613
Vertical, 7, 49, 53, 75, 137, 166, 187, 193, 196, 221,

277, 294, 378, 421-423, 426, 431, 447, 457,
497, 513-514, 525, 527, 535, 537, 552, 568,
571, 575

Vertical axis, 166, 196, 294, 497, 513, 527, 537, 575
Vertical line, 422-423, 525, 535
Vibration, 156-159, 167, 169, 188, 237, 325, 340, 374,

448, 512, 555
Voids, 587
VOL, 10-11, 30, 60, 87-88, 108, 124, 153, 168, 207,

214, 234, 241, 286, 321, 336, 340, 357, 621,
623, 625, 631, 640

Voltage, 4-8, 10-11, 16-19, 21-24, 27, 29, 196,
204-205, 207, 209-210, 212, 214-215, 219,
228, 231, 273-274, 281, 523, 591, 611-612

Voltmeter, 21
Volume, 32, 38-39, 48, 54, 64, 88, 106-107, 124, 154,

159, 180, 183, 198, 204, 206, 211, 241, 247,
255, 261, 276, 285, 318-319, 350, 357,
360-362, 364-367, 373-374, 402, 413, 425,
427-428, 431, 440-441, 445-446, 454, 459,
484, 540, 550, 553, 561, 571, 573, 576,
578-579, 581-582, 586-587, 604-605,
615-616, 619

Volumes, 88, 179, 202-203, 241, 343, 357, 616
Vt, 136

W
wafer, 300, 536-537, 540, 544
Wafers, 512, 547
Walls, 179-180, 205, 537
Water, 20-21, 24, 29, 253, 485, 575, 587

cooling, 20-21, 24, 29, 253
Wave, 1-4, 6, 91-94, 96-97, 118, 126-127, 129-131,

134-138, 145, 181-183, 223, 536, 543, 600,
607, 609, 611

Wear, 284
Weather, 240
Weighing, 244, 321, 473

Weight, 7, 12, 29, 106, 158, 318-319, 321-322, 331,
350-357, 361-364, 368-370, 406, 464-465,
579, 623, 625

Weld, 452-453, 479
Welding, 452, 479

electrodes, 479
Welds, 453
Well, 22, 28, 32, 42, 52-53, 62, 65-66, 70, 91, 112,

124, 134, 150, 164, 168, 174, 177, 192, 227,
240-241, 264, 269, 272, 276, 288, 297,
300-301, 316, 340, 349, 365, 385, 387, 394,
396, 405, 410, 417, 434, 440, 478, 483, 499,
502, 536, 538, 544-545, 547, 558, 561, 565,
582, 584, 587, 589, 596, 601, 608, 612, 614,
634, 637

White, 6, 28, 86, 109, 114, 219, 222, 249, 260-261,
271, 401, 423, 524-525, 528, 532, 537-539,
553, 607-608

Wire, 65, 160, 191, 197, 208-209, 211-212, 223-224,
261, 277, 400, 416-418, 421, 423-424,
437-441, 447, 451, 488, 496, 516

brushing, 197
Wire drawing, 416
Wiring, 21
Wood, 1, 587
Word, 62, 88, 219, 340, 396, 447, 485, 518, 557
Work, 7, 11, 15, 19, 28, 55, 65, 108, 120, 124, 132,

146, 163, 191-192, 238, 246, 248, 261, 263,
268, 299, 301, 305, 307, 348-349, 361, 377,
386-387, 394, 403, 405-406, 409, 462, 473,
475, 488, 573, 595, 597, 612, 623

envelope, 409
Workstation, 227

X
x-axis, 2, 136
X-radiation, 1, 25, 249, 316, 546, 576
X-ray diffraction, 1-2, 7, 9, 18, 24, 29, 31, 52, 62,

91-92, 94, 102, 106, 115, 124, 125-126, 156,
168-169, 171, 188, 191, 238, 241-242, 243,
269-270, 271, 283-303, 305, 325, 334,
340-341, 343-344, 355, 359-360, 367,
373-374, 375, 396-397, 399-400, 402,
412-413, 445, 448, 451-452, 454, 456, 459,
462, 471, 486, 487, 519, 527, 543-544, 555,
557, 573, 575, 588, 589, 591, 595, 607,
611-612, 615, 619, 623, 627, 629, 633-634,
635, 637, 639-640

X-rays, 1-30, 31, 58, 88, 91-96, 100-101, 103, 105,
107-108, 115, 118, 120, 126-127, 129,
132-135, 166, 169, 171-172, 174-175, 181,
185-186, 188, 191-192, 200, 204, 206-211,
213-219, 233, 240, 246, 248-249, 254, 261,
263, 271, 275, 299, 307, 321, 340, 353, 359,
374, 394, 396, 410, 427, 436-438, 441,
447-448, 455-456, 459, 475, 479, 481,
484-485, 512, 517, 519, 527-528, 533, 535,
538, 540, 555, 564, 573, 583, 607, 611-614,
640

Y
Yield, 17, 157, 191, 220, 264, 299, 301, 309, 316, 379,

393, 400, 417, 445, 479, 487, 503, 512
Yield strength, 487
Yielding, 147
Young’s modulus, 454, 531

Z
Zinc, 59-60, 64-65, 82, 84, 117, 163, 168, 248, 269,

275, 307, 313, 322-323, 330-331, 334-337,
359, 406

Zinc blende structure, 64, 307
Zirconia, 297
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